
ON CUSPIDAL SECTIONS OF ALGEBRAIC
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Abstract — Rational points in the boundary of a hyperbolic curve over a field with
sufficiently nontrivial Kummer theory are the source for an abundance of sections of
the fundamental group exact sequence. We follow and refine Nakamura’s approach
towards these boundary sections. For example, we obtain a weak anabelian theorem for
hyperbolic genus 0 curves over quite general fields including for example Qab.
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1. Introduction

The anabelian geometry of cusps governs the anabelian geometry of affine smooth curves of
genus 0. By understanding cuspidal sections of algebraic fundamental groups well enough we
extract anabelian results for curves of genus 0 over rather general base fields as an application.

We will work over fields k of characteristic 0 and with full pro-finite fundamental groups only.
Tame or logarithmic as well as pro-` versions of the material presented here involves only trivial
modifications.

1.1. Anabelian geometry for curves of genus 0. The étale fundamental group of a geo-
metrically connected variety U over a field k with algebraic closure kalg sits in an extension, see
[4] IX Thm 6.1,

(1.1) 1→ π1(U)→ π1(U)→ Gal(kalg/k)→ 1,

where U = U ⊗k kalg, and Gal(kalg/k) = π1(Spec(k)) is the absolute Galois group of k that
we denote by Galk. The group π1(U) is called the geometric fundamental group of U/k.
We abbreviate the extension (1.1) by π1(U/k). Due to neglecting base points, the extension
π1(U/k) is only functorial in U/k if regarded as an extension of Galk with π1(U)-conjugacy
classes1 of maps of extensions.
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1By definition, two maps of extensions f, g : π1(U1/k)→ π1(U2/k) are π1(U2)-conjugate if there is an element

γ ∈ π1(U2) such that f = γ(−)γ−1 ◦ g.
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In a sequence of papers [14] [15] [16], Nakamura developed anabelian geometry of hyperbolic
(i.e., the Euler characteristic is negative) smooth curves of genus 0 based on a detailed study
of cuspidal sections (to be defined below in Section 1.2). Nakamura shows in [15] Theorem
1.1 that, for a finitely generated extension k/Q, two hyperbolic genus 0 curves U/k and V/k
are isomorphic over k if and only if the extensions π1(U/k) and π1(V/k) are isomorphic as
extensions of Galk. The picture was later completed to include also a natural bijection

Isomk(U, V ) = IsomGalk

(
π1(U/k), π1(V/k)

)
as a consequence of more general results on affine anabelian curves by Tamagawa [24]. Sub-
sequent work by Mochizuki [9] [10] extended the scope further to base fields k contained in a
finitely generated extension of a p-adic field Qp. The author [20] [21] included also base fields of
positive characteristic2, with the case of a finite base field already being covered by Tamagawa
[24]. The main result of the present note with respect to anabelian geometry of genus 0 curves
extends Nakamura’s result to more general base fields.

Theorem A. Let U and V be hyperbolic curves over k with smooth projective completions of
genus 0. If k is algebraic over Q such that kQab is finite over Qab, then U ∼= V as k-curves if
and only if there is an isomorphism π1(U/k) ∼= π1(V/k) of Galk-extensions.

This is a special case of Theorem 63 proven in Section 9 with Theorem 30 providing the fact
that over such base fields k every isomorphism of fundamental group extensions automatically
preserves the anabelian weight filtration, see Section 5. The proof benefits from the terminology
and structure of the anabelian local cohomology sequence, see Section 6, the notion of orienta-
tion, see Section 7, and an anabelian theory of units, see Section 8. Moreover, the proof relies
on a precise analysis of the properties of the base field k that allow to characterise cuspidal
sections and to define actual parameters in the base field, the double ratios, which serve as
moduli parameters to distinguish different genus 0 curves.

Actually, extracting moduli parameters from a given π1(U/k) rather than showing that an
isomorphism π1(U/k) ∼= π1(V/k) necessarily comes from an isomorphism U ∼= V as k-curves
is a first step towards a better understanding of anabelian geometry of curves. While the
understanding of morphisms shows that the functor π1 is fully faithful, see [10], we would also
like to know an a priori description of the essential image of π1. The approximation that our
approach here has to offer focuses on the moduli parameter values that we can extract from

the extension, a priori elements in the pro-N completion k̂∗, see Definition 2. Obviously, as a
necessary condition for an extension to lie in the essential image, these moduli parameters have

to lie in the image of k∗ → k̂∗. In Section 10 we show how the j-invariant can be extracted
from π1(E − {e}/k) where E/k is an elliptic curve with origin e ∈ E.

1.2. Cuspidal sections. A k-rational point u ∈ U(k) yields by functoriality a section

su = π1(u) : Galk → π1(U)

of π1(U/k), with image the decomposition group of a point above u. Having neglected base
points only the class of a section up to conjugation by elements from π1(U) is well defined.
Let us denote by Sπ1(U/k) the set of conjugacy classes of sections of π1(U/k). The section
conjecture of Grothendieck’s anabelian geometry [5] speculates the following.

Section Conjecture (Grothendieck). The map U(k) → Sπ1(U/k) which sends u 7→ su is
bijective if U/k is a geometrically connected, smooth, projective curve of genus ≥ 2 over a finite
extension k/Q.

The section conjecture is wide open in general, see [23] for a survey. The first affirmative
examples can be found in [22] §7 and very few others have been found in the meantime. An
approach using Tannakian formalism has been advocated by Esnault and Hai [3]. The injectivity
part in the section conjecture is a consequence of the Mordell–Weil theorem and was known

2The presence of Frobenius requires some care with the correct statement.
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to Grothendieck. A stronger pro-p injectivity result was obtained by Mochizuki [10] Theorem
19.1, see [23] §7.2 for a survey.

For affine smooth hyperbolic curves U/k there is an obvious failure of the section conjecture
if there are k-rational points in the complement Y = X \ U of U in its smooth projective
completion X, since these points give rise to cuspidal sections to be defined now.

Let y ∈ Y (kalg) be a geometric point and Oh
X,y the corresponding henselisation of the lo-

cal ring. The fundamental group of the connected scheme of nearby points Uy = U ×X
Spec(Oh

X,y) at y can be computed as the decomposition subgroup of a place above y and sits in
an extension

1→ Ẑ(1)→ π1(Uy)→ Galκ(y) → 1,

which we abbreviate by π1(Uy/κ(y)), and where κ(y) ⊂ kalg is the residue field of the closed
point in Y underlying y. Then Uy → U yields a natural map of extensions

π1(Uy/κ(y))→ π1(U/k),

the image of which coincides with the extension described by the inertia and decomposition
subgroup at y, see Section 3.

Definition 1. A cuspidal section of π1(U/k) is a section that factors over π1(Uy) for a point
y ∈ Y with (necessarily) residue field k. The image of

Sπ1(Uy/k) → Sπ1(U/k)

is called the Paket (engl. packet) based at the cusp y in [5].

Being cuspidal does not depend on the representative chosen in a given conjugacy class of
sections. The correct version of the section conjecture for affine curves asks that all but cuspidal
sections come from rational points. The condition on the genus gets replaced by asking the
Euler-characteristic to be negative.

Grothendieck in [5] raised the question of how many inequivalent cuspidal sections there are
per boundary point, and he also gave the correct answer: uncountably many. This question
was first addressed by Esnault and Hai in [3] where Tannakian methods are applied. We give
here a fairly elementary treatment3 based on pro-finite group theory which works over fairly
general base fields. The notion of a field with non-trivial Kummer theory naturally occurs, see
Section 2. The main results here are Theorem 17 and Theorem 21 in Section 4 that we can
summarize as follows.

Theorem B. Let k be a field with nontrivial Kummer theory, and let U/k be an affine hyperbolic
curve with a k-rational cusp y. Then the cardinality of the packet of cuspidal sections based at y

is uncountable, more precisely has the same cardinality as k̂∗, if one of the following conditions
holds.

(i) The injectivity part of the section conjecture holds for proper smooth curves of genus at
least 2 over k.

(ii) For any abelian variety A/k the group of k-rational torsion points A(k)tors contains no
nontrivial divisible subgroup.

(iii) The Ẑ-rank of k̂∗ is infinite.

1.3. A guide through the paper. This paper deals with the anabelian geometry of cuspidal
sections in the case of curves with an emphasis on imposing only mild assumptions on the base
field. There are three main topics with the common thread of a detailed study of the anabelian
geometry of cusps.

In Sections 2–4 we deal within the realm of pro-finite group theory with the abundance of
cuspidal sections over fairly general base fields. Preliminaries for the discussion are a study of
the notion of fields with nontrivial Kummer theory and a study of the local theory of cusps.

3The author thanks Tamás Szamuely for inquiring a pro-finite presentation.
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In Sections 5–8 we pursue a general investigation on additional structure of a fundamental
group of a curve defining anabelian versions of a weight filtration4, an orientation and units.
This part is very much influenced by work of Nakamura [14], [15], [16], [17].

As an application of the general investigation we obtain in Sections 9 and 10 anabelian results
where the fundamental group determines the isomorphy type of a curve. As a particular feature,
our approach, especially in Section 10, directly addresses how the moduli parameters in question
are encoded in the arithmetic structure of the fundamental group extension.

Acknowledgements. I would like to express my thanks to the referees that have commented
on this note for insisting on a better presentation and for suggesting various improvements.

2. Fields with nontrivial Kummer theory

In this section we discuss the notion of a field with nontrivial Kummer theory. That notion
naturally appears in the anabelian question about the cardinality of cuspidal packets, to be
discussed in Section 4.

Definition 2. The pro-N completion of an abelian group A is

Â = lim←−
N
A/nA.

By Kummer theory, we can identify k̂∗ = H1(k, Ẑ(1)) where the cohomology group is contin-
uous cohomology of Galk, i.e., cohomology as a pro-finite group with continuous cochains, with
values in the Tate module Ẑ(1) = lim←−n µn.

Definition 3. We say that a field k has nontrivial Kummer theory if the group

k̂∗ = H1(k, Ẑ(1))

is infinite. Otherwise we say that k has trivial Kummer theory.

Example 4. (1) Among fields with trivial Kummer theory are real closed fields and the maximal
solvable extension ksolv of an arbitrary field k.

(2) Finite extensions of Q, local fields and more generally fields k that admit a discrete
valuation ν : k∗ → Γ with nondivisible value group Γ have nontrivial Kummer theory. Indeed,

the induced map ν̂ : k̂∗ → Γ̂ has infinite image.

The notation for the torsion subgroup of an abelian group A is Ators, while A[n] denotes the
n-torsion of A.

Lemma 5. The group H1(k,Q/Z(1)) vanishes if and only if the map k̂∗tors → k̂∗ is an iso-

morphism. Both properties hold if the projection k̂∗ → k∗/(k∗)n is an isomorphism for some
n ≥ 1.

Proof: The multiplication by n sequence of Q/Z(1) = Gm,tors and Kummer theory yield an
exact sequence

1→ k∗tors/(k
∗
tors)

n → k∗/(k∗)n → H1(k,Q/Z(1))[n]→ 1.

We conclude that k∗tors/(k
∗
tors)

n = k∗/(k∗)n if and only if H1(k,Q/Z(1)) has no n-torsion. This
proves the claimed equivalence.

Let k̂∗ → k∗/(k∗)n be an isomorphism. Then for every a ∈ k∗ and m ∈ N we have an ∈
(k∗)n·m!. Hence there is ζ ∈ µn(k), a priori depending on m, such that aζ ∈ (k∗)m!. Since µn(k)

is finite, one ζ is good for all m, so a ≡ ζ−1 in k̂∗ and the always injective map k̂∗tors → k̂∗ is
also surjective. �

Proposition 6. Let k be a field. Then the following are equivalent.

(a) k̂∗ is finite, cyclic and generated by a root of unity,

4The idea of an anabelian weight filtration is due to Nakamura [17] §2.1.

4



(b) k̂∗ is countable,
(c) H1(k,Q/Z(1)) = 0 and k∗tors = H0(k,Q/Z(1)) is finite modulo its maximal divisible

subgroup Div(k∗tors).

In particular, if k has nontrivial Kummer theory, then k̂∗ is uncountable.

Proof: Clearly (a) implies (b). If (b) holds, then for some n ≥ 1 we have k̂∗ ∼= k∗/(k∗)n,
because otherwise infinitely many of the surjections

k∗/(k∗)(n+1)! � k∗/(k∗)n!

have nontrivial kernel and the cardinality of k̂∗ is uncountable. From Lemma 5 we deduce that
H1(k,Q/Z(1)) = 0 and with the n as above also the maps

k̂∗tors � k∗tors/(k
∗
tors)

n ↪→ k∗/(k∗)n ∼= k̂∗

are isomorphisms. Hence

(k∗tors)
n =

⋂
d≥1

(k∗tors)
nd = Div(k∗tors)

and (c) follows, because k∗tors/(k
∗
tors)

n is finite.
It remains to show that (c) implies (a). Assuming (c), Lemma 5 shows

k̂∗ = k̂∗tors =
̂(
k∗tors

Div(k∗tors)

)
is finite and generated by roots of unity, hence cyclic and generated by one root of unity, so (a)
holds. �

Corollary 7. The field k has nontrivial Kummer theory if there is an a ∈ k and n ≥ 1 such
that k( n

√
a)/k is not an abelian field extension.

Proof: We argue by contradiction and assume k̂∗ is finite. If the group

Gal(
⋃
n≥1

k( n
√
a, µn)/k)

is not abelian, then not all n
√
a are contained in the maximal cyclotomic extension k(µ∞). Thus

a is not contained in the kernel of k̂∗ → k̂(µ∞)∗, which contadicts (a) of Proposition 6. �

Proposition 8. Let k be a field. The following are equivalent:

(a) The extension k(µ2∞)/k is infinite or µ4 is contained in k.
(b) For any finite extension E/F of fields which are finite algebraic over k the natural map

F̂ ∗ → Ê∗ is injective.

Proof: In (b) we may assume that E/F is Galois. The inflation-restriction sequence then
reads

0→ H1
(
E/F,H0(E, Ẑ(1))

)
→ F̂ ∗ → Ê∗.

We may restrict to the p-part. By the usual corestriction argument with the p-Sylow subgroup
of Gal(E/F ) we may further assume that Gal(E/F ) is a p-group. By dévissage, since p-groups
are nilpotent, we see that in (b) it is enough to ask H1

(
E/F,H0(E,Zp(1))

)
= 0 for all p-cyclic

Galois extensions E/F .
The coefficients H0

(
E,Zp(1)

)
either vanishes or µp∞ is contained in E. For p odd, either

way the action of Gal(E/F ) must be trivial as Z∗p contains no p-torsion. Hence in this case

H1
(
E/F,H0(E,Zp(1))

)
= Hom

(
Gal(E/F ),H0(E,Zp(1))

)
= 0.

For p = 2 we may argue analogously except in the case that Gal(E/F ) acts nontrivially via
complex conjugation, which means µ4 6⊂ F and µ2∞ ⊂ E. Therefore (a) implies (b).
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But if (a) fails, then there is a quadratic extension E/F finite over k with µ2∞ ⊂ E and
E = F (i) such that

ker
(
F̂ ∗ → Ê∗

)
= H1(Z/2Z, Ẑ(1)) = ker

(
R̂∗ → Ĉ∗

)
= {±1}

contradicting (b). �

Corollary 9. Let E/F be a finite extension. The map F̂ ∗ → Ê∗ is either injective or has kernel
of order 2 generated by the class of −1.

Proof: By Proposition 8 the kernel is contained in the corresponding kernel for E = F (i),
which at most equals the kernel for the extension C/R as shown in the proof above. �

3. Cusps and inertia subgroups

In this section we introduce the notion of cusps of affine smooth curves and study the group
theory of the inertia subgroup that a cusp gives rise to. The results are well known and included
for convenience of the reader.

From now on U will be the complement of a reduced divisor Y in a geometrically connected,
smooth, projective curve X/k. The Euler-characteristic is

χ(U) = 2− 2g − deg(Y ),

where g is the genus of X. We say that U is hyperbolic if χ(U) < 0. In that case it turns
out that inertia groups at different cusps are in some sense independent. The results can be
viewed as analogues for the unramified quotient π1(U) of old results of F. K. Schmidt [19] for
the decomposition groups of places.

3.1. The universal pro-étale cover. Recall that a universal pro-étale cover Ũ → U of
U is a pro-system of connected finite étale covers Ui → U such that for any finite étale cover
V → U there is a map Ui → V above U for i sufficiently large. For a geometric point ū ∈ U ,
a choice of point ξ ∈ Ũ above ū consists of a compatible choice of points ξi ∈ Ui above ū. The
pair (Ũ , ξ) then pro-represents the functor Fū = (fibre in ū) from the category of finite étale
covers of U with values in finite sets by

lim−→
i

Hom(Ui, V ) = Fū(V )(
f : Ui → V

)
7→ f(ξi),

see [4] exposé V. In particular, the fundamental group of U with base point ū, i.e.,

π1(U, ū) = Aut(Fū)

can be identified by the choice of ξ and the Yoneda embedding with the opposite group of
Aut(Ũ/U). Since U → U is a pro-étale cover, we can lift Ũ → U to a map Ũ → U . Thus we

fix a kalg-structure on Ũ .

3.2. Cusps. We now fix a universal pro-étale cover Ũ → U and a lift Ũ → U together with an
isomorphism of Galk-extensions of π1(U/k) with the opposite groups of

1→ Aut(Ũ/U)→ Aut(Ũ/U)
pr−→ Aut(Spec(kalg)/Spec(k))→ 1.

Note that here Aut(−/−) means by definition automorphisms of pro-objects. But in fact, due
to these pro-covers having a cofinal family of finite Galois covers, an element of Aut(−/−) is
nothing but a compatible system of automorphisms for these intermediate finite Galois covers.

Let X̃ be the normalization of X in Ũ → U , i.e., X̃ is the pro-system (Xi) of normalizations

Xi of X in Ui → U . Let Ỹ be the reduced preimage of Y under X̃ → X, i.e., the pro-system
of the Yi = Xi \ Ui. The kalg-structure on Ũ induces a kalg-structure on X̃ and on Ỹ . As
normalization is unique we obtain an inclusion

Aut(Ũ/U) ⊆ Aut(X̃/X)

by which we can let Aut(Ũ/U) act on X̃ and in particular Ỹ .
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Definition 10. The set of cusps of U is

Cusps(U) = Homk(Spec(kalg), Y )

as a set with Galk action. The set of prolongations of cusps to Ũ is the pro-finite set

C̃usps(U) = Homkalg(Spec(kalg), Ỹ ),

with the continuous π1(U) action by γ.ỹ = γ−1 ◦ ỹ ◦ pr(γ) for γ ∈ π1(U) and ỹ ∈ C̃usps(U).

The projection map C̃usps(U) � Cusps(U), ỹ 7→ y is equivariant and the quotient map for
the induced π1(U) action.

3.3. Inertia subgroups at cusps. The inertia group Iỹ/y (resp. the decomposition group

Dỹ/y) of a cusp ỹ ∈ C̃usps(U) is the stabilizer under the action of π1(U) (resp. π1(U)). Hence

for γ ∈ π1(U) we have Iγỹ/γy = γ Iỹ/y γ
−1 and Dγỹ/γy = γDỹ/y γ

−1. The choice of ỹ ∈ C̃usps(U)
determines a representative for the map of extensions π1(Uy/κ(y)) → π1(U/k) with image the
extension Dỹ/y given by

1→ Iỹ/y → Dỹ/y → Galκ(y) → 1.

Proposition 11. The extension π1(Uy/κ(y)) splits and there is a natural free transitive action

by κ̂(y)∗ on Sπ1(Uy/κ(y)).

Proof: The roots (t1/n)n∈N of a fixed parameter t at y define a tower of finite étale covers of
Uy. The intersection of the corresponding family of open subgroups of π1(Uy) defines a splitting.

The free transitive action of H1(κ(y), Ẑ(1)) = κ̂(y)∗ on the set Sπ1(Uy/κ(y)) is then standard, see
for example [23] §1.2 Proposition 8. �

3.4. Unramified local theory. The maximal abelian quotient of π1(−) will be denoted by
πab

1 (−). From the topological computation of fundamental groups via GAGA we get the fol-
lowing exact sequence of Galk modules

(3.1) Ẑ(1)
∆−→ Ẑ(1)⊗ Z[Cusps(U)]→ πab

1 (U)→ πab
1 (X)→ 0,

where moreover Ẑ(1) · y for a cusp y ∈ Cusps(U) maps to the image of Iỹ/y in πab
1 (U) regardless

of the prolongation ỹ of y, and ∆ is the diagonal map. The group πab
1 (X) is a free Ẑ module of

rank 2g.

Definition 12. A neighbourhood of a section s ∈ Sπ1(X/k) is a finite étale map f : X ′ → X
with X ′/k geometrically connected and a section s′ ∈ Sπ1(X′/k) with π1(f)◦s′ = s. Equivalently,
a neighbourhood is an open subgroup H of π1(X) together with a representative of s with
s(Galk) ⊂ H up to conjugation by H ∩ π1(X), see [23] §4.2.

Lemma 13. If χ(U) < 0 and U is affine, then # Cusps(V ) → ∞ as V ranges over connected
finite étale covers of U that, moreover, we may choose among the neighbourhoods of a section
s ∈ Sπ1(U/k).

Proof: By (3.1) the group Iỹ/y has infinite index in π1(U). �

Lemma 14. If χ(U) ≤ 0 then π1(Uy/κ(y)) ∼= Dỹ/y injects into π1(U/k) for each cusp y of U .

Proof: The kernel of π1(Uy) → π1(U) is contained in the inertia subgroup Ẑ(1) ⊂ Dỹ/y. As

Ẑ(1) is torsion free we may replace U by a finite étale cover and thus may assume # Cusps(U) ≥ 2
by Lemma 13 in case χ(U) < 0 and U is affine. Of course, if U is proper there is nothing to do
and in the remaining case of χ(U) = 0 we have U is a form of Gm and # Cusps(U) = 2 anyway.
With at least two cusps the lemma follows at once from (3.1), because the inertia group then
even injects into πab

1 (U). �

Corollary 15. If χ(U) ≤ 0, then for any ỹ ∈ C̃usps(U) the inertia group Iỹ/y is free pro-cyclic.
7



Proof: This follows at once from the isomorphism Ẑ(1)
∼−→ Iỹ/y implied by Lemma 14. �

Proposition 16 (Local theory). Let χ(U) < 0 be negative.

(1) Let ỹ1, ỹ2 ∈ C̃usps(U) be prolongations of cusps with nontrivial intersection Iỹ1/y1 ∩ Iỹ2/y2 6=
1. Then already ỹ1 = ỹ2.

(2) For any cusp y, the normalizer of Iỹ/y in π1(U) is Iỹ/y, and the normalizer of Iỹ/y in
π1(U) is Dỹ/y.

(3) If an abelian subgroup A ⊂ π1(U) intersects Iỹ/y nontrivially for a cusp y, then A is
contained in Iỹ/y.

Proof: (1) Since π1(U) is torsion free, see [24] Prop. 1.6, the intersection is either trivial or
infinite. We argue by contradiction and may replace U by a finite étale cover to assume y1 6= y2

and # Cusps(U) ≥ 3. Then Iỹ1/y1 and Iỹ2/y2 intersect trivially in πab
1 (U) by (3.1).

(2) If γ ∈ π1(U) normalises Iỹ/y, then Iỹ/y ∩ Iγ.ỹ/γ.y 6= 1, hence γ.ỹ = ỹ by (1) and thus

γ ∈ Dỹ/y. Note that Iỹ/y = Dỹ/y ∩π1(U).
(3) Let γ be a nontrivial element of A ∩ Iỹ/y and a ∈ A arbitrary. Then the intersection of

Iỹ/y with a Iỹ/y a
−1 = Ia.ỹ/a.y contains γ, hence a.ỹ = ỹ by (1) and a ∈ Iỹ/y. �

4. Abundance of cuspidal sections

We give two proofs that quite generally the packets of cuspidal section are uncountable, see
also Esnault and Hai in [3] Cor 6.9.

4.1. The anabelian proof. We first present an anabelian proof that relies on an anabelian
assumption.

Theorem 17. Let us assume that the injectivity part of the section conjecture holds for proper
curves of genus at least 2 over finite extensions of k. Then the following holds.

(1) A cuspidal section uniquely determines the cusp y for which it factors over π1(Uy).
(2) The natural map Sπ1(Uy/k) → Sπ1(U/k) for a k-rational cusp y of U is injective.
(3) The set of cuspidal sections is disjoint from the sections induced by rational points

u ∈ U(k).

Proof: Let s be a section. Replacing U by a neighbourhood of s we may assume that X has
genus ≥ 2.

(1) If the image of s is contained in Dỹ1/y1 and Dỹ2/y2 then s maps simultaneously to sy1 and
sy2 under Sπ1(U/k) → Sπ1(X/k), hence y1 = y2 by assumption. The same argument proves (3).

(2) Let s, t ∈ Sπ1(Uy/k) become conjugate as sections of π1(U/k). Let γ ∈ π1(U) be

such that s = γ()γ−1 ◦ t. Then for suitable ỹ the image s(Galk) is contained in Dỹ/y and

γ(Dỹ/y)γ
−1 = Dγ.ỹ/y. Applying the same reasoning as in (1) to all finite étale covers of U that

are neighbourhoods of s we also deduce γ.ỹ = ỹ. Hence γ ∈ Iỹ/y and so s and t are already
conjugate as sections of π1(Uy/k). �

Remark 18. (1) Let k be a field such that for any abelian variety A/k the group of k-rational
poins A(k) has no divisible elements. Then the assumption in Theorem 17 holds, see [23] §7.1
Prop 73.

(2) Part (2) of Theorem 17 actually follows from the weaker assumption that for all smooth
projective hyperbolic curves X ′ over finite extensions k′/k and all a ∈ X ′(k′) the centraliser
of sa(Galk) in π1(X ′) intersects only trivially with π1(X ′). Namely, if s(Galk) is contained in
both Dỹ/y and Dγ.ỹ/y but ỹ 6= γ.ỹ, then there is a neighbourhood U ′ → U of s such that the
image y′ of ỹ is different from the image y′′ of γ.ỹ. After base change by a sufficiently ramified
neighbourhood V → U of s, which in particular is (after possibly a finite extension k′/k) totally
ramified above y, we may assume by Abhyankar’s Lemma that U ′×U V → V extends to a finite
étale cover of the respective smooth completions. Replacing U by V , we may thus assume that
U ′ → U extends to a finite étale cover X ′ → X and that sy lifts simultaneously to sy′ and sy′′
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for y′ 6= y′′. This contradicts [23] §3.3 Prop 28 in light of our assumption on the centralizer of
s(Galk).

(3) For U = Gm a cuspidal section fails to determine its cusp. In fact, all sections are cuspidal
and belong to both packets, at 0 and ∞.

Corollary 19. If the injectivity part of the section conjecture holds for proper curves of genus
≥ 2 over k and if k has a nontrivial Kummer theory then each k-rational cusp gives rise to an
uncountable set of cuspidal sections.

Proof: Immediately from Theorem 17 and Proposition 11. Indeed it suffices to assume
injectivity of the section conjecture for curves over k, since we do apply this to neighbourhoods
of the given cuspidal sections, and these are curves geometrically connected over k again. �

Remark 20. As in Theorem 17 we can replace the assumption on the injectivity part of the
section conjecture by the assumption on the centralizer of the image of geometric sections as in
Remark 18 above.

4.2. The abelian proof. The abelianised fundamental group extension πab
1 (U/k) is the push-

out of the extension π1(U/k) by the quotient π1(U) � πab
1 (U).

Theorem 21. Let k be a field with nontrivial Kummer theory such that one of the following
two assumptions hold.

(i) For any abelian variety A/k the group of k-rational torsion points A(k)tors contains no
nontrivial divisible element.

(ii) The Ẑ rank of k̂∗ is infinite.

The image of Sπ1(Uy/k) → Sπ1(U/k) is uncountable for every k-rational cusp y.

Remark 22. Assumption (ii) holds for k = Qab. For each prime p we have a valuation νp on

Qab with values in 1/(p− 1)Z[1/p]. For different p these are mutually independent, whence for
finite sets S of primes a surjective map

Q̂ab,∗ →
∏
p∈S

̂1/(p− 1)Z[1/p].

Choosing a prime ` 6∈ S we conclude that the Z` rank of Q̂ab,∗ ⊗ Z` is at least #S, and (ii)
follows.

Proof: Replacing U by a neighbourhood of a cuspidal section at y we may assume by Lemma
13 that U has at least 2 cusps. It suffices to prove that Sπ1(Uy/k) → Sπab

1 (U/k) has uncountable

image. By the well-known description of the set of conjugacy classes of sections in the abelian
case with an H1-group, see for example [23] §1.2 Proposition 8, this translates into showing that
the natural map

k̂∗ = H1(k, Iỹ/y)→ H1(k, πab
1 (U))

has uncountable image.
The k-rational cusp y can be used to split the diagonal map ∆ in (3.1), so that Galois

cohomology and the Shapiro lemma yields

H1(k, Ẑ(1)⊗ Z[Cusps(U)]/Ẑ(1)) = H1(k, Ẑ(1)⊗ Z[Cusps(U)])/H1(k, Ẑ(1))

=

(⊕
z

H1(κ(z), Ẑ(1))

)
/H1(k, Ẑ(1)) =

(⊕
z

κ̂(z)∗
)
/k̂∗

where z runs over a set of representatives of Galk orbits on Cusps(U). Now the exact sequence

0→ Ẑ(1)⊗ Z[Cusps(U)]/Ẑ(1)→ πab
1 (U)→ πab

1 (X)→ 0

derived from (3.1), yields an exact sequence

H0(k, πab
1 (X))

δ−→
(⊕

z

κ̂(z)∗
)
/k̂∗ → H1(k, πab

1 (U)).
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By Corollary 9, the kernel of the map k̂∗ →
(⊕

z κ̂(z)∗
)
/k̂∗ onto the component of the cusp y is

at most of order 2. The result follows because in case (i) the map δ is trivial (note that πab
1 (X)

is isomorphic to the Tate-module of the Jacobian of X) and in case (ii) it has image of finite

rank, whereas k̂∗ has infinite rank. �

Remark 23. Let y be a k-rational cusp of U . For a unit f ∈ Γ(U,Gm) with order of vanishing
n = vy(f) in y the composite map

π1(Uy/k)→ π1(U/k)
π1(f)−−−→ π1(Gm/k)

induces the nth power map

k̂∗ = Sπ1(Uy/k) → Sπ1(Gm/k) = k̂∗,

the kernel of which is generated by µn(k). It follows that, if there is a finite étale cover U ′ → U
, a cusp y′ of U ′ above y and an f ∈ Γ(U ′,Gm) with vy′(f) 6= 0, then the cuspidal packet at y
is uncountable if k is a field with nontrivial Kummer theory. However, it seems to be an open
question, whether a U ′ with such an f always exists, at least in the case when k is a number
field, but see [13] Cor 5.7 for a negative example if U/k is a generic curve.

5. The anabelian weight filtration following Nakamura

We recall the theory of the anabelian weight filtration after Nakamura [15] §3, [17] §2.1. As
before, U will be the complement of a reduced divisor Y in a geometrically connected, smooth,
projective curve X/k.

Definition 24. The anabelian weight filtration of U is the subset W−2(U) ⊂ π1(U) of all

inertia elements W−2(U) =
⋃

Iỹ/y where the union ranges over all ỹ ∈ C̃usps(U).

The set W−2(U) is pro-finite, hence compact, and preserved under conjugation by π1(U).
Strictly speaking, the terminology anabelian is only justified when W−2(U) can be described in
terms of π1(U/k) alone.

Definition 25. A weight preserving map is a continuous group homomorphism ϕ : π1(U/k)→
π1(V/k) of fundamental groups of hyperbolic curves such that ϕ(W−2(U)) ⊆W−2(V ). This does
not exclude that an inertia group of π1(U) may lie in the kernel of ϕ.

If ϕ : π1(U/k)→ π1(V/k) is weight preserving, then Proposition 16 (3) implies that ϕ induces

a partially defined π1-equivariant map C̃usps(U) → C̃usps(V ), which is defined precisely on
those cusps ỹ/y for which ϕ(Iỹ/y) 6= 1.

5.1. When the cyclotomic character is non-Tate.

Definition 26. Let ` be a prime number and let k be a field. Following [1] §3, we say that the
`-adic cyclotomic character Galk → Z∗` is a non-Tate character if any Galk-map Z`(1)→ T`A
to the `-adic Tate module of an abelian variety A/k vanishes.

Due to the theory of weights, for a finite extension k/Q and any prime number `, the `-adic
cyclotomic character is non-Tate. This can be improved to the following criterion.

Lemma 27. Let ` be a prime number and let K`/Qab be a maximal prime to ` extension, i.e.,
the fixed field of an `-Sylow group of GalQab. Then, for an algebraic extension k/Q such that
kK`/K` is finite, the `-adic cyclotomic character is non-Tate.

Proof: We argue by contradiction. Let k0 ⊂ k be a subfield that is finite over Q, and let
A/k0 be an abelian variety such that there is a nontrivial Galk-map ψ : Z`(1) → T`A. Since
GL(T`A) has a pro-` subgroup of finite index, we may assume by passing to a finite extension of
k and k0 that the action of Galk0 on T`A is via a pro-` group. Since kK`/K` is finite, a further
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finite extension of k0 and k allows to assume that k0K` = kK` and moreover that GalkK` is an
`-Sylow subgroup of Galk0Qab . By pro-finite Sylow theory, we have then that

im
(

GalQabk0 → GL(T`A)
)

= im
(

GalkK` → GL(T`A)
)
.

It follows that

Z` ∼= H0(Qabk0, im(ψ)) ⊆ H0(Qabk0,T`A) = Hom(Q`/Z`, A(Qabk0)),

which provides a contradiction, since A(Qabk0) is finite by Theorem 1 of Ribet’s appendix to
[6], and thus Hom(Q`/Z`, A(Qabk0)) = 0. �

The following is a special case of [1] Lemma 3.1.

Lemma 28. Let ` be a prime number and let k′/k be a finite field extension. Then the `-adic
cyclotomic character is non-Tate for k if and only if it is non-Tate for k′.

Proof: If there is an abelian variety A′/k′ and a nontrivial Galk′-map Z`(1) → T`A
′, then

with the Weil-restriction of scalars A = Rk′/k(A
′) we find a nontrivial Galk-map Z`(1)→ T`A =

indk′/k(T`A
′) by Frobenius reciprocity. The other direction is even more obvious. �

5.2. Characterisation of inertia subgroups after Nakamura. Local theory in anabelian
geometry aims to show that any group homomorphism of Galk-extensions automatically pre-
serves weights. For hyperbolic curves over fields such that the `-adic cyclotomic character is
non-Tate for some prime number `, this was achieved by Nakamura as we will recall now.

Definition 29. A pro-cyclic closed subgroup I ⊂ π1(U) is essentially cyclotomically nor-
malized if there is a subgroup N of the normalizer Nπ1(U)(I) of I in π1(U) which projects to
an open subgroup in Galk and the induced action of N on I is via the cyclotomic character.
The pro-cyclic closed subgroup I ⊂ π1(U) is cyclotomically normalized if it is essentially
cyclotomically normalized with N = Nπ1(U)(I).

Theorem 30 (Nakamura). Let k be a field and let U/k be a hyperbolic curve. Let ` be a prime
number such that the `-adic cyclotomic character is non-Tate. Then the following are equivalent
for a nontrivial closed pro-` subgroup I in π1(U):

(a) I is contained in an inertia subgroup Iỹ/y,
(b) I ∼= Z` is cyclotomically normalized,
(c) I ∼= Z` is essentially cyclotomically normalized.

Proof: We assume (a). As Iỹ/y is pro-cyclic, we find I ∼= Z`. If γ ∈ π1(U) normalizes I then

Iγ.ỹ/γ.y = γ Iỹ/y γ
−1 intersects Iỹ/y nontrivially in I. Hence γ.ỹ = ỹ and γ ∈ Dỹ/y = Nπ1(U)(Iỹ/y).

As Iỹ/y is cyclotomically normalized the same follows for I and (b) follows.
That (b) implies (c) is trivial. It remains to deduce (a) from (c). We argue by contradiction.

Then, by Proposition 16 (3), we have trivial intersection I ∩W−2(U) = 1, and can choose a
compact set ∅ 6= C ⊂ I avoiding 1. The Hausdorff property yields an open normal subgroup N
of π1(U) such that CN/N has empty intersection with W−2(U)N/N in π1(U)/N .

The group generated by W−2(U) ∩ N I in N I /N is cyclic of order a power of ` hence the
image of some Iỹ/y ∩N I which therefore avoids CN/N . Thus the intermediate `-cyclic cover

U ′′ → U ′ corresponding to N(I)` ⊂ N I is unramified over the corresponding cusps X ′−U ′. For
some finite field extension we obtain a nontrivial Galois invariant map from I ∼= Z`(1)→ T`A

′

where A′ is the Albanese variety of X ′, a contradiction to Lemma 28. �

We deduce an anabelian description of inertia subgroups, and hence the set C̃usps(U) and
the anabelian weight filtration W−2(U).

Corollary 31. Let k be a field such that the `-adic cyclotomic character is non-Tate for a
prime number `, and let U/k be a hyperbolic curve. Then the set of inertia subgroups in π1(U)
coincides with the set of maximal closed subgroups of π1(U) among those which are pro-cyclic
with nontrivial `-part and which are cyclotomically normalized.
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Proof: An inertia subgroup Iỹ/y is pro-cyclic, has nontrivial `-part, and is cyclotomically
normalized. Moreover, an inertia subgroup is a maximal such subgroup as otherwise Iỹ/y were
properly contained in an abelian subgroup contradicting Proposition 16 (3).

Conversely, let I be a maximal pro-cyclic and cyclotomically normalized subgroup with non-
trivial `-part. Then, by Theorem 30, there is some Iỹ/y which contains I⊗Z`. Proposition 16
(3) shows that I ⊆ Iỹ/y and by maximality in fact I = Iỹ/y. �

5.3. Characterisation of cuspidal sections after Nakamura.

Corollary 32. Let k be a field such that the `-adic cyclotomic character is non-Tate for a prime
number `. A section s ∈ Sπ1(U/k) for a hyperbolic curve U/k is cuspidal if and only if the image

s(Galk) cyclotomically normalizes a subgroup of π1(U) isomorphic to Z`(1).

Proof: A cuspidal section at the cusp y cyclotomically normalizes Iỹ/y and thus Iỹ/y ⊗Z` ∼=
Z`(1) for some choice of ỹ depending on various base points and paths. Conversely, let s(Galk)
cyclotomically normalizes the subgroup I ∼= Z`(1). By Theorem 30 there is an inertia subgroup
Iỹ/y that contains I. For σ ∈ Galk we find 1 6= I ⊆ Iỹ/y ∩ Is(σ).ỹ/s(σ).y so that s(σ).ỹ = ỹ by
Proposition 16 (1). Thus s(Galk) ⊆ Dỹ/y = π1(Uy) and s is cuspidal. �

6. Anabelian local cohomology for curves

The purpose of this section is to give an anabelian definition of the sequence (3.1). We will

introduce an anabelian orientation module that is isomorphic to Ẑ(1) but defined entirely in
terms of the fundamental group of the curve in question.

The Pontrjagin dual of the localization sequence

H1(X,Q/Z)→ H1(U,Q/Z)→
⊕

y∈Cusps(Ū)

H2
y(X,Q/Z)→ H2(X,Q/Z)

for the pair (X,U) with coefficients in Q/Z reads

(6.1) H2(X,Q/Z)∨
∆−→

⊕
y∈Cusps(Ū)

H2
y(X,Q/Z)∨ → πab

1 (U)→ πab
1 (X).

The map ∆ is even injective except if X = U .

Let U sh
y be the scheme of geometric nearby points of y, i.e., the preimage of U in Xsh

y =

Spec(Osh
X,y), where Osh

X,y is the strict henselisation of the local ring at y ∈ X. By excision we
have

H2
y(X,Q/Z)∨ = H2

y(X
sh
y ,Q/Z)∨

Naturality of (6.1) and summation over all y ∈ Cusps(U) leads to a commutative diagram⊕
y∈Cusps(Ū)

H2
y(X

sh
y ,Q/Z)∨

∼ //
⊕

y∈Cusps(Ū)

πab
1 (U sh

y )

��⊕
y∈Cusps(Ū)

H2
y(X,Q/Z)∨ // πab

1 (U).

where the top horizontal map is an isomorphism since Xsh
y has no cohomology in degrees ≥ 1.

This identifies the map

H2
y(X,Q/Z)∨ → πab

1 (U)

in the dual of the localization sequence with the natural map of an inertia group

Iỹ/y = πab
1 (U sh

y )→ πab
1 (U)
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for a choice of cusp ỹ above y reflected in the choice of base points. The image is independent
of the choice of the prolongation ỹ and will be denoted by Iy.

For a hyperbolic curve U/k, apart from the map ∆, all constituents of (6.1) have an anabelian
definition in terms of the fundamental group π1(U/k) together with its weight filtration alone.
Here is the anabelian definition of the map ∆.

Definition 33. For X of genus 0 we define the orientation module Orπ1(U/k) and ∆ through
the exactness of the sequence

0→ Orπ1(U/k)
∆−→

⊕
y∈Cusps(Ū)

Iy → πab
1 (U).

If X has positive genus, then X is an étale K(π, 1), cf. [21] Appendix A, which in particular
means that the natural map

H2(π1(X),Q/Z)→ H2(X,Q/Z)

is an isomorphism. We define the orientation module as

Orπ1(U/k) = H2(π1(X),Q/Z)∨ = H2(X,Q/Z)∨.

The y component of the map ∆ is defined by functoriality from the case of the pair (X,X −
{y}) and as the Pontrjagin dual to a map

δy : Hom(Iy,Q/Z)→ H2(π1(X),Q/Z)

as follows. There is a maximal intermediate quotient

π1(X \ {y}) � E
α−→ π1(X)

with ker(α) central in E. Then canonically ker(α) = Iy and pushing

(6.2) 1→ Iy → E → π1(X)→ 1

by χ ∈ Hom(Iy,Q/Z) defines δy(χ) ∈ H2(π1(X),Q/Z) as a central extension.

Definition 34. The anabelian local cohomology sequence for the pair (X,U) of a hyper-
bolic curve U and its smooth completion X is the sequence

(6.3) Orπ1(U/k)
∆−→

⊕
y∈Cusps(Ū)

Iy → πab
1 (U)→ πab

1 (X)→ 0,

as constructed above. The map ∆ is even injective except if X = U , and the groups Orπ1(U/k)

and Iy are all isomorphic to Ẑ(1) as Galois modules.

It remains to compare the anabelian definition of ∆ with the geometric definition.

Theorem 35. Let U be a hyperbolic curve with smooth completion X. The anabelian local
cohomology sequence (6.3)

Orπ1(U/k)
∆−→

⊕
y∈Cusps(Ū)

Iy → πab
1 (U)→ πab

1 (X)→ 0,

is naturally isomorphic to the local cohomology sequence in étale cohomology (6.1) up to a sign
for the map ∆.
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Proof: We only need to compare the anabelian definition of ∆ with the geometric definition.
For that purpose we restrict to the n-torsion part and twist by µn. In the following diagram

H0
(
U sh
y ,Gm

) δloc// //

δKum
����

-1

H1
y

(
Xsh
y ,Gm

)
δKum

��

H1
y

(
X,Gm

)exc
∼=
oo //

δKum

��

H1
(
X,Gm

)
δKum

��
H1
(
U sh
y , µn

) δloc
∼=
//

-1

H2
y

(
Xsh
y , µn

)
H2
y

(
X,µn

)exc
∼=
oo

∆∨y // H2
(
X,µn

)

H1
(
π1(U sh

y ), µn
)∼=comp

OO

Hom(Iy, µn)
δy=push E // H2

(
π1(X), µn

)∼=comp

OO

the upper left facet commutes up to sign by [2] cycle 2.1.3. We compute the maps going around
the diagram along the outside border and establish that the bottom facet also commutes only
up to a sign, which yields precisely the claim of the theorem.

Let f be a parameter of X at y. The mod n tame character in Hom(Iy, µn)

Iy → µn σ 7→ σ( n
√
f)/ n

√
f

maps under the comparison map to the µn torsor

[ n
√
f ] ∈ H1

(
U sh
y , µn

)
of nth roots of f , which equals δKum(f) by [2] cycle 1.1.1. By [2] cycle 1.1.4, we may interpret

δloc(f) ∈ H1
y

(
Xsh
y ,Gm

)
as the trivial line bundle on Xsh

y plus the trivialisation given by f over U sh
y which maps under

excision and the natural map to the class of the line bundle O(y) ∈ H1
(
X,Gm

)
associated to

the divisor y. By the very definition of [2] cycle 2.1.2, the class δKum(O(y)) = c1(O(y)) is the
cycle class cly of y. By [11] Lemma 4.5, the corresponding central extension in H2(π1(X), µn)
is given by the mod n push of the homotopy sequence

(6.4) 1→ Ẑ(1)→ π1(L◦)→ π1(X)→ 1

of the complement L◦ of the zero section in

L = Spec
X̄

(
Sym•O(−y)

)
which is the geometric line bundle whose sections naturally coincide with sections of O(y).

The section 1 above X − {y} defines a map

X − {y} → L◦ → X

which leads to a map of extensions

1 // Iy //

χ
��

E //

��

π1(X) // 1

1 // Ẑ(1) // π1(L◦) // π1(X) // 1

and all that remains is to identify the character χ as the tame character. The trivialisation of
L over Xsh

y via f leads to a diagram

Gm
// L◦|Xsh

y

∼= //

pr1

��

Gm ×Xsh
y

Gm U sh
y

1
ee

foo

f,incl

OO
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which on fundamental groups gives

Ẑ(1)
∼= // π1(L◦|Xsh

y
)
∼= //

π1(pr1)

��

π1(Gm ×Xsh
y )

Ẑ(1) π1(U sh
y ) = Iy

χ
gg

π1(f)oo

π1(f,incl)

OO

and reveals that χ = π1(f) which is exactly the tame character. �

7. Orientation and degree

As it matters here, we stress that the Tate twist Ẑ(1) has an anabelian definition as the
geometric fundamental group π1(Gm) of Gm with the Galk-action induced from π1(Gm/k).

Definition 36. An orientation on π1(U/k) consists of an isomorphism τ of the orientation

module Orπ1(U/k) with Ẑ(1). Note that every isomorphism τ is automatically an isomorphism
of Galk-modules.

Definition 37. A local orientation at each cusp ỹ/y is a family of isomorphisms τỹ/y : Iỹ/y →
Ẑ(1) such that the following holds.

(i) Equivariance with respect to π1(U) and the cyclotomic character χcyl of Galk, namely,
for γ ∈ π1(U) and a cusp ỹ/y the following commutes

Iỹ/y

τỹ/y
��

γ()γ−1

// Iγ.ỹ/γ.y

τγ.ỹ/γ.y
��

Ẑ(1)
χcyl(γ)·// Ẑ(1).

(ii) The kernel of the map
⊕

y∈Cusps(U) Iy → πab
1 (U) from (6.3) is the diagonally embedded

Ẑ(1) under the identification by the local orientations, which is well defined by (i).

Definition 38. The standard orientation on π1(U/k) is given locally by the tame characters
and globally by the evaluation at the fundamental class

Orπ1(U/k) = H2(X,Q/Z)∨ = Hom
(

H2(X, Ẑ(1)), Ẑ(1)
) ∼=−→ Ẑ(1),

whichever is applicable for π1(U/k).

Remark 39. (1) The anabelian local cohomology sequence (6.3) and its comparison with (6.1)
shows that an orientation on π1(U/k) induces canonically local orientations at each cusp ỹ/y.

(2) Since inertia subgroups at different prolongations of cusps intersect only trivially, see
Proposition 16, local orientations fuse to form a π1(U) equivariant map

τ : W−2(U)→ Ẑ(1)

that satisfies a global consistency condition, namely condition (ii) of Definition 37.
(3) The core of the argument in Section 6 showed that tame character and evaluation at the

fundamental class are indeed compatible in cases both definitions make sense.
(4) An arbitrary orientation on π1(U/k) will be a multiple of the standard orientation by a

factor ε ∈ Ẑ∗. We call the resulting orientation ‘ε times the standard orientation’ or simply the
ε orientation.

A weight preserving map of Galk-extensions of hyperbolic curves induces a natural map
between the respective orientation modules.
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Definition 40. The degree of a map ϕ : π1(U/k) → π1(V/k) which is weight preserving
between the fundamental groups of hyperbolic curves U/k and V/k equipped with an orientation

is the element deg(ϕ) ∈ Ẑ, such that multiplication by deg(ϕ) agrees with the map

Ẑ(1) = Orπ1(U/k) → Orπ1(V/k) = Ẑ(1)

under the identification induced by the chosen orientations.

The local degree or ramification index of ϕ at ỹ ∈ C̃usps(U) over z̃ ∈ C̃usps(V ) is the

unique εϕ(ỹ/z̃) ∈ Ẑ, so that ϕ|Iỹ/y : Iỹ/y → Iz̃/z equals multiplication by εϕ(ỹ/z̃) after identifying

the inertia groups with Ẑ(1) according to the chosen local orientations.

As the restriction to W−2(U) of ϕ is equivariant with respect to conjugation, the local degree
only depends on the cusps y ∈ Cusps(U) and ϕ(y) := z ∈ Cusps(V ) and we write εϕ(y/z) =
εϕ(ỹ/z̃).

The following absorbs an argument exploited by Pop in the context of birational anabelian
geometry.

Proposition 41. Let ϕ : π1(U/k) → π1(V/k) be a weight preserving map between oriented
fundamental groups. Then for any cusp z ∈ Cusps(V ) the fundamental equation

deg(ϕ) =
∑
y 7→z

εϕ(y/z)

holds in Ẑ, where y ranges over cusps of U with ϕ(y) = z.

Proof: Using orientations, we extract from the map of anabelian local cohomology sequences
for π1(U/k) and π1(V/k) induced by ϕ the following commutative diagram

Ẑ(1)
∆ //

· deg(ϕ)

��

⊕
y∈Cusps(U) Ẑ(1)

·εϕ(y/z)

��

Ẑ(1)
∆ //

⊕
z∈Cusps(V ) Ẑ(1).

The proposition follows since ∆ is the diagonal embedding. �

If we restrict the discussion to isomorphisms ϕ : π1(U/k) → π1(V/k) preserving the weight
filtration, then ϕ : Cusps(U)→ Cusps(V ) is bijective and the fundamental equation shows that

deg(ϕ) = εϕ(y/z) ∈ Ẑ∗ for all cusps y and z = ϕ(y).

Definition 42. An orientation preserving isomorphism is an isomorphism ϕ as above with
deg(ϕ) = 1.

8. Anabelian theory of units

The anabelian approach to units on π1(U/k) is by maps to π1(Gm/k). The extension
π1(Gm/k) is a group object in the category of Galk-extensions with multiplication given by

π1(mult) : π1(Gm)×Galk π1(Gm) = π1(Gm ×k Gm)→ π1(Gm)

and unit s1 : Galk → π1(Gm) induced by the rational point 1 ∈ Gm(k).

Definition 43. The group of pro-units on π1(U/k) is the group

Ô∗
(
π1(U/k)

)
:= Hom

(
π1(U/k), π1(Gm/k)

)
,

with the group structure inherited from the group object π1(Gm/k). The constant pro-units
are those which factor through Galk.

Definition 44. The group of units on an oriented π1(U/k) is the subgroup O∗
(
π1(U/k)

)
⊆

Ô∗
(
π1(U/k)

)
consisting of those maps that for each cusp y ∈ Cusps(U) induce integral maps

Iy = Ẑ(1)→ Ẑ(1), i.e., the multiplication by some εy ∈ Z ⊂ Ẑ.
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Proposition 45. The automorphism group of π1(Gm/k) is isomorphic to the semidirect product

k̂∗ o Ẑ∗ with respect to the natural action of Ẑ∗ on pro-N completions. The group of automor-

phisms which act as the identity on π1(Gm) = Ẑ(1) is k̂∗.

Before we start the proof we recall that we identify π1(Gm) = Ẑ(1) and that the Tate-module

Ẑ(1) is defined as lim←−n µn. We therefore write composition in Ẑ(1) multiplicatively. Additive

notation would suggest having chosen an isomorphism Ẑ(1) ∼= Ẑ of the underlying pro-finite
groups, i.e., having chosen a compatible system of roots of unity, a choice that we avoid to
make.

Proof: The group π1(Gm) is a semi direct product with respect to the section s1 associated

to 1 ∈ Gm(k). We write elements of π1(Gm) as aσ = as1(σ) with a ∈ Ẑ(1) and σ ∈ Galk.

A unit ε ∈ Ẑ∗ gives an automorphism ε : aσ 7→ aεσ. An element α ∈ k̂∗ corresponds by
Kummer theory to the cocycle

χα : σ 7→ χα(σ) =
(
σ( n
√
α)/ n
√
α
)
n∈N ∈ Ẑ(1).

The automorphism scaling with α is defined as α : aσ 7→ aχα(σ)σ. We have εαε−1 : aσ 7→(
aε
−1
χα(σ)

)ε
σ = aχα(σ)εσ which equals the automorphism ‘scaling by αε’. Thus we have

constructed a subgroup

k̂∗ o Ẑ∗ ⊆ Aut(π1(Gm/k))

Let ϕ ∈ Aut(π1(Gm/k)) be an arbitrary automorphism. Then ϕ agrees with some ε ∈ Ẑ∗ on
π1(Gm) and after composing with ε−1 we may assume that ϕ differs from the identity by a map
σ 7→ ϕ(σ)σ−1

ϕ/id : π1(Gm)→ Galk → Ẑ(1) = π1(Gm) ⊂ π1(Gm),

more precisely a cocycle of which, due to the definition of maps of extensions, only the class in

H1(k, Ẑ(1)) = k̂∗ matters. This completes the proof of the proposition. �

Proposition 46. Let x be a parameter for Gm. For ε = ±1 and α ∈ k∗ the geometric auto-

morphism x 7→ αxε of Gm induces the automorphism (α, ε) ∈ k̂∗ o Ẑ∗ of π1(Gm/k).

Proof: The map x 7→ xε preserves the section s1 and the effect on Ẑ(1) can be computed
from cohomology, thus multiplies with ε. We find again the automorphism denoted ε in the
proof above.

The scaling map x 7→ αx acts trivially on étale cohomology of Gm by homotopy invariance,
hence the associated map on π1(Gm/k) has ε = 1. It remains to observe how the section s1 is
shifted. But this is done using the Kummer character χα(−) which mediates an isomorphism
of fibre functors from fibres above 1 to fibres above α, hence ‘scaling by α’ acts on sections as
the geometric map x 7→ αx does. �

Proposition 47. There is a natural isomorphism

Ô∗
(
π1(U/k)

) ∼−→ H1
(
π1(U), Ẑ(1)

)
with the following properties.

(1) The image of inflation H1
(
k, Ẑ(1)

)
↪→ H1

(
π1(U), Ẑ(1)

)
agrees with the group of constant

pro-units.
(2) The map κ : O∗(U)→ Ô∗

(
π1(U/k)

)
given by f 7→ κf := π1(f) agrees with the boundary

map δKum of Kummer theory on U .

Proof: A unit is an equivalence class of sections of the extension π1(Gm/k) pulled back via
π1(U)→ Galk. Thus the existence of the isomorphism and part (1) follow from the identification
of differences of sections with 1-cocycles.

Let χf : π1(U)→ Ẑ(1) be the Kummer character

γ 7→ χf (γ) = (γ( n
√
f)/ n

√
f)n∈N
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associated to f ∈ O∗(U), and let pr : π1(U) → Galk be the projection. For (2) and γ ∈ π1(U)
we compute κf (γ) as the effect of γ on the Galois extension kalg(U)[ n

√
f ])/k(U) for all n ≥ 1:

κf (γ) = χf (γ) · pr(γ) ∈ Ẑ(1) o Galk = π1(Gm),

which under the identification of (1) becomes δKum(f) = χf . �

Let W−2

(
πab

1 (U)
)
⊂ πab

1 (U) be the subgroup generated by inertia. The group Div0
Y (X) of

divisors of degree 0 on X with support in Y has a map

τ : Div0
Y (X)→ Homk

(
W−2(πab

1 (U)), Ẑ(1)
)

which assigns to a divisor the corresponding linear combination of tame characters, and which
induces an isomorphism

Div0
Y (X)⊗Z Ẑ

∼=−→ Homk

(
W−2(πab

1 (U)), Ẑ(1)
)
.

The Jacobian of the curve X is Pic0
X and the Albanese variety of X is denoted by AlbX . Of

course, it is well known that for proper curves Pic0
X is isomorphic to AlbX . Distinguishing

Albanese variety and Jacobian helps to keep track of the covariance of the objects and allows
for easier potential generalizations to the case beyond curves.

For two Galk-modules M,M ′ we denote by H om(M,M ′) the inner Hom, i.e., the group of
homomorphisms as a Galk-module.

We define a homomorphism

γ : Pic0
X(k)→ Ext1

k

(
πab

1 (X), Ẑ(1)
)

as the composite of the boundary map of Kummer theory for Pic0
X , the map π1(Pic0

X) →
H om(π1(AlbX), Ẑ(1)) of Galk-modules given by the Weil pairing, and the edge map in the
Ext-spectral sequence:

Pic0
X(k)

δKum //

γ
��

H1
(
k, π1(Pic

0
X)
)

Weil ∼=��

Ext1
k

(
πab

1 (X), Ẑ(1)
)

H1
(
k,H om(π1(AlbX), Ẑ(1))

)
.

edge

∼=oo

Proposition 48. The maps κ, τ and γ fit into the following map of exact sequences

1

��

1 //

��

(
T Pic0

X

)
(k)

��

O∗(U)/k∗

div��

κ // Ô∗
(
π1(U/k)

)
/k̂∗

res��

Div0
Y (X)

��

τ // Homk

(
W−2(πab

1 (U)), Ẑ(1)
)

δ��

Pic0
X(k)

γ // Ext1
k

(
πab

1 (X), Ẑ(1)
)
.

Proof: The right column is exact because it can be identified with the long exact Ext-sequence
of Galk modules for

(8.1) 0→W−2

(
πab

1 (U)
)
→ πab

1 (U)→ πab
1 (X)→ 0.

18



The identification is based on the following. First, the Weil-pairing yields

Homk

(
πab

1 (X), Ẑ(1)
)

=
(
T Pic0

X

)
(k).

Secondly, the edge map

H2
(
k, Ẑ(1)

)
→ H2

(
π1(U), Ẑ(1)

)
in the Hochschild–Serre spectral sequence for π1(U) → Galk and the module Ẑ(1) is injec-

tive, because the projection π1(U) → Galk is split over an open subgroup and H2(k, Ẑ(1)) =

Hom(Q/Z,Br(k)) contains no torsion. Therefore the differential d0,1
2 vanishes and the exact

sequence of low degree terms reads by Proposition 47

0→ k̂∗ → Ô∗
(
π1(U/k)

)
→ H0

(
k,H1(π1(U), Ẑ(1))

) d0,12−−→ 0

which determines

Ô∗
(
π1(U/k)

)
/k̂∗

∼−→ H0
(
k,H1(π1(U), Ẑ(1))

)
= Homk

(
πab

1 (U), Ẑ(1)
)
.

Now we show the commutativity of the two squares. We have

res ◦κ = τ ◦ div

since for a function f ∈ O∗(U) the restriction κf |Iy to inertia at y equals νy(f) times the tame
character, where νy is the valuation associated to y ∈ X.

It remains to show commutativity of the bottom square. For a divisor D ∈ Div0
Y (X) the

extension ED = δ(τ(D)) is obtained by pushing the extension of Galk modules (8.1) with τ(D).
The line bundle associated to D comes from a unique degree 0 line bundle on the Albanese
variety A = AlbX of X. The complement L0(D) of the 0-section in the corresponding geometric

line bundle L(D)→ A has an abelian geometric fundamental group π1(L0(D)) as its first Chern
class vanishes and therefore the extension

0→ Ẑ(1)→ π1(L0(D))→ π1(A)→ 0

splits representing

0 = c1(L(D)) ∈ H2(A, Ẑ(1)) = H2(π1(A), Ẑ(1))

Hence, from the canonical trivialisation of L(D) above U we obtain a map of extensions of Galk
modules

0 // W−2

(
πab

1 (U)
)

//

τ(D)
��

πab
1 (U) //

��

πab
1 (X) //

∼=
��

0

0 // Ẑ(1) // π1(L0(D)) // π1(A) // 0,

from which we conclude that ED equals π1(L0(D)) as an extension of Galk modules. This
completes the computation of δ(τ(D)).

We now compute γ(D), where we abuse notation to denote also the class of D in Pic0
X by D.

Let iD : A→ A×B be the inclusion induced by D as a k-rational point of B = Pic0
X . The line

bundle L(D) is the restriction of the geometric Poincaré bundle PA×B along iD. We thus find
the extension ED as the image E of

π1(iD) : π1(L0(D)) ↪→ π1(P0
A×B)

and can do the corresponding cocycle calculations in π1(P0
A×B).

The group π1(P0
A×B) is an extension of Galk by π1(P0

A×B) which is a central extension of

TA × TB by Ẑ(1). The factors TA and TB are Lagrangian subspaces for the symplectic
commutator pairing

[ , ] :
2∧

(TA× TB)→ Ẑ(1)

associated to this central extension. The induced pairing of TA with TB is nothing but the
Weil-pairing induced by the Poincaré bundle PA×B.
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Note that the image E of π1(L0(D)) does not depend on D, whereas the Galk module
structure does depend on D being induced by the conjugation action from the image of the full
étale fundamental group π1(L0(D)), or, what amounts to the same, as the conjugation action
via

s0,D = π1(iD) ◦ s0 : Galk → π1(P0
A×B).

Here s0 belongs to 0 ∈ A(k) and s0,D to (0, D) ∈ A×B(k).
For D = 0 the extension π1(L0(0)) splits as an extension of Galk modules via s0,0. Let

f : TA→ E be a splitting which is s0,0(Galk) equivariant. By [23] §7.1 Prop 70 the difference
cocycle

σ 7→ ∆σ := s0,D(σ)s0,0(σ)−1 = sD(σ)s0(σ)−1

represents δKum(D). The class

df = σ 7→ dfσ =
(
x 7→ σf(σ−1(x)))− f(x)

)
of ED in H1

(
k,H om(TA, Ẑ(1))

)
computes therefore as

dfσ(x) = s0,D(σ)f(s0,D(σ)−1x s0,D(σ))s0,D(σ)−1f(x)−1

= ∆σf(x)∆−1
σ f(x)−1

where the ∆σ (resp. the f(x)) lift elements from the second (resp. first) component of TA×TB

to π1(P0
A×B). Consequently, the cocycles ∆σ and dfσ agree under the Weil pairing. This

completes the proof. �

Corollary 49. Assume that Pic0
X(k) does not contain a nontrivial divisible subgroup. Let the

orientation fixed on π1(U/k) be ε times the standard orientation for some ε ∈ Ẑ∗. Then

O∗(π1(U/k)) = κ(O∗(U))ε · k̂∗

holds in Ô∗(π1(U/k)). In particular all units on π1(U/k) correspond to geometric units of U
up to an automorphism of π1(Gm/k).

Proof: We have (T Pic0
X)(k) = Hom

(
Q/Z,Pic0

X(k)
)

= 0. Moreover, the map γ in Proposi-

tion 48 is injective by the assumption on Pic0
X(k). The corollary now follows from the diagram

in Proposition 48. Indeed, we have k̂∗ ⊆ O∗(π1(U/k)) and

O∗(π1(U/k))/k̂∗ = res−1(ε · τ(Div0
Y (X)) = κ(O∗(U))ε

by definition and a diagram chase exploiting the injectivity of γ. �

Remark 50. The assumption of Corollary 49 are fulfilled trivially if X has genus 0 or by the
Mordell–Weil theorem if k is a finitely generated extension of Q.

A unit f : π1(U/k) → π1(Gm/k) can be evaluated in a section s of π1(U/k) as follows. The
composition f ◦ s yields a section of π1(Gm/k), hence by comparing with the section s1 an
element

f(s) ∈ k̂∗ = H1(k, Ẑ(1))

which we call the value of f in s. Composing f with an automorphism αε of π1(Gm/k) changes
the value to

(
αε.f

)
(s) = αf(s)ε.

9. Anabelian geometry of genus 0 curves - revisited

Definition 51. A cuspidal ratio over k on the oriented fundamental group π1(U/k) is the
value

λ = λf ;y,y′ = f(sy)/f(sy′) ∈ k̂∗,
where sy, sy′ are cuspidal sections at k-rational cusps y, y′ ∈ Cusps(U) and f : π1(U/k) →
π1(Gm/k) is a unit such that ker(f) contains the inertia subgroups Iy, Iy′ at y and y′.

A cuspidal ratio of π1(U/k) is a cuspidal ratio over some finite extension k′/k for the base
change π1(U ⊗ k′/k′) with respect to the induced orientation.
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The cuspidal ratio λf ;y,y′ neither depends on the cuspidal section chosen within the corre-
sponding cuspidal packets, nor changes its value when f is composed with a scaling automor-
phism of π1(Gm/k).

Proposition 52. Assume that X has genus 0 or k is a finitely generated extension of Q. If
the orientation on π1(U/k) is ε times the standard orientation for some ε ∈ Ẑ∗ then λf ;y,y′ is

the ε-power of an element in the image of the natural map k∗ → k̂∗.

Proof: Immediate from Corollary 49. �

From now on we will mainly be preoccupied with curves U which are complements of a
divisor Y in a smooth, projective curve X of genus 0. The fundamental group π1(U/k) shall be
endowed with its anabelian weight filtration and an orientation.

Definition 53. We say that the fundamental group π1(U/k) has type (0, n) if the inertia
groups generate the geometric fundamental group π1(U), all cusps of U are k-rational, and we
are given a bijective ordering y : {1, . . . , n} → Cusps(U) sending i to yi.

We remind the reader that the double ratio DV(a1, a2; a3, a4) of a 4-tuple (ai) in k without
repetition is defined by the formula

DV(a1, a2; a3, a4) =
a1 − a3

a1 − a4
:
a2 − a3

a2 − a4
.

Definition 54. The double ratio of an oriented fundamental group π1(U/k) of type
(0, 4) with ordering y : {1, 2, 3, 4} → Cusps(U) is defined as the cuspidal ratio

DV(π1(U/k), y) = DV(y1, y2; y3, y4) = λj;y1,y2

where j is a unit on π1(U/k) such that res(j) = ε·τ(y3−y4) with the notation as in Proposition 48
and where ε is determined so that π1(U/k) is endowed with ε times the standard orientation.

Remark 55. (1) The double ratio of π1(U/k) is the ε power of an element of the image of

k∗ → k̂∗ and independent of the unit j chosen.
(2) Let Uλ be the complement in P1

k of Y = {λ, 1, 0,∞} and equip π1(Uλ) with an ordering of
the cusps accordingly and ε times the standard orientation. The resulting fundamental group
of type (0, 4) has double ratio

DV(π1(Uλ/k), y) = λε = DV(λ, 1; 0,∞)ε,

where this follows from Corollary 49 as j may be chosen to be ε ·π1(t) where t is the coordinate
on P1

k and then j(sλ) = λε and j(s1) = 1.

If ε = 1 and so π1(Uλ/k) is equipped with the standard orientation then the following two
double ratios add up to 1:

DV(λ, 1; 0,∞) + DV(λ, 0; 1,∞) = λ+ (1− λ) = 1.

Definition 56. A geometric subquotient of a fundamental group π1(U/k) is the quotient
of an open subgroup by the normal subgroup generated by a collection of inertia subgroups.

A geometric subquotient of type (0, n) is a geometric subquotient together with a choice
of a structure of a fundamental goup of type (0, n) on that subquotient.

A geometric subquotient of π1(U/k) inherits naturally an orientation from an orientation on
π1(U/k). The factor ε of the orientation remains the same.

Let U be the complement of a divisor Y in a smooth, projective curve X/k of genus 0. In
this context we define the following list of hypothesis on the curve U and the field k.

(A) For any pair of prime numbers p 6= q there is a valuation ν on k which is nontrivial on
F = k ∩Qalg and with value group Γ ⊂ Q that is neither divisible by p nor q.

(B) There is a discrete valuation ν on k with value group Z such that U does not have good
reduction over the valuation ring of ν, in the sense that in any smooth model of X some
cusps of U coalesce.
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(C) The field k is a function field over k0 and U is not defined over an algebraic extension
of k0.

(D) The map k∗1 → k̂∗1 is injective for every finite extension k1/k.

Note that (A) and (D) only depend on the base field k, but not on the curve U .

The standard orientation is subject to the following anabelian characterization.

Theorem 57 (Characterization of the standard orientation). Let U be the complement of a
divisor Y in a smooth, projective curve X/k of genus 0. Let π1(U/k) be equiped with ε times
the standard orientation. We will assume that property (A) or property (C) or properties (B)
and (D) as above hold.

Then the standard orientation, so ε = 1, is the only orientation such that the following two
conditions hold

(i) For all geometric subquotients of type (0, 4) with field of constants a finite extension

k1/k, the double ratio is in the image of k∗1 → k̂∗1, and more precisely
(ii) a suitable choice of preimages in k∗1 of DV(y1, y2; y3, y4) and DV(y1, y3; y2, y4) add up to

1.

Proof: We prove first that ε ∈ {±1}. By Belyi’s theorem, the fundamental group of the curve
Uλ = P1 −{λ, 1, 0,∞} over k(λ) occurs for all λ ∈ Qalg −{0, 1} as a geometric quotient of type
(0, 4) of π1(U/k), at least if we allow some finite extension k1/k. We obtain µ ∈ k∗1 with λε = µ

in k̂∗1.
The assumption (A) of the suitable valuations on k transfers to the finite extension k1. Choose

a valuation ν suitable for p and q, choose λ ∈ Qalg−{0, 1} with γ = ν(λ) 6= 0 and set δ = ν(µ).

The valuation extends to a map ν̂ : k̂∗1 → Γ̂→ Zp × Zq. The relation λε = µ becomes ε · γ = δ
in Zp × Zq, where moreover γ and δ come from the diagonally embedded Q ∩ (Zp × Zq). Thus,
since γ 6= 0, the p and q component of ε are rational and agree. Applying this argument for all
pairs p, q we find that ε ∈ Ẑ∗ is in the diagonally embedded Q ∩ Ẑ∗ = {±1}.

Under the assumptions (B) or (C), we find, upon restriction to a finite field extension k1/k
that makes the cusps of U rational, even a quotient of type (0, 4) with double ratio not a unit
with respect to an extension of the valuation ν to k1. The same but simpler argument with

ν̂ : k̂∗1 → Ẑ as above shows that ε ∈ {±1}.
For the remaining part we assume that ε = −1 and argue by contradiction. For one of the

geometric subquotients of type (0, 4) considered above, let λ be the double ratio in the geometric
sense. Then by assumption we find a, b in the group (k∗1)div of divisible elements of k∗1 such that

(9.1)
a

λ
+

b

1− λ
= 1.

Under assumption (D) we have a = b = 1 and thus λ = ζ±1
6 is a primitive 6th root of unity,

which we can avoid by the ubiquity of subquotients of type (0, 4) provided by Belyi’s theorem.
Property (C) implies that a and b belong to the constants k0 ⊂ k forcing λ to be a constant.

But the assumption that U is not defined over the constants enables us to find a geometric
subquotient of type (0, 4) with nonconstant double ratio, hence a contradiction.

Finally, let us assume property (A). Because the value group of a valuation ν as in (A) is not
divisible, we find ν(a) = ν(b) = 0. If we pick λ ∈ Qalg−{0, 1} with ν(λ) > 0, then ν(1−λ) = 0
and

ν(
a

λ
+

b

1− λ
) < 0

in contradiction to (9.1). �

Theorem 58 (Preserving orientation). Let U and V be hyperbolic curves with smooth, projective
completions of genus 0. We will assume that property (A), or property (C), or properties (B)
and (D) from Theorem 57 hold.

Then a weight preserving isomorphism ϕ : π1(U/k) → π1(V/k) automatically preserves the
standard orientation.
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Proof: As the isomorphism ϕ preserves the anabelian weight filtration it also preserves the
notion of a geometric subqotient of type (0, 4). Let λ ∈ k∗ be the double ratio of a geometric
subqotient of type (0, 4) of π1(U/k) and µ ∈ k∗ the double ratio of its companion for π1(V/k).

Then the equation λdeg(ϕ) = µ holds in k̂∗. As the same λ’s as in Theorem 57 are available we
may argue as in the proof of Theorem 57 and conclude that deg(ϕ) = 1. �

Remark 59. (1) A version of Theorem 58 for proper hyperbolic curves over p-adic local fields
was obtained in [9] Lemma 9.1, and also in [12] Lemma 2.5(ii).

(2) Condition (A) is met by algebraic extensions k/Q with kQab/Qab finite, in particular by
Qab, cf. Remark 22, or by finitely generated extensions of Qp.

(3) If k is a function field over k0 which is algebraically closed and U = U0 ⊗k0 k, then
π1(U) = π1(U)×Galk and the Galois action has nothing to say about the orientation chosen.

Lemma 60. Let k be an algebraic extension of Q such that kQab/Qab finite. Then the group
(k∗)div of divisible elements in k∗ is contained in its torsion group of roots of unity µ∞(k).

Proof: Let first F be a finite extension of Q. An element a ∈ (F ∗)div has trivial valuation
everywhere and thus is a unit. The same applies to n

√
a and thus a ∈ (o∗F )div where o∗F is

the group of units of the ring of integers in F . By Dirichlet’s unit theorem (o∗F )div = 1 hence
(F ∗)div = 1.

We now argue by contradiction and assume a ∈ (k∗)div is not a root of unity. Choose a
subfield F ⊆ k that is finite over Q containing a and such that FQab = kQab. Then there is a
prime number p ≥ 3 such that p

√
a 6∈ F and consequently the field

F∞ =
⋃
n≥1

F ( pn
√
a) ⊂ kQab = FQab

is an abelian Zp extension of F . By the group theory of

Gal(FQab/F ) ⊆ Ẑ∗,
the field F∞ is already contained in

⋃
n≥1 F (µpn).

Let a = αp
n

in F (µpn+m). We apply [18] Lemma (5.7), which gives the injectivity of

F ∗/(F ∗)p
N
↪→ F (µpN )∗/

(
F (µpN )∗

)pN
for N = n + m. We find α0 ∈ F with ap

m
= αp

n+m
= αp

n+m

0 . So aζ is divisible by pn in F ∗

for a suitable root of unity ζ ∈ F . As µ∞(F ) is finite, one ζ is sufficient for all n and with this
choice we find aζ ∈

⋂
n(F ∗)p

n ⊂ µ∞(F ), hence a was torsion to begin with. �

Corollary 61. We have (Qab,∗)div = µ∞. �

Lemma 62. Let λ = DV(ζ1, ζ2; ζ3, ζ4) be a double ratio of roots of unity ζi. Then for any p the
p-adic absolute value of λ satisfies |λ|p ≤ 4. If moreover λ ∈ Q, then λ is among the following
values:

2,−1, 1/2; 3, 1/3,−2,−1/2, 2/3, 3/2; 4, 1/4,−3,−1/3, 4/3, 3/4.

Proof: For ζ a primitive nth-root of unity, the value ζ − 1 is a unit except if n = pm and then

it is a uniformizer in Qp(µpm). We conclude that 1 ≥ |ζ − 1|p ≥ p−1/pm−1(p−1) ≥ 1/2, hence

|λ|p = |DV(ζ1, ζ2; ζ3, ζ4)|p

=

∣∣∣∣ζ1 − ζ3

ζ1 − ζ4
:
ζ2 − ζ3

ζ2 − ζ4

∣∣∣∣
p

=

∣∣∣∣∣1− ζ3ζ
−1
1

1− ζ4ζ
−1
1

:
1− ζ3ζ

−1
2

1− ζ4ζ
−1
2

∣∣∣∣∣
p

≤ 4

For Q-rational double ratios of roots of unity we observe that we have a natural S3 action on
the set of values including λ 7→ 1/λ, and that by the estimate above the only prime factors that
may occur are 2 and 3 with only 2 possibly occuring twice. Imposing this on the full S3 orbit
already pins down λ into the given list, whose values by the way are all attained for suitable
roots of unity. �
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Finally, we can prove a weak anabelian statement for hyperbolic curves with completion of
genus 0.

Theorem 63. Let U and V be hyperbolic curves with smooth, projective completion of genus 0.
We will assume that property (C), or properties (B) and (D) from Theorem 57 hold, or property
(A’):

(A’) The field k is algebraic over Q with kQab/Qab finite.

Then U ∼= V are isomorphic as k-curves if and only if there is an isomorphism π1(U/k)
∼−→

π1(V/k) that respects the anabelian weight filtration.

Remark 64. Theorem 63 applies in particular to hyperbolic curves with completion of genus 0
over Qab or to nonconstant hyperbolic curves with completion of genus 0 over a function field.
The latter should be useful in applications to birational anabelian geometry for function fields
over algebraically closed fields of charactersitic 0.

Proof of Theorem 63: By Galois descent as established by Nakamura in [15] Theorem 6.1,
we may replace k by a finite extension and therefore assume that all cusps are k-rational.

Recall from Remark 59 (2) that (A’) implies (A). Therefore, by Theorem 58, any isomorphism

π1(U/k)
∼−→ π1(V/k) automatically preserves the standard orientation. We may therefore in a

compatible way compute double ratios.

Let ϕ : π1(U/k)
∼−→ π1(V/k) be a weight preserving isomorphism. Then as in the remark

after Definition 25 we obtain an induced bijection

ϕ : Cusps(U)
∼−→ Cusps(V ).

If U is of type (0, 3), then V is of type (0, 3) and there is nothing to prove. Let y1, y2, y3, y4 ∈
Cusps(U) be a 4-tuple with DV (y1, y2; y3, y4) = λ, and set µ = DV (ϕ(y1), ϕ(y2);ϕ(y3), ϕ(y4))
as double ratios of the respective quotient fundamental groups of curves of type (0, 4). A priori

λ, µ are elements of k̂∗, but there are representatives in k∗ such that we have open embeddings
U ⊆ Uλ and V ⊆ Uµ, with notation as above, preserving the chosen cusps. As the kernel of
π1(U) � π1(Uλ) is generated by the inertia groups at all the other cusps, and similarly for the
kernel of π1(V ) � π1(Uµ), then the map ϕ induces a weight preserving isomorphism

ϕ : π1(Uλ/k)
∼−→ π1(Uµ/k),

which on cusps maps 0 7→ 0, 1 7→ 1, ∞ 7→ ∞, and λ 7→ µ. If we can treat the case of curves of
type (0, 4), then we deduce λ = µ. We fix the cusps y2, y3, and y4, and let y = y1 range over
all remaining cusps of U with λy the corresponding double ratio. Then we find

U ∼=
⋂

y∈Cusps \{y2,y3,y4}

Uλy ⊂ P1
k,

and since the same holds for V , we deduce that U ∼= V as k-curves.

It remains to discuss the case of genus 0 with 4 cusps where moreover both curves carry
compatible structures as a fundamental group of type (0, 4), say U ∼= Uλ and V ∼= Uµ with
notations as above. We can then compare various double ratios and find λ = µ · a and 1− λ =
(1− µ) · b with a, b ∈ (k∗)div. It follows that λ = µ or a 6= b and

(9.2) λ =
a− ab
a− b

= DV(a,∞; ab, b) µ =
b− 1

b− a
= DV(b,∞; 1, a),

and so we have to contradict that λ 6= µ are double ratios of divisible elements of k∗. Under
condition (D) this is absurd.

Under condition (C) the divisible elements are constants and thus also λ and µ are constants,
a contradiction to condition (C).

Under condition (A’) we replace U and V by suitable finite étale covers U ′ → U of genus 0
and the corresponding V ′ → V with again all cusps rational after a finite extension k′/k such
that at least one of the double ratios of quotients of π1(U ′/k′) of type (0, 4) is not a double
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ratio of divisible elements. This is possible by using Belyi’s theorem and choosing a suitable
λ ∈ Qalg − {0, 1} as in the proof of Theorem 57 and by Lemma 62 and Lemma 60. �

10. Anabelian geometry of M0,4 and the j-invariant

The algebraic stack M0,4, actually a scheme as we will recall shortly, parameterizes pairs

(X/S; y) ∈M0,4(S)

where X/S is a smooth, projective S-curve of genus 0 with 4 marked points

y = (y1, y2, y3, y4)

in X(S) with pairwise disjoint images. The double ratio of a marked curve (X/S, y) is

DV(y) =
y1 − y3

y1 − y4
:
y2 − y3

y2 − y4
∈ O∗(S),

where the values yi are taken with respect to and are independent of any choice of parameter
on X ∼= P1 locally on S. The double ratio map provides an isomorphism

DV : M0,4
∼−→ P1 − {0, 1,∞},

since by [7] Thm 2.7 we have M0,3 = Spec(Z) and by [7] Cor 2.6 the stack M0,4 is the complement
of the marked points 0, 1,∞ in the universal curve P1

Z → Spec(Z) for M0,3. In fact, it is not
hard to show directly that every (X/S, y) ∈M0,4(S) is uniquely isomorphic as a marked curve

to the pull back via DV(y) : S → P1 − {0, 1,∞} of the universal curve

pr2 : C0,4 = P1 × (P1 − {0, 1,∞})→ P1 − {0, 1,∞}
that is equipped with the marked points (∆, 1, 0,∞) where ∆ is the diagonal map. Indeed, let
f : X → S be the projection map and let by abuse of notation denote 1, 0,∞ the image divisors
of y2, y3, y4 on X. Then cohomology and base change shows that evaluation at 0, 1 provides an
isomorphism

f∗OX(∞)
∼−→ OS ⊕OS .

Let x0, x1 ∈ H0(X,OX(∞)) be the sections mapped under the above isomorphism to (1, 1), (0, 1) ∈
H0(S,OS ⊕ OS). Then x0, x1 locally generate OX(∞) and the induced map X → P1

S is a fi-
brewise isomorphism, hence by flatness an isomorphism that moreover maps y1, y2, y3, y4 to
λ, 1, 0,∞. The uniqueness is clear by the exact 3-transitivity of the PGL2 action on P1.

10.1. On the section conjecture for M0,4. The map SC from rational points to conjugacy
classes of sections of the section conjecture, see Section 1, for M0,4 factors as follows.

M0,4(k)

DV∼=

��

SC //

π1 ((

Sπ1(M0,4/k)

DV∼=

��


fundamental groups
π1(U/k) of type (0, 4)

with anabelian
weight structure


Θ
(((

P1 − {0, 1,∞}
)
(k)

SC // Sπ1(P1
k−{0,1,∞}/k)

The map π1 : (X/k, y) 7→ π1(U/k) with U = X \ {y} and equipped with the specified extra
structure is surjective by definition and bijective if curves of type (0, 4) over k are anabelian in
a weak sense.

The map Θ has an anabelian definition as follows. The quotient of π1(U/k) by the normal
subgroup generated by the inertia subgroups above y1 is geometric and canonically isomorphic
to π1(P1

k − {0, 1,∞}/k). A cuspidal section associated to y1 of π1(U/k) maps to a unique
geometric section Θ(π1(U/k)) of π1(P1

k − {0, 1,∞}/k). The diagram commutes, because the
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curve
(
P1
k, {λ, 1, 0,∞}

)
maps to the section sλ of π1(P1

k−{0, 1,∞}/k), where λ = DV(λ, 1; 0,∞)

equals the double ratio of the k-point
(
P1
k, {λ, 1, 0,∞}

)
∈M0,4(k).

Consider the map M0,5 → M0,4 that forgets the fifth point. We can identify M0,5 with
the complement of the 4 marked points in the universal curve C0,4 → M0,4 of type (0, 4). We
abreviate by π0,4 the fundamental group of the complement of the four marked points in a
chosen geometric fibre of M0,5 →M0,4. There is an extension, see [8] Lemma 2.1,

(10.1) 1→ π0,4 → π1(M0,5)→ π1(M0,4)→ 1.

We endow C0,4 with the regular log structure defined by the divisor given by the 4 universal
sections. Then M0,5 = C triv

0,5 is the locus of triviality of the log structure and thus by purity

π1(M0,5) = πlog
1 (C0,4). The pullback along the section yi defines a log structure Mi on M0,4

with constant rank 1. We obtain a diagram of (logarithmic) fundamental groups

1 // Ẑ(1)

yi

��

// πlog
1 (M0,4,Mi)

π1(yi)

��

// π1(M0,4) // 1

1 // π0,4
// π1(M triv

0,5 ) // π1(M0,4) // 1,

where yi maps Ẑ(1) injectively onto an inertia group above yi and the extension in the top
row is the first Chern class extension of y∗i

(
O(yi)

)
. The top row splits as Pic(M0,4) = 1. Any

splitting leads to a section of the bottom row which cyclotomically normalises the inertia at yi
and thus is a cuspidal section at yi.

As a converse map to Θ we define for a section s ∈ Sπ1(M0,4/k) the extension
∏
s as the

pullback via s of the universal extension (10.1), which is an extension of Galk by π0,4 endowed
with an anabelian weight filtration and 4 ordered cuspidal sections. It is not difficult to see that
s 7→

∏
s restricted to geometric sections and Θ are mutually inverse. It is tempting to believe

that a more refined study of (10.1) may even give a proof of the section conjecture for M0,4.

10.2. Proper units. In order to discuss the case of higher genus, in particular elliptic curves,
we need to address again Proposition 48. A cuspidal ratio depends only on the restriction of
the unit to its divisor in

Div0
Y (X)⊗Z Ẑ = Homk

(
W−2(πab

1 (U)), Ẑ(1)
)

up to a cuspidal ratio that comes from a unit in the image of(
T Pic0

X

)
(k) ⊂ Ô∗

(
π1(U/k)

)
/k̂∗,

which we choose to call proper units and which are constructed as follows. To an L ∈(
T Pic0

X

)
(k) belongs by the Weil-pairing a Galois invariant map πab

1 (X) → π1(AlbX) → Ẑ(1),
which defines a map of semidirect products π1(AlbX /k)→ π1(Gm/k) and thus the proper unit

fL : π1(U/k)→ π1(X/k)→ π1(AlbX /k)→ π1(Gm/k)

which has trivial divisor. Using Kummer theory for AlbX we get a pairing(
T Pic0

X

)
(k)× ̂AlbX(k)→ k̂∗

that maps (L, y′−y) to the cuspidal ratio λfL;y′,y. This immediately yields the following lemma.

Lemma 65. The cuspidal ratio of a proper unit with respect to cusps that differ by n-torsion

in AlbX takes values in n-torsion of k̂∗. �

Lemma 66. The n-torsion of k̂∗ is generated by the image of µn(k).

Proof: Let a ∈ k̂∗ with representatives ar mod (k∗)r be n-torsion, i.e., for r ∈ N we have
αr ∈ k∗ such that anr+n = αr+nr . For some ζ ∈ µn(k) depending on r we thus have ar+nζ = αrr.

As there are only finitely many nth roots of unity, one ζ will do it for all r. Then arζ ≡ ar+nζ ≡ 1
modulo (k∗)r shows that a = ζ−1. �
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10.3. The j-invariant. We are going to describe the j-invariant5. of an elliptic cuvre E with
origin e ∈ E in terms of π1(E − {e}/k) under mild assumptions on k.

Theorem 67. Let ` be a prime number and let k be a field such that the `-adic cyclotomic
character is non-Tate. Let E/k be an elliptic curve with origin e ∈ E(k), and let k′/k be the
minimal finite extension such that the 2-torsion

E[2] = {P0, P1, P∞, e}

of E is k′-rational. We further assume that one of the following holds:

(i) k′∗ ↪→ k̂′∗ is injective, or
(ii) k/k0 is a function field and E is not a twist of an elliptic curve defined over k0.

Then the j-invariant of E is encoded group theoretically in the fundamental group extension
π1(E − {e}/k) as

j(π1(E − {e}/k)) = j(λ) = 1728
(λ2 − λ+ 1)3

λ2(1− λ)2
∈ k

where λ ∈ k′ is the unique element such that, for units

xi : π1(E ⊗ k′ − E[2]/k′)→ π1(Gm/k
′)

with divisor 2Pi − 2e and i ∈ {0, 1,∞}, the equations

λx0;P∞,P1 = ±λ

λx1;P∞,P0 = ±(1− λ)

describe these cuspidal ratios in k̂′∗ up to sign.

Remark 68. The notion of j being encoded group theoretically means that all the data required
to describe j as an element of k can be extracted from π1(E − {e}/k) as an extension of Galk
in group theoretical terms, i.e., forgetting that we have the underlying punctured elliptic curve.

Proof: By Corollary 32 the assumptions on k suffice to characterise cuspidal sections group
theoretically, even after finite scalar extension, and thus also characterise the Galk-set of cusps.

We consider π1(E − {e}/k) as equipped with a choice of cuspidal section se based at e. The
finite étale cover

E − E[2] → E − {e}
which is given by multiplication by 2 is characterized as the unique Z/2Z× Z/2Z-cover which
is unramified over E together with a choice of a lift of se. The set of cusps of E − E[2] as a
Galk-set thus has a distinguished element, again denoted e and three other elements P0, P1 and
P∞. Let k′/k be the smallest Galois extension such that all cusps of E −E[2] are rational over
k′, i.e., such that the Galk-set of cusps of π1(E − E[2]/k) has trivial Galk′-action.

Fixing the points of order 2 imposes on E ⊗ k′ the structure of a twist of the Legendre form
as

E ⊗ k′ = {cY 2 = X(X − 1)(X − λ)}
such that P0 = (0, 0), P1 = (1, 0) and P∞ = (λ, 0) for some λ ∈ k′∗ − {1} and e is the point
at infinity. Let xi be a unit on π1(E ⊗ k′ − E[2]/k′) with divisor 2Pi − 2e. The functions X,
1−X, and λ−X are all units on E ⊗ k′ −E[2], and we have x0 = π1(X), x1 = π1(1−X) and
x∞ = π1(λ−X) up to a multiplicative constant and a proper unit.

Since the unit xi is only well defined up to a proper unit and a multiplicative constant, and
since we evaluate with respect to cusps that differ by 2-torsion, by Lemma 65 and Lemma 66
the cuspidal ratio

λx0;P∞,P1 = x0

(
P∞
)
/x0

(
P1

)
5The author acknowledges a discussion with Hiroaki Nakamura held in 2005 where the question how to recover

the j-invariant was addressed while the author enjoyed the hospitality of the University of Okayama.
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considered as an element in k̂′∗/± 1 is well defined independently of the choice of x0. With the
λ from the Legendre form we find

λ = λx0;P∞,P1 ∈ k̂′∗/± 1

so that in particular the cuspidal ratio takes values in

k′∗/± k′∗div ⊆ k̂′∗/± 1.

Similarly, the cuspidal ratio of x1 with respect to P∞ and P0 gives

1− λ = λx1;P∞,P0 ∈ k′∗/± k′∗div.

It remains to show uniqueness of λ. Arguing by contradiction, let us assume that µ ∈ k′∗−{1}
with µ 6= λ also gives rise to these values of cuspidal ratios in k′∗/±k′∗div. Then there are elements
ζ, ξ ∈ ±k′∗div such that

λ = ζµ and 1− λ = ξ(1− µ).

Therefore ζ 6= ξ and

λ =
ζ − ζξ
ζ − ξ

= DV(ζ−1,∞; 1, ξ−1) µ =
1− ξ
ζ − ξ

= DV(ξ,∞; 1, ζ)

are double ratios of elements from ±k′∗div ∪ {∞}. Under assumption (i) we have k′div = 1 and
thus {ζ, ξ} = {1,−1} showing that µ = λ. Under assumption (ii) the set ±k′∗div is algebraic
over k0, hence λ is algebraic over k0, therefore j(E) ∈ k0 and E/k is a twist of an elliptic curve
defined over k0, contradicting assumption (ii). �

Remark 69. A similar construction gives the moduli parameters for a hyperelliptic curve X
over k from the fundamental group extension π1(U/k) of the complement U in X of the branch
locus of the hyperelliptic double cover X → P1

k. In fact, the moduli parameters in question are
the double ratios of 4-tuples of branch points.
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