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Abstract

We introduce the notion of a Brauer–Manin obstruction for sections of the fundamental group extension
and establish Grothendieck’s section conjecture for an open subset of the Reichardt-Lind curve.
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1. Introduction

This note addresses the arithmetic of rational points on curves over algebraic number fields with the étale
fundamental group as the principal tool.

1.1. The section conjecture

Let k be a field with absolute Galois group Galk = Gal(ksep/k) with respect to a fixed separable closure
ksep of k. The fundamental group of a geometrically connected variety X/k with geometric point x ∈ X sits
in an extension

1→ π1(X ×k ksep, x)→ π1(X,x)→ Galk → 1, (1.1)

which we abbreviate by π1(X/k) ignoring the basepoints immediately in our notation.
To a rational point a ∈ X(k) the functoriality of π1 associates a splitting sa : Galk → π1(X) of π1(X/k).

The functor π1 depends a priori on a pointed space which forces us to make choices and yields only a
well defined π1(X ×k ksep)-conjugacy class of sections. The section conjecture of Grothendieck’s proposes a
converse.

Conjecture 1 (see Grothendieck [Gr83]). The map a 7→ sa is a bijection of the set of rational points X(k)
with the set of π1(X ×k ksep)-conjugacy classes of sections of π1(X/k) if X is a smooth, projective, curve of
genus at least 2 and k/Q is finitely generated.

It was known to Grothendieck that a 7→ sa is injective by an application of the Mordell-Weil theorem in
the number field case, see [Sx08] Appendix B, and [Mz99] Thm 19.1 for even a pro-p result of injectivity.
As we will deal in this note with problems of transfer from local to global, we emphasize, that Conjecture
1 has also been conjectured for finite extensions k/Qp. The argument for injectivity transfers to the p-adic
case, since the Mordell-Weil theorem can be substituted by the fact that the group A(k) of rational points
of an abelian variety A over the p-adic field k is pro-finite and topologically finitely generated.

It is also well known that in order to prove the section conjecture for curves over a fixed number field
or p-adic field k it suffices to show that having a section is the only obstruction to having a k-rational

Email address: stix@mathi.uni-heidelberg.de (Jakob Stix )
URL: http://www.mathi.uni-heidelberg.de/~stix/ (Jakob Stix )

1The author acknowledges hospitality and support provided by the Isaac Newton Institute at Cambridge during the summer
of 2009, when parts of this note were written.

Preprint submitted to Journal of Pure and Applied Algebra August 24, 2010



point, see [Ko05] or [Sx10] Appendix C following a strategy of Nakamura and Tamagawa. In other words, if
π1(X/k) splits, then we must guarantee a rational point. But we need this weak version of the section
conjecture for all finite étale covers of X that are geometrically connected over k.

A modified form of Conjecture 1 was proposed in [Gr83] for a class of elementary anabelian varieties
that by an inductive definition possess a fibration into hyperbolic curves over an elementary anabelian
variety as the base. In particular, the modification takes into account that, for an open variety U which is
the complement of a divisor with normal crossings Y in a geometrically connected proper smooth variety
X/k, a k-rational point y ∈ Y (k) contributes a section, and in the elementary anabelian case in fact an
uncountable packet of sections. Indeed, the natural surjection Dy � Galk of the decomposition group Dy

of y in π1(U) is known to admit splittings that lead by Dy ⊂ π1(U) to sections of π1(U/k).

1.2. Evidence for the section conjecture
Recently there has been much work on the p-adic version of the conjecture and pieces of evidence for

the section conjecture have emerged over the years. The most convincing evidence consists perhaps in
Koenigsmann’s proof in [Ko05] of a birational analogue for function fields in one variable over a local p-adic
field. A minimalist metabelian pro-p approach to Koenigsmann’s theorem was successfully developed by
Pop in [P10], whereas Esnault and Wittenberg, [EW09] Prop 3.1, were able to reprove algebraically the
abelian part via the cycle class of a section.

The analogue of the section conjecture over R, the real section conjecture, is known by Mochizuki [Mz03]
Thm 3.13, following work of Sullivan, Cox and Huisman. Alternative proofs can be found also in [Sx10]
Appendix A, in the notably elegant simple argument of [EW09] Rmk 3.7(iv), using a fixed point theorem in
[Pa09] Thm 1.3, and moreover in [Wi09] §3.2, in which Wickelgren shows a geometrically 2-step nilpotent
pro-2 version.

The first known examples of curves over number fields that satisfy the section conjecture are empty
examples in the sense that there are neither sections and hence nor rational points. The absence of sections
is explained by the real section conjecture in case there are no real points on the curve for some real place.
A local p-adic obstruction to sections is constructed in [Sx10], which explains the absence of sections in a
number of cases when there are no p-adic points for some p-adic place.

Later Harari and Szamuely [HS09] gave examples of curves over number fields that are counterexamples
to the Hasse principle, so they have local points everywhere but no global point, and nevertheless satisfy the
section conjecture. These are again empty examples, but as we mentioned above, the ostensibly dull case of
empty curves is exactly the crucial class of examples.

1.3. Outline of the paper
In this note, which contains parts of the author’s Habilitationsschrift [Sx11] at the University Heidelberg,

we will discuss the analogue of the Brauer–Manin obstruction for an adelic point to be global, see Section
3.1, for adelic sections of π1(X/k) and a number field k. This has been independently observed at least by
O. Wittenberg. First we introduce the concept of an adelic section, see Definition 11, and show the
existence of a Brauer–Manin obstruction also for adelic sections, see Section 3.3. Then we go on and
actually apply this obstruction (like a proof of concept, which in the opinion of the author is the main
part of the note) to show in Section 5 that the open subset U of the Reichardt–Lindt curve described by

2y2 = x4 − 17, y 6= 0

does not admit a section of its fundamental group extension π1(U/Q). This case is particularly interesting
further evidence for the section conjecture because U has adelic points and the absence of sections is not
explained by the strategy of Harari and Szamuely [HS09]. Furthermore, Section 5 contains various general-
izations: for arithmetic twists of the Reichardt–Lind curve and even for an isotrivial family of such arithmetic
twists inspired by an example by N. D. Elkies. The explicit examples for Brauer–Manin obstructions against
sections are continued in Section 7 where we illustrate the failure of the method to show the absence of
sections in the case of the Selmer curve, which is given in homogeneous coordinates as

3X3 + 4Y 3 + 5Z3 = 0.
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In Section 2 we discuss the space of all sections Sπ1(X/k) in order to provide basic notions for sections
such as the sheaf of all sections on Spec(k)ét, the ramification of sections and the Galois equivariant
evaluation of units in sections. Among useful results for later parts of the note we generalize slightly, as
a byproduct, the observation by P. Deligne, see Appendix Appendix A, that Sπ1(X/k) is naturally a compact
pro-finite space for a proper variety X over a number field k.

Section 4 contains conditional results that depend on various conjectures. In particular we show that
the local version of the section conjecture together with the conjecture that the Brauer–Manin obstruction
is the only obstruction against rational points on curves imply the section conjecture for curves over number
fields.

Acknowledgement The author is grateful to J.-L. Colliot-Thélène for explaining to him the Brauer–
Manin obstruction to rational points on the Reichardt–Lind curve, and to N. D. Elkies for explaining his
construction from the introduction of [Po01]. He thanks O. Wittenberg for numerous comments, H. Esnault
for making available the letter from P. Deligne to D. Thakur, and is grateful to P. Deligne for permitting
that letter to appear as an appendix.
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2. Preliminaries on sections

Let X/k be a geometrically connected variety over a field k of characteristic 0 with algebraic closure kalg.
The set of π1(X ×k kalg)-conjugacy classes of sections of π1(X/k) will be denoted by Sπ1(X/k) and is called
the space of sections of X/k.

2.1. Base change
For a field extension K/k with algebraic closure kalg ⊆ Kalg, the projection XK = X×kK → X induces

an isomorphism
π1(XK ×K Kalg) ∼−→ π1(X ×k kalg).

Thus the extension π1(XK/K) is the pullback of π1(X/k) via the restriction GalK → Galk and

π1(XK) ∼−→ π1(X)×Galk GalK

is an isomorphism. The defining property of a fibre product leads to a pullback map for spaces of sections

Sπ1(X/k) → Sπ1(XK/K), s 7→ sK = s⊗K.

We set Sπ1(X/k)(K) = Sπ1(XK/K) which describes a covariant functor on field extensions K/k with values
in sets.

Lemma 2. Let k be either a number field or a finite extension of Qp. For a smooth and geometrically
connected curve X/k any section s : Galk → π1(X) has an image with trivial centraliser in π1(X).
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Proof: We argue by contradiction. As Galk is known to have trivial centre, we may assume that s(Galk)
centralises a nontrivial γ ∈ π1(X ×k kalg). Let H C π1(X ×k kalg) be a characteristic open subgroup with
γ 6∈ H. Then 〈H, γ〉s(Galk) ⊆ π1(X) is an open subgroup corresponding to a finite étale cover X ′ → X
with X ′ geometrically connected over k as the projection π1(X ′) = 〈H, γ〉s(Galk)→ Galk is surjective. The
element γ has nontrivial image in πab

1 (X ′×k kalg) = 〈H, γ〉ab, as can be seen in the cyclic quotient 〈H, γ〉/H.
Consequently, πab

1 (X ′ ×k kalg) contains a nontrivial Galk-invariant subspace H0(k, πab
1 (X ′ ×k kalg)).

For ease of notation we replace X ′ by X and let X be a smooth projective completion of X with reduced
divisor Y = X \X. For every n ∈ N the sequence

H1
Y (X ×k kalg, µn)→ H1(X ×k kalg, µn)→ H1(X ×k kalg, µn)→ H2

Y (X ×k kalg, µn)→ H2(X ×k kalg, µn)

is exact and yields in the projective limit over n of the Hom(−,Q/Z(1))-duals the exact sequence of Galk-
modules

0→ Ẑ(1)
diag−−−→ Ẑ(1)[Y (kalg)]→ πab

1 (X ×k kalg)→ πab
1 (X ×k kalg)→ 0

where diag is the diagonal map. Let A be the Albanese variety of X/k. Then πab
1 (X×k kalg) is an extension

of the Tate-module T(A) = lim←−nA[n](kalg) = πab
1 (X ×k kalg) with the Tate-module T(T) of the torus with

character group Z[Y (kalg)]/diag(Z). It follows from Lemma 3 below that H0(k, πab
1 (X ×k kalg)) = 0, which

achieves a contradiction and completes the proof. �

Lemma 3. Let k be either a number field or a finite extension of Qp. For a semiabelian variety B over k
we have H0

(
k,T(B)

)
= 0.

Proof: We compute H0(k,TB) = lim←−nB[n](k) = lim←−nB(k)[n] = 0, because the torsion group of B(k) is
finite if k is a number field or a p-adic local field. Indeed, for a torus B, we enlarge k so that B splits and
reduce to the case B = Gm, which is trivial. For an abelian variety B we rely on the Mordell-Weil theorem
for k a number field and the description of Mattuck-Tate of a subgroup of finite index in B(k) as a finitely
generated ok-module, where ok ⊂ k is the ring of integers. The general case follows by dévissage. �

Proposition 4. Let k be either a number field or a finite extension of Qp, and let X/k be smooth and
geometrically connected curve.

The map E 7→ Sπ1(X/k)(E) is a sheaf of sets on Spec(k)ét. In other words the space of sections satisfies
Galois descent, i.e., for a Galois extension E/F of finite extensions of k the natural map

Sπ1(X/k)(F )→ Sπ1(X/k)(E)

is injective and has the Gal(E/F )-invariants as image.

Proof: For the proof we may assume that F = k. We first show that restriction is injective. Let s, t be
classes of sections defined on Galk that agree when restricted on GalE . We choose representatives of s, t
such that s|GalE coincides with t|GalE . The difference

a : Galk → π1(X ×k kalg), aσ = t(σ)/s(σ)

is a non-abelian cocyle, which means for all σ, τ ∈ Galk we have

aστ = aσs(σ)
(
aτ
)
s(σ)−1.

As s and t agree on GalE , we have aτ = 1 for all τ ∈ GalE . It follows from putting τ ∈ GalE and then
σ ∈ GalE that a factors over Gal(E/k) with values in the centraliser of s(GalE). By Lemma 2 above we
find a ≡ 1 and s equals t on all of Galk.

The image of restriction is obviously contained in the set of Gal(E/k)-invariant sections. Proving the
converse, we assume that s : GalE → π1(X) is a Galois invariant sections. This means that, for all σ ∈ Galk,
a suitable lift σ̃ ∈ π1(X) will satisfy (

σ̃(−)σ̃−1
)
◦ s ◦

(
σ−1(−)σ

)
= s
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with the necessary conjugation by an element of π1(X ×k kalg) being incorporated into the correct choice of
σ̃. It follows that σ̃τ

(
σ̃τ̃
)−1 centralises s(GalE), hence equals 1 by Lemma 2. For σ ∈ GalE we get

s =
(
σ̃(−)σ̃−1

)
◦ s ◦

(
σ−1(−)σ

)
=
(
σ̃(−)σ̃−1

)
◦
(
s(σ)−1(−)s(σ)

)
◦ s

so that σ̃s(σ)−1 centralises s(GalE), hence σ̃ = s(σ) by yet another application of Lemma 2. It follows that
σ 7→ σ̃ is a section in Sπ1(X/k) that extends the given section s to all of Galk. �

2.2. Reduction of sections

In this paragraph, let S = Spec(R) be the spectrum of an excellent henselian discrete valuation ring
with generic point η = Spec(k) and closed point s = Spec(F). For a geometrically connected, proper variety
X/k, which is the generic fibre j : X ⊆X of a proper flat model X /S, we have a specialisation map

X(k) = X (R)→ Y (F),

where Y = Xs,red is the underlying reduced subscheme of the special fibre Xs. The corresponding structure
for sections is as follows.

2.2.1. The ramification of a section
The kernel of the natural map Galk � π1(S, s) = GalF is the inertia group Ik, which is the absolute

Galois group of the field of fractions knr of the strict henselisation Rsh with spectrum S̃ = Spec(Rsh).
Inspection of the diagram

1 // π1(X ×k kalg)

��

// π1(X)

π1(j)����

// Galk

����

// 1

1 // π1(X ×S S̃) // π1(X ) // π1(S, s) // 1

1 // π1(Y ×F Falg) // π1(Y ) // GalF // 1

leads for each section σ ∈ Sπ1(X/k) to the ramification homomorphism

ρ = ρσ : Ik → π1(Y ×F Falg),

that sits in a commutative diagram

1 // Ik
ρ��

// Galk
π1(j)◦σ��

// GalF // 1

1 // π1(Y ×F Falg) // π1(Y ) // GalF // 1

Consequently, the ramification ρ is a GalF-equivariant homomorphism. The ramification ρsa vanishes for
sections σ = sa for a ∈ X(k). The same phenomenon produces the Selmer condition at primes of good
reduction in the more well-known case of descent on an abelian variety.

2.2.2. No tame ramification
The inertia Ik is the semi-direct product of a pro-p group, where p is the residue characteristic, and the

tame inertia Itame
k = Ẑ′(1)

(
Falg

)
=
∏
` 6=p Z`(1). By abuse of notion we will also call tame inertia the images

of splittings of Ik � Itame
k .
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Lemma 5. Let us assume in addition that F is a finite field of characteristic p and that Y/F is a proper
curve. Then im(ρ) is a pro-p group, i.e., the restriction of ρ to tame inertia is trivial.

Proof: Otherwise, the image of tame inertia under ρ would be infinite, because π1(Y ×F Falg) has finite
cohomological dimension. After replacing Y , and thus X and X by some finite étale cover, we would have
a nontrivial GalF-equivariant map

ρ|Itame
k

: Ẑ′(1)
(
Falg

)
→ πab

1 (Y ×F Falg)

that contradicts the Frobenius weights in étale cohomology of proper varieties over finite fields. Here πab
1 is

the abelianization of π1 that is Pontrjagin dual to H1
ét and torsion free. �

2.3. Topology on the space of sections
2.3.1. Neighbourhoods

A neighbourhood of a section s ∈ Sπ1(X/k) is an open subgroup H of π1(X) together with a repre-
sentative of s whose image is contained in H considered up to conjugation by H ∩ π1(X). Equivalently,
a neighbourhood is a finite étale map h : X ′ → X with X ′ geometrically connected over k and a section
s′ ∈ Sπ1(X′/k) which maps to s under π1(h).

The images Uh = im
(
π1(h) : Sπ1(X′/k) → Sπ1(X/k)

)
, where h runs through the neighbourhoods of any

section of π1(X/k), form the open sets of a topology on Sπ1(X/k). We will consider Sπ1(X/k) as a topological
space endowed with this topology.

2.3.2. Characteristic quotients
A topologically finitely generated pro-finite group Γ is in several natural ways a projective limit of

characteristic finite quotients along the index system (N, <). For example, we may set Qn(Γ) = Γ/
⋂
ϕ ker(ϕ)

where ϕ ranges over all continuous homomorphisms Γ→ G with G finite of order ≤ n. Then Qn(Γ) is finite,
the natural map Γ → lim←−nQn(Γ) is an isomorphism and the kernel of Γ � Qn(Γ) is preserved under any
continuous automorphism of Γ.

As π1(X ×k kalg) is topologically finitely generated if k is of characteristic 0, we might push π1(X/k) by
the map π1(X ×k kalg)� Qn(π1(X ×k kalg)) to obtain extensions Qn(π1(X/k)):

1→ Qn(π1(X ×k kalg))→ π1(X)/ ker
(
π1(X ×k kalg)� Qn(π1(X ×k kalg))

)
→ Galk → 1.

We extend the notation for the space of sections, so that SQn(π1(X/k)) denotes the Qn(π1(X ×k kalg))-
conjugacy classes of sections of Qn(π1(X/k)).

Lemma 6. The natural map Sπ1(X/k) → lim←−n SQn(π1(X/k)) is a homeomorphism if we endow the right
hand side with the pro-discrete topology.

Proof: Let s, t be representatives of clases in Sπ1(X/k) that agree at every level Qn(π1(X/k)). Let
Mn ⊂ π1(X ×k kalg) be the nonempty set of elements which conjugate s into t at level Qn(π1(X/k)). Then
lim←−nMn is a projective limit of non-empty compact sets and is therefore non-empty. Any element in the
limit conjugates s into t. The surjectivity is clear. �

2.3.3. The arithmetic case
We now consider the case where k is either a number field, a p-adic local field or R.

Proposition 7. Let X be a geometrically connected variety over a p-adic or an archimedean local field k.
Then the topological space of sections Sπ1(X/k) is a pro-finite set.

Proof: By Lemma 6 it suffices to show finiteness of the set of sections of Qn(π1(X/k)), which follows
from Galk being topologically finitely generated by [Ja89] Thm 5.1(c), see also [NSW08] 7.4.1. �

Proposition 8. Let X be a proper, geometrically connected variety over an algebraic number field k. Then
the topological space of sections Sπ1(X/k) is a pro-finite set.
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Proof: By Lemma 6 we need to show finiteness of the image of Sπ1(X/k) → SQn(π1(X/k)) for each n. Let
Bn ⊂ Spec(ok[ 1

n! ]) be an open subset such that the extension Qn(π1(X/k)) is induced from an extension
of π1(Bn) by Qn(π1(X ×k kalg)). Any section of Qn(π1(X/k)) coming from a section of π1(X/k) will be
unramified at places in Bn by Lemma 5, because the order of Qn(π1(X ×k kalg)) is only divisible by primes
≤ n. Any two such sections thus differ by a nonabelian cohomology class in H1(Bn, Qn(π1(X ×k kalg)),
which is a finite set by Hermite’s theorem, which states the finiteness of the set of field extensions of an
algebraic number field with bounded degree and places of ramification. �

Remark 9. Unfortunately, by contrast with pro-finite groups, a countable pro-finite space need not be finite.
In fact, the space M = { 1

n ; n ∈ N} ∪ {0} with the topology inherited as a subspace M ⊂ R is a countable
pro-finite set. Hence, contrary to a long term belief, the topological result of Proposition 8 does not reprove
the Faltings–Mordell theorem of finiteness of the set of rational points on smooth, projective curves of genus
at least 2 once the section conjecture is known.
Remark 10. The results of Section 2.3 have been obtained independently from the similar results by
P. Deligne which were reported on in a letter from P. Deligne to D. Thakur. The author is grateful to
P. Deligne for having authorised its reproduction as an appendix for the convenience of the reader and for
giving due reference.

2.4. Evaluation of units at sections
Let U/k be a geometrically connected variety. For n ∈ N not divisible by the characteristic, the Kummer

sequence determines a homomorphism

κ : O∗(U)→ H1(U, µn) = H1(π1U, µn), f 7→ κf .

The evaluation map modulo n for a section s ∈ Sπ1(U/k) is the composite

O∗(U)→ k∗/(k∗)n = H1(k, µn) = H1(Galk, µn), f 7→ f(s) = s∗(κf ).

The functoriality of the Kummer sequence shows that for a section su associated to a k-rational point
u ∈ U(k) we have

f(su) = f(u) mod (k∗)n

and so the name evaluation is justified.

2.4.1. Galois-equivariant evaluation
Let k′/k be a finite Galois extension with Galois group G = Gal(k′/k). For a section s of π1(U/k) the

base change s′ = s⊗ k′ induces a G-equivariant map

s′∗ : H1(π1Uk′ , µn)→ H1(k′, µn)

because for σ ∈ G we have

s′∗ ◦H1(π1(id×σ)) = s′∗ ◦
(
s(σ)−1(−)s(σ)

)∗ =
(
s(σ)−1s′(−)s(σ)

)∗
=
(
s′ ◦ (σ−1(−)σ)

)∗ =
(
σ−1(−)σ

)∗ ◦ s′∗ = H1(π1(σ)) ◦ s′∗.

2.4.2. Evaluation and norms
More generally, for a finite field extension k′/k the projection pr : Uk′ → U is finite flat and thus allows

a norm map N : pr∗Gm → Gm. The induced map pr∗ µn → µn induces the corestriction on cohomology.
Thus the following diagram commutes

O∗(Uk′)
κ //

N
��

H1(π1Uk′ , µn)
s′∗ //

cor
��

H1(k′, µn)

cor
��

k′∗/(k′∗)n

Nk′/k
��

O∗(U) κ // H1(π1U, µn)
s∗ // H1(k, µn) k∗/(k∗)n

so that N(f)(s) = Nk′/k(f(s′)) with s′ = s⊗ k′ and f ∈ O∗(Uk′).
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3. Brauer–Manin obstructions

3.1. Review of the Brauer-Manin obstruction for rational points
The Brauer–Manin obstruction was introduced by Manin in [Ma71] and can explain the failure of the

local–global principle. Let k be an algebraic number field and X/k a smooth, geometrically connected
variety. Let kv denote the completion of k at a place v so that the restricted product Ak =

∏′
v kv with

respect to all places and the rings of integers ov ⊂ kv is the ring of adèls of k.
On the set of adelic points X(Ak) we introduce the equivalence relation with set of equivalence classes

X(Ak)•, where two points are equivalent if they lie in the same connected component at each infinite place.
A global cohomological Brauer class A ∈ Br(X) def= H2(X,Gm) yields a function

〈A,−〉 : X(Ak)• → Q/Z, x = (xv)v 7→
∑
v

invv(A(xv))

where A(xv) is the pullback of A via xv to the Brauer group H2(kv,Gm) = Br(kv) that has the canonical
invariant map invv : Br(kv) → Q/Z. The Hasse–Brauer–Noether local global principle for Brauer groups,
see [NSW08] 8.1.17, i.e., the exactness of

0→ Br(k)→
⊕
v

Br(kv)
P
v invv−−−−−→ Q/Z→ 0, (3.1)

shows that the global points X(k) lie in the Brauer kernel

X(Ak)Br
• := {x ∈ X(Ak)• ; 〈A, x〉 = 0 for all A ∈ H2(X,Gm)}

of all the functions 〈A,−〉. If a variety X has adelic points but empty Brauer kernel X(Ak)Br
• , then this

explains the absence of global points x ∈ X(k) and thus the failure of the local–global principle for X. For
a more detailed exposition, see [Sk01] §5.2.

However, examples exist in dimension exceeding 1, where the absence of rational points cannot be
explained by a Brauer-Manin obstruction. The first was found by Skorobogatov [Sk99] and could later be
explained through a Brauer-Manin obstruction on a finite étale double cover. The recent examples of Poonen
[Po08] are shown to even resist being explained by the étale descent Brauer-Manin obstruction.

3.2. Adelic sections
Definition 11. We define the space of adelic sections of π1(X/k) as the subset

Sπ1(X/k)(Ak) ⊆
∏
v

Sπ1(X/k)(kv),

with the product over all places of k, of all tuples (sv) such that for every homomorphism ϕ : π1X → G
with G finite the composites ϕ ◦ sv : Galkv → G are unramified for almost all v.

Proposition 12. The natural maps yield a commutative diagram

X(k) //

��

X(Ak)•

��

Sπ1(X/k)
// Sπ1(X/k)(Ak).

Proof: For a section s of π1(X/k) and a homomorphism ϕ : π1X → G with G finite, the composite
ϕ ◦ s : Galk → G describes a G-torsor over k which therefore is unramified almost everywhere. Hence the
tuple (s⊗ kv)v is an adelic section.
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Secondly, for an adelic point (xv) ∈ X(Ak)• the tuple of associated sections sxv is adelic. Indeed, the
G-torsor over X corresponding to a homomorphism ϕ : π1X → G with G finite extends to a G-torsor over
some flat model X /B for a nonempty open B ⊂ Spec(Ok) for the integers Ok in k. By the adelic condition,
for almost all places v the point xv ∈ X(kv) actually is a point xv : Spec(ov)→X . This means that ϕ ◦ sxv
factors as in the following diagram

Galkv
sxv //

����

π1(X ×k kv) ⊆

����

π1(X)
ϕ //

����

G

π1(Spec(ov))
π1(xv)// π1(X ×B ov) // π1(X )

::uuuuuuu

which shows that for such v the composite ϕ ◦ sxv is unramified. �

Proposition 13. Let X/k be a proper geometrically connected variety. Then all tuples in
∏
v Sπ1(X/k)(kv)

are adelic sections of π1(X/k).

Proof: Let ϕ : π1X → G be a homomorphism with G finite and (sv) a tuple of local sections. Let v be a
place with residue characteristic p - #G, and such that the G-torsor corresponding to ϕ has good reduction
over a flat proper model X /B with v ∈ B. Then the restriction of ϕ ◦ sv to the inertia group Ikv factors
over the ramification ρsv that by Lemma 5 has a pro-p group as its image and therefore dies in G. Hence
for all such places v the corresponding ϕ ◦ sv is unramified. �

3.3. Brauer–Manin obstruction for sections
Let α ∈ H2(π1X,µn) be represented by the extension

1→ µn → Eα → π1X → 1.

The evaluation of α in a section s ∈ Sπ1(X/k) (resp. sv ∈ Sπ1(X/k)(kv)) is the Brauer class s∗(α) ∈ H2(k, µn)
(resp. s∗v(α) ∈ H2(kv, µn)) that is represented by the pullback via s (resp. sv) of the extension Eα.

Proposition 14. Let (sv) be an adelic section of π1(X/k). Then s∗v(α) vanishes for all but finitely many
places v.

Proof: The extension Eα comes by inflation via a homomorphism ϕ : π1X → G with G finite from a
class in H2(G,µn) represented by an extension

1→ µn → E → G→ 1.

The class s∗v(α) vanishes if and only if the composite ϕ ◦ sv lifts to E. The adelic condition on (sv) yields
that for almost all v the map ϕ ◦ sv factors over Galκ(v)

∼= Ẑ which admits a lift to E because Ẑ is a free
pro-finite group. �

Proposition 14 allows the following definition of a function on adelic sections.

〈α,−〉 : Sπ1(X/k)(Ak)→ Q/Z, (sv) 7→
∑
v

invv
(
s∗v(α)

)
Theorem 15. The image of the natural map Sπ1(X/k) → Sπ1(X/k)(Ak) lies in the Brauer kernel

Sπ1(X/k)(Ak)Br := {(sv) ∈ Sπ1(X/k)(Ak) ; 〈α, (sv)〉 = 0 for all n ∈ N and α ∈ H2(π1X,µn)}.

Proof: For a section s ∈ Sπ1(X/k) and α ∈ H2(π1X,µn) we have

〈α, (s⊗ kv)v〉 =
∑
v

invv
(
(s⊗ kv)∗(α)

)
=
∑
v

invv
(
s∗(α)⊗k kv

)
=
(∑

v

invv
)
(s∗(α)) = 0,
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that vanishes by the Hasse–Brauer–Noether local global principle for Brauer groups (3.1). �
The Kummer sequence yields an exact sequence

0→ Pic(X)/nPic(X) c1−→ H2(X,µn) b−→ n Br(X)→ 0 (3.2)

where n Br(X) is the n-torsion of Br(X). The composite H2(π1X,µn) ⊆ H2(X,µn) b−→ n Br(X) is again
denoted by b. The naturality of the Kummer sequence and H2(kv, µn) = n Br(kv) imply

〈b(α), (xv)〉 = 〈α, (sxv )〉 (3.3)

and thus a commutative diagram.

X(k) //

��

X(Ak)Br
•

��

⊆ X(Ak)•

��

〈b(α),−〉
))TTTTTTTT

Q/Z

Sπ1(X/k)
// Sπ1(X/k)(Ak)Br ⊆ Sπ1(X/k)(Ak)

〈α,−〉

55kkkkkk

(3.4)

Remark 16. The notation Sπ1(X/k)(Ak)Br requires a warning that its choice comes from the analogy with
the Brauer kernel of adelic points. In fact, a more precise notation would refer to the obstruction coming
from H2(π1(X), µn). It is by no means clear, albeit predicted by the local section conjecture, that the
function 〈α, (sv)〉 on adelic sections only depends on the image b(α) ∈ Br(X). Our choice of notation is
shorter and suggestive and hopefully that sufficiently justifies its use.

Proposition 17. The set X(Ak)Br
• is the intersection of X(Ak)• and Sπ1(X/k)(Ak)Br inside Sπ1(X/k)(Ak)

for smooth, geometrically connected curves X/k.

Proof: It suffices to prove that X(Ak)• is empty or that the map

b : H2(π1X,µn)→ n Br(X)

is surjective for every n ≥ 1. A smooth curve X has H2(π1X,µn) = H2(X,µn), see [Sx02] Appendix A.4,
unless X is a form of P1

k. Thus the second condition follows from (3.2).
A form of P1

k with local points everywhere is isomorphic to P1
k by the Hasse local–global principle. So

the non-trivial forms X have X(Ak)• = ∅. It remains to discuss X = P1
k. But then the composite

H2(k, µn) = H2(π1X,µn) ⊂ H2(X,µn) b−→ n Br(X)

is an isomorphism, because c1(O(1)) kills the part of H2(X,µn) which does not come from H2(π1X,µn). �

3.4. Locally constant Brauer–Manin obstructions
The group of locally constant Brauer classes is defined as

B(X) := ker
(

Br(X)→
⊕
v

Br(X ×k kv)/Br(kv)
)
.

The evaluation of a Brauer class A ∈ B(X) on an adelic point does not depend on the choice of the local
components and thus gives rise to a homomorphism

ιX : B(X)→ Q/Z, A 7→ 〈A, (xv)〉

independent of the choice of (xv) ∈ X(Ak)•, see [Ma71]. Let us define the group of B-classes in H2(π1X,Q/Z(1))
by

H2
B(π1X,Q/Z(1)) := {α ∈ H2(π1X,Q/Z(1)) ; b(α) ∈ B(X)}.
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The group H2
B(π1X,Q/Z(1)) contains the group of locally constant classes

H2
lc(π1X,Q/Z(1)) := ker

(
H2(π1X,Q/Z(1))→

∏
v

H2(π1(X ×k kv),Q/Z(1))/H2(kv,Q/Z(1))
)
.

The evaluation of a class α ∈ H2
lc(π1X,Q/Z(1)) on an adelic section does not depend on the choice of the

local components and thus gives rise to a homomorphism

jX : H2
lc(π1X,Q/Z(1))→ Q/Z, α 7→ 〈α, (sv)〉

independent of the choice of the (sv) ∈ Sπ1(X/k)(Ak).
The Brauer-Manin pairings yield a commutative diagram

X(Ak)• //

��

Hom(B(X),Q/Z)

γ
�� ++WWWWWWWWWWWWWW

Sπ1(X/k)(Ak) // Hom(H2
B(π1X,Q/Z(1)),Q/Z)

res // Hom(H2
lc(π1X,Q/Z(1)),Q/Z).

(3.5)

If b : H2(π1X,Q/Z(1))→ Br(X) is surjective, e.g., for smooth curves of positive genus or more generally if
the natural comparison map H2(π1(X),Q/Z(1)) → H2(X,Q/Z(1)) is surjective, then the map γ in (3.5) is
injective. The image in the top row of (3.5) is ιX , while the image of the composition in the bottom row of
(3.5) is jX , regardless of the adelic point or section chosen. So if the image of the space of adelic sections in
Hom(H2

B(π1X,Q/Z(1)),Q/Z) is not constant, then the local section conjecture fails, which gives a method
of attack to falsify the local section conjecture. On the other hand, if the restriction

b : H2
lc(π1X,Q/Z(1))→ B(X)

is still surjective, in which case we say that there are enough locally constant µn-extensions, then the
diagonal arrow is still injective. As ιX gets mapped to jX , and the latter vanishes if there is a global section
s ∈ Sπ1(X/k), under the assumption of having enough locally constant µn-extensions we would find that
the existence of a global section implies the vanishing of ιX . Consequently, an affirmative answer to the
following question would be quite useful.
Question 18. Do there exist enough locally constant µn-extensions for curves?

3.5. Locally constant obstructions for curves
Proposition 19. Let X/k be a smooth, projective curve of genus g ≥ 1 over a number field k which admits
adelic points. Then the Leray spectral sequence for X → Spec(k) with coefficients in Q/Z(1) degenerates at
the E2-level for cohomological degree 2, i.e., we have Epq2 = Epq∞ for all p+ q = 2.

Remark 20. In fact, if k has no real place, or if we restrict to the prime to 2 component the whole spectral
sequence of Proposition 19 degenerates at the E2-level.

Proof: The cohomology Hq(X ×k kalg,Q/Z(1)) vanishes for q ≥ 3, and H3(k,Q/Z(1)) = 0. Thus only
the maps d1,0

2 and d2,0
2 have to be examined. The first is the Brauer obstruction map PicX,tors(k)→ Br(k)

restricted to the torsion subgroup, see [Sx10] Appendix B. Hence its image is contained in the kernel of
Br(k)→ Br(X), which vanishes because of the local global principle for the Brauer group and the existence
of local points that split the local maps Br(kv)→ Br(X×kkv). The map d2,0

2 vanishes because the composite

Pic(X)⊗Q/Z c1−→ H2(X,Q/Z(1))→ H0(k,H2(X ×k kalg,Q/Z(1))) = Q/Z (3.6)

is surjective being nothing but the degree map tensored with Q/Z. �
Here the map c1 comes from the Kummer sequence on X and sits in an exact sequence

0→ Pic(X)⊗Q/Z c1−→ H2(X,Q/Z(1))→ Br(X)→ 0. (3.7)
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Since X is a curve of genus ≥ 1, we may replace étale cohomology by group cohomology of π1(X) in the
result of Proposition 19, see [Sx02] Appendix A.4. Let F•H2(π1X,Q/Z(1)) be the filtration induced by the
Leray (or in this case Hochschild–Serre) spectral sequence. In particular, the group F1 H2(π1X,Q/Z(1))
equals the kernel of the restriction map

H2(π1X,Q/Z(1))→ H2(π1(X ×k kalg),Q/Z(1)).

We set
F1 H2

B

(
π1X,Q/Z(1)

)
:= F1 H2

(
π1X,Q/Z(1)

)
∩H2

B

(
π1X,Q/Z(1)

)
.

Let k be an algebraic number field and let A/k be a commutative group scheme. In order to fix a
notation, we recall the definition of the Tate–Shafarevich group

X1(k,A) := ker
(

H1(k,A)→
∏
v

H1(kv, A)
)
.

If A is moreover divisible, e.g. for A = Pic0
X , we define the Selmer group for A as the group

H1
Sel(k,A) = ker

(
H1(k,Ators)→

∏
v

H1(kv, Ators)/δv
(
A(kv)⊗Q/Z

))
,

where Ators is the torsion subgroup, and δv : A(kv)⊗Q/Z→ H1(kv, Ators) is the direct limit of connecting
homomorphisms for the multiplication by n sequence for A on X ×k kv.

Proposition 21. Let X/k be a smooth, projective curve of genus g ≥ 1 over a number field k which admits
adelic points. Then the inclusion in H1(k,PicX,tors) defines an isomorphism

H1
Sel(k,Pic0

X) = F1 H2
B

(
π1X,Q/Z(1)

)
/H2(k,Q/Z(1)).

Proof: The kernel P̃ of the map deg⊗Q/Z : Pic(X)⊗Q/Z→ Q/Z sits in a short exact sequence

0→ Pic0
X(k)⊗Q/Z→ P̃ → Z/period(X)Z→ 0

From (3.6), (3.7) and using Tsen’s theorem we deduce from

0 // Pic0
X(k)⊗Q/Z

��

// H1
Sel(k,Pic0

X)
� _

i��

// X1(k,Pic0
X) //

��

0

0 // P̃ // F1 H2
B(π1X,Q/Z(1))/H2(k,Q/Z(1)) // X1(k,PicX) // 0

via the snake lemma an exact sequence

0→ Z/ period(X)Z δ−→ Z/period(X)Z→ coker(i)→ 0.

This proves the claim. �
As a consequence of Proposition 21, we obtain the following variant of diagram (3.5)

X(A)• //
� _

��

Hom(B(X)/Br(k),Q/Z)
� _

��

Sπ1(X/k)(Ak) // Hom(H1
Sel(k,Pic0

X),Q/Z)

(3.8)
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where the vertical maps are still injective, and the top horizontal arrow is constant with value the induced
map by ιX .

Following Saïdi and Tamagawa we call a local section sv good if the composite

Pic0
X(kv)⊗Q/Z→ H2(π1X ×k kv,Q/Z(1))

s∗v−→ H2(kv,Q/Z(1))

vanishes. The subset S good
π1(X/k)(Ak) of the adelic sections, such that all local components are good in the

sense above receives the adelic sections corresponding to adelic points. Moreover, all good adelic sections
induce the same homomorphism H1

Sel(k,Pic0
X) → Q/Z as their locally constant Brauer obstruction, which

therefore equals
ιX : H1

Sel(k,Pic0
X)� B(X)/Br(k)→ Q/Z.

We conclude that if the adelic section associated to a section s of π1(X/k) is good, then ιX vanishes by
Theorem 15. The prime to p-part of a local section is good if the residue characteristic is p. The goodness
of the p-part however remains largely a mystery.

Remark 22. The natural map describes an inclusion H2
lc(π1X,Q/Z(1))/H2(k,Q/Z(1)) ⊂ H1

Sel(k,Pic0
X)

which, when analysed carefully, makes a positive answer to Question 18 very unlikely.

4. Conditional results

4.1. The assumptions

In Section 4, and in this section only, we work under the following hypotheses when neccessary.

(BM) The Brauer–Manin obstruction is the only obstruction that prevents the existence of rational points
on smooth, projective geometrically connected curves X over algebraic number fields k, i.e., X(k) = ∅
implies X(Ak)Br

• = ∅.

(TX) The Tate-Shafarevic group X1(k,Pic0
X) of the jacobian Pic0

X of a smooth projective curve X over a
number field k is finite.

(LSC) The local section conjecture, i.e., for a base field that is finite over Qp, holds true.

The credibility of the above assumptions varies. Only recently, several authors contributed evidence for
(BM), see [Sch98], [Fl04], [Po06], [St07] and [PV10]. For surfaces and beyond (BM) was long expected to fail,
and an example was finally provided by Skorobogatov, see [Sk99] and [Po08]. The assumption (TX) belongs
to mainstream mathematics for quite some time and enters for example in the Birch and Swinnerton-Dyer
conjecture or even more intrinsically in deeper conjectures about motives. The last assumption (LSC) is
of course a necessity in light of any progress for the section conjecture over number fields which progresses
along the avenue of the interaction between local and global in number theory. As evidence towards (LSC)
we might consider the recent works [Ko05], [P10] and [Sx10], and most notably [PS10].

4.2. 0-cycles instead of rational points

The Brauer–Manin obstruction against rational points extends to an obstruction for k-rational 0-cycles.

4.2.1. Cassels–Tate pairing and locally constant obstructions
Let X/k be a smooth, projective geometrically connected curve. The Leray spectral sequence yields an

exact sequence
Br(k)→ B(X)→X1(k,PicX)→ 0.
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Lemma 23. Let X/k be a smooth projective geometrically connected curve with adelic points and let X →
W = Alb1

X be the map into its universal torsor under an abelian variety. There is a commutative diagram

B(X) // //

ιX ''NNNNNNNNNN X1(k,PicX)

��

X1(k,Pic0
X)oooo

〈[W ],−〉CTvvmmmmmmmmmmmm

Q/Z

where 〈[W ],−〉CT is the Cassels–Tate pairing

X1(k,AlbX)×X1(k,Pic0
X)→ Q/Z

evaluated at the class [W ] ∈X1(k,AlbX).

Proof: The lemma claims that the maps ιX and 〈[W ],−〉CT both factor over X1(k,PicX) and that the
induced maps agree. This can be found for example in [Ma71] Theorem 6, Proposition 8c, [Mi82] Lemma
2.11, or [Sk01] Theorem 6.2.3. �

Because the Cassels–Tate pairing is non-degenerate modulo the subgroup of divisible elements we get
the following easy corollary, see D. Eriksson and V. Scharaschkin [ES06] Thm 1.2, who were the first to
state that locally constant classes in the Brauer group suffice to detect the absence of 0-cycles of degree 1
on curves over number fields with finite Tate-Shafarevich groups.

Corollary 24 (Eriksson–Scharaschkin [ES06]). Under the assumptions of Lemma 23, if (TX) holds for
Pic0

X , then the following are equivalent.

(a) ιX = 0,

(b) Alb1
X has a rational point,

(c) period(X) = 1,

(d) index(X) = 1.

Proof: IfX has an adelic point, then the kernel of Br(k)→ Br(X) is trivial but surjects by the degree map
onto the quotient period(X)Z/ index(X)Z. Hence (c) is equivalent to (d). By definition (c) is equivalent
to (b), which under the assumption (TX) is equivalent to the triviality of the map 〈[W ],−〉CT, hence
equivalent to ιX = 0 by Lemma 23. �

4.2.2. Locally constant obstructions assuming finiteness of X
The following result has been independently observed also by O. Wittenberg.

Theorem 25. Let X/k be a smooth, projective geometrically connected curve of genus at least 1 with adelic
points and such that π1(X/k) splits. Under the assumption (LCS) that the local section conjecture is true
for X/k and (TX) that the Tate-Shafarevich group for Pic0

X is finite, we find that X has index 1, i.e., there
is a rational 0-cycle of degree 1 on X.

Proof: Under the assumption of the local section conjecture, in diagram (3.5) the left vertical map is
a bijection, showing that the image of ιX in Hom(H2

B(π1X,Q/Z(1)),Q/Z) equals the image of the adelic
section (s⊗kv) coming from the global section s ∈ Sπ(X/k). Hence ιX vanishes by Theorem 15. By Corollary
24 we may deduce that X has index 1. �
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4.3. A fibre square and a local–global principle
Proposition 26. Under the assumption (LSC) that the local section conjecture holds for smooth, projective
curves over finite extensions of Qp of genus at least 2 and all p, then the natural map

X(Ak)Br
• → Sπ1(X/k)(Ak)Br

is a bijection for a smooth, projective geometrically connected curve X/k of genus at least 2 over an algebraic
number field k.

Proof: The assumption of the local section conjecture and the validity of the real section conjecture, see
[Sx10] Appendix A, yield a bijection X(Ak)• → Sπ1(X/k)(Ak). The result then immediately follows from
Proposition 17. �

Proposition 27. Let X be smooth, projective, geometrically connected curve over the number field k. Under
the assumption (BM) that the Brauer–Manin obstruction is the only obstruction that prevents the existence
of rational points on smooth, projective geometrically connected curves over algebraic number fields, the left
facet of diagram (3.4)

X(k) //

��

X(Ak)Br
•

��

Sπ1(X/k)
// Sπ1(X/k)(Ak)Br

(4.1)

is a fibre product square.

Proof: The vertical maps are injective by the known injectivity part of the global and the local section
conjecture.

It suffices to show that a section s of π1(X/k) that locally comes from an adelic point (xv) forces the
existence of a rational point x ∈ X(k). Indeed, we may look at neighbourhoods h : X ′ → X of s with a lift
t ∈ Sπ1(X′/k) of s. Because of s⊗ kv = sxv the lift t determines a unique lift of the adelic point (xv) to an
adelic point of X ′ that moreover is in X ′(Ak)Br

• by Theorem 15 and Proposition 17.
It follows that the existence of rational points on X ′ is not Brauer–Manin obstructed whereby we find a

rational point x′ ∈ X ′(k) by assumption. The usual limit argument in the tower of all neighbourhoods shows
that the sections sh(x′) converge to s and that the limit of the h(x′) becomes a rational point x ∈ X(k) with
sx = s, see [Sx10] Appendix C. �

The following logical dependence between different conjectures has been independently observed by
O. Wittenberg.

Theorem 28. If the local section conjecture (LSC) holds true for smooth, projective curves over finite exten-
sions of Qp of genus at least 2 and all p, and (BM) if the Brauer–Manin obstruction is the only obstruction
that prevents the existence of rational points over algebraic number fields on smooth, projective curves, then
the prediction of the section conjecture holds true: for a smooth, projective geometrically connected curve
X/k of genus at least 2 over an algebraic number field k, the natural map

X(k)→ Sπ1(X/k)

is a bijection.

Proof: This is an immediate consequence of Proposition 26 and Proposition 27. �

Remark 29. For a discussion of the finite descent obstruction, the close cousin of the Brauer–Manin ob-
struction, on adelic points instead of sections, and an analogue of Theorem 28 we refer to the work of
M. Stoll [St06] §9. A thorough discussion of the finite descent obstruction in terms of sections can be found
in [HSx10]. In particular, [HSx10] Thm 2.1 shows that if the section conjecture holds over number fields
and local p-adic fields, then the finite descent obstruction is the only obstruction against the existence of
rational points.
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5. Application: the Reichardt–Lind curve

5.1. Geometry and arithmetic of the Reichardt–Lind curve
For the convenience of the reader we recall the geometry and arithmetic of the Reichardt–Lind curve. For

an elementary exposition on the Reichardt–Lind curve we may refer to [AL]. The affine Reichardt–Lind
curve U is the affine curve in A2

Q given by the equation

2Y 2 = Z4 − 17, Y 6= 0. (5.1)

The projective Reichardt–Lind curve X is the projective curve over Q given by the homogeneous
equations in P3

Q {
2T 2 = A2 − 17B2

AB = C2

The map
(y, z) 7→ [a : b : c : t] = [z2 : 1 : z : y]

identifies U with the open subset of X defined by TB 6= 0. The curve X has a model

X = Proj
(

Z[
1
34

][A,B,C, T ]/(2T 2 = A2 − 17B2, AB = C2)
)

that is smooth, projective with geometrically connected fibres above Spec Z[ 1
34 ] as can be checked via the

jacobian criterion: the matrix (
2A −34B 0 −4T
B A −2C 0

)
has full rank everywhere on X . We have ΩX = O(−4 + 2 + 2)|X = OX by the adjunction formula, so that
X is a smooth, projective curve of genus 1 over Q with good reduction outside {2, 17}. The divisor D ⊂X
given by the reduced locus of TB = 0 is isomorphic to

D = Spec(Z[
1
34
,

4
√

17])q Spec(Z[
1
34
,
√

2])

and is relative effective and étale over Spec(Z[ 1
34 ]) of degree 6. The complement U = X −D is a flat model

of U over Spec(Z[ 1
34 ]) as a hyperbolic curve of type (1, 6). We have

U = Spec
(

Z[
1
34

][Y ±1, Z]/(2Y 2 = Z4 − 17)
)

and U is precisely the locus where Y ∈ OU is invertible as a rational function on X . The divisor div(Y )
equals P − 2 ·Q with P ∼= Spec(Z[ 1

34 ,
4
√

17]) and Q ∼= Spec(Z[ 1
34 ,
√

2]).
The projective Reichardt–Lind curve X is a principal homogeneous space under its Jacobian E = Pic0

X .
The equation for E/Q can be found in [McR75] p. 278, namely E is given by the affine equation

Y 2 = X(X2 + 17)

The elliptic curve E/Q is encoded by 18496k1 with coefficient vector [0, 0, 0, 17, 0] on Cremona’s list, see
[Cre], and has conductor N = 18496 = 26 · 172, E(Q) = Z/2Z, analytic rank 0, and hence finite X1(Q, E)
of analytic order 4.

The significance of the Reichardt–Lind curve X lies in the fact that its class in H1(Q, E) belongs to the
group X1(Q, E) of E-torsors that are locally trivial at every place of Q. This is clear outside 2, 17 and ∞
by good reduction, at ∞ it is obvious, at 17 we have Q ∈ X(Q17), and at 2 we have P ∈ X(Q2). That
X ∈ X1(Q, E) represents a non-trivial class means that X(Q) = ∅. We recall the proof of this fact in
Section 5.2 below. As such, the curve X violates the Hasse local–global principle and was discovered in 1940
by Lind [Li40], and independently in 1942 by Reichardt [Re42].
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5.2. Review of the classical proof for absence of rational points

5.2.1. Via Gauß reciprocity
A solution in Q of 2Y 2 = Z4 − 17 leads, after clearing denominators, to the equation 2y2 = z4

0 − 17z4
1

with integers z0, z1, y and z0, z1 coprime. Then 17 - y and thus, for each odd prime p | y, we find that 17 is
a square modulo p, hence

(
p
17

)
=
(

17
p

)
= 1. As also

(
−1
17

)
= 1 and

(
2
17

)
= 1, we find that y is a square

modulo 17. But then 2 must be a 4th power modulo 17, which it is not by 24 ≡ −1 mod 17, a contradiction.

5.2.2. Via a Brauer–Manin obstruction
The absence of global rational points on X can also be explained by a Brauer–Manin obstruction. The

Kummer sequence with multiplication by 2 yields a map

O∗(U )/(O∗(U ))2 → H1(U , µ2), t 7→ χt

and we use the cup-product αU = χY ∪ χ17 ∈ H2(U , µ⊗2
2 ). The localization sequence, together with the

Gysin isomorphism, yields an exact sequence

H2(X , µ⊗2
2 )→ H2(U , µ⊗2

2 ) res−−→ H1(D , µ2).

The residue res(αU ) can be computed with the help of excision or via the tame symbol of Milnor K-theory.
Near P ∼= Spec(Z[ 1

34 ,
4
√

17]) the character χ17 vanishes as 17 becomes a square, and near Q ∼= Spec(Z[ 1
34 ,
√

2])
the function Y becomes a square and so χY vanishes. It follows that αU vanishes near D and thus αU lifts
to an element α ∈ H2(X , µ2), where we have identified µ⊗2

2 with µ2.
We will compute the function 〈A,−〉 on adelic points X(AQ)• for the image A of α under H2(X , µ2)→

Br(X ) ⊂ Br(X). Let (xv) ∈ X(AQ)• be an adelic point. Outside 2, 17 and∞ the class A has good reduction
and thus A(xv) belongs to Br(ov) = 0. At 2 and ∞ we find that 17 is a square and, because by continuity
of invv(A(xv)) we may assume that actually xv ∈ U(Qv), we find for v = 2,∞ that

invv(A(xv)) = invv(x∗v(α)) = invv(x∗v(χY ∪ χ17)) = 0.

It remains to compute 〈A, (xv)〉 = inv17(A(x17)) where A(x17) is the quaternion algebra (y, 17) =
(
y,17
Q17

)
with y = Y (x17). We set E = Q17( 4

√
17) and F = Q17(

√
17). The norm residue property states that under

the identification
1
2

Z/Z = Gal(F/Q17) = Q∗17/NF/Q17

(
F ∗
)
.

we find inv17((y, 17)) = y mod NF/Q17

(
F ∗
)
. The field extension E/Q17 is abelian and totally ramified of

degree 4. Multiplication by 2 therefore induces a map

Q∗17/NF/Q17

(
F ∗
)
→ Q∗17/NE/Q17

(
E∗
)

that by local class field theory is a map µ2 → µ4 with image the squares in µ4, hence it is injective. As
y satisfies 2y2 = z4 − 17 for z = Z(x17) we see that 2y2 is a norm from E. We conclude that the image
of inv17((y, 17)) in Q∗17/NE/Q17

(
E∗
)
is given by the class of 1/2 which is nontrivial because 2 is not a 4th

power in F∗17 and by local class field theory

NE/Q17

(
E∗
)

= 〈−17〉 · {ε ∈ o∗17 ; ε is a 4th power modulo 17}.

It is the argument of Section 5.2.2 that we will apply below to adelic sections in order to find a Brauer–Manin
obstruction for sections of the affine Reichardt–Lind curve.
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5.3. The µ2-extension
Let π1(Us) (resp. π1(Xs)) be the fundamental group of the geometric generic fibre of U → S (resp.

X → S) with the base S = Spec Z[ 1
34 ]. The kernel of the quotient map π1 � π2

1 to the maximal pro-2
quotient is characteristic and, by [Sx05] Prop 2.3, yields short exact sequences

1→ π2
1(Us)→ π

(2)
1 (U )→ π1(S, s)→ 1 (5.2)

1→ π2
1(Xs)→ π

(2)
1 (X )→ π1(S, s)→ 1. (5.3)

with the geometrically pro-2 fundamental groups π(2)
1 (U ) (resp. π(2)

1 (X )).

Proposition 30. Let M be a locally constant étale sheaf on U (resp. X ) with fibre a finite abelian 2-group.
Then the natural maps

Hq(π(2)
1 (U ),M)→ Hq(U ,M)

Hq(π(2)
1 (X ),M)→ Hq(X ,M)

are isomorphisms for all q ∈ N. �

Proof: It suffices to argue that the natural comparison morphism from the Hochschild–Serre spectral
sequence for (5.2) (resp. (5.3)) to the Leray spectral sequence for fU : U → S (resp. fX : X → S) is an
isomorphism, and it is moreover enough to argue at the E2-level

Hp
(
π1(S, s),Hq(π2

1(Us),M)
)
→ Hp(S,Rq fU ,∗M), (5.4)

Hp
(
π1(S, s),Hq(π2

1(Xs),M)
)
→ Hp(S,Rq fX ,∗M). (5.5)

The sheaf Rq fU ,∗M (resp. Rq fX ,∗M) is locally constant with stalk in s computed by the natural isomor-
phism, see [Sx02] Appendix A.4,

Hq(π2
1(Us),M) ∼−→ Hq(Us,M) =

(
Rq fU ,∗M

)
s
,

Hq(π2
1(Xs),M) ∼−→ Hq(Xs,M) =

(
Rq fX ,∗M

)
s
.

In this way, the map in (5.4) (resp. (5.5)) becomes a special case of the comparison isomorphism [Zi78] Prop
3.3.1

Hp(π1(S, s),Fs) ∼−→ Hp(S,F )

for a locally constant étale sheaf F on S with stalks of order a power of 2, which is invertible on S. �
It follows that the class α ∈ H2(X , µ2) of Section 5.2.2 already lives in H2(π(2)

1 X , µ2) and restricts/inflates
to αU = χY ∪ χ17 ∈ H2(π(2)

1 U , µ⊗2
2 ) with χY , χ17 ∈ H1(π(2)

1 U , µ2) = H1(U , µ2) and the identification
µ2 = µ⊗2

2 .

5.4. Sections for the Reichardt–Lind curve
Theorem 31. The fundamental group extension π1(U/Q) for the affine Reichardt–Lind curve U/Q does not
split. In particular, the section conjecture holds for U/Q as there are neither rational points nor sections.

More precisely, the geometrically pro-2 extension π(2)
1 (X/Q) of the projective Reichardt–Lind curve X/Q

does not admit a section s that allows locally at p = 2 and p = 17 a lifting s̃p

GalQp
s̃p

xx
s⊗Qp��

π
(2)
1 (U) // // π(2)

1 (X).
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Remark 32. (1) Note that the method of [HS09] does not apply to the Reichardt–Lind curve because its
jacobian E has rank 0, see the end of Section 5.1.

(2) Based on our method, O. Wittenberg, [Wi1?] Thm 1.1, has recently managed by a sophisticated
argument to avoid the local conditions at 2 and 17 in Theorem 31. Thus even the extension π(2)

1 (X/Q) for
the projective Reichardt–Lind curve X/Q does in fact not split.

Proof: We argue by contradiction. Let s be a section of π(2)
1 (X/Q) that allows local lifts s̃p at p = 2 and

p = 17. We will compute the Brauer–Manin obstruction 〈α, (s⊗Qv)〉.
The section s descends to a section σ : π1(S)→ π

(2)
1 (X ) with S = Spec Z[ 1

34 ], as above by Section 2.2.2.
It follows that (s⊗Qv)∗α is the image of σ∗(α) under the map

H2(π1S, µ2) ⊂ H2(S, µ2)→ H2(Qv, µ2) = 2 Br(Qv)

which for v 6= 2, 17,∞ factors over H2(ov, µ2) = 0, where ov ⊂ Qv is the ring of integers. Thus (s⊗Qv)∗α
vanishes for v 6= 2, 17,∞. It remains to compute the contribution to 〈α, (s ⊗ Qv)v〉 at the places v = 2, 17
and ∞.

When restricting to R = Qv for v =∞ we know from the real section conjecture, see [Sx10] Appendix A,
that s⊗R belongs to a real point x ∈ X(R), that we moreover can move freely in its connected component,
so that it is in U(R). The section s⊗R thus lifts to a s̃∞ : GalR → π

(2)
1 (U). We conclude that for v = 2, 17

and ∞
(s⊗Qv)∗(α) = s̃∗v(αU ) = s̃∗v(χY ∪ χ17) = s̃∗v(χY ) ∪ s̃∗v(χ17) = χY (s̃v) ∪ χ17

which is the class of the quaternion algebra (yv, 17) ∈ Br(Qv) with yv = Y (s̃v) ∈ Q∗v/(Q∗v)2, see Section 2.4
for the notion of evaluating a function in a section. Because 17 is a square at 2 and∞, the local contribution
at v = 2 and at v =∞ vanishes.

As X4−17 is a norm for the projection U×Q Q( 4
√

17)→ U and equal to the unit 2Y 2, we find by Section
2.4.2 that

2y2
17 ≡ NQ17( 4√17)/Q17

((
X − 4

√
17
)
(s̃17)

)
∈ Q∗17/(Q∗17)4.

Hence for a suitable representative y ∈ Q∗17, for y17 ∈ Q∗17/(Q∗17)2, we find that 2y2 is a norm from Q17( 4
√

17).
We conclude, as at the end of Section 5.2.2, that y is not a norm from Q17(

√
17) and thus inv17

(
(y, 17)

)
= 1

2
is nontrivial, so that also

〈α, (s⊗Qv)〉 =
∑
v

invv(s⊗Qv)∗(α) = inv17

(
(y, 17)

)
=

1
2
6= 0

which contradicts Theorem 15. �

5.5. Arithmetic twists of the Reichardt–Lind curve

In this section we study an arithmetically twisted version of the Reichardt–Lind curve. Let k be an
algebraic number field and letX be the smooth projective curve over k defined by the homogeneous equations{

`T 2 = A2 − pB2

AB = C2 (5.6)

with `, p ∈ k∗. The curve X has good reduction for places v - 2`p. Let U ⊂ X be the complement of
the support of the principal divisor div(T/B) = P − 2Q, with P = {T = 0} ∼= Spec(k[t]/t4 − p) and
Q = {B = 0}red

∼= Spec(k[t]/t2 − `). The Brauer class αU = χT/B ∪ χp ∈ H2(U, µ2) lifts to a class
α ∈ H2(X,µ2) because its residues at P and Q vanish as p (resp. T/B) becomes a square near P (resp. Q).

For the computation of the Brauer–Manin obstruction with respect to α along the lines of Section 5.4
we impose the following list of conditions.

(i) p is positive with respect to any real place of k.

19



(ii) for all v | 2`p with √p 6∈ kv we have µ4 ⊂ kv and

N = #{v | 2`p ;
√
p 6∈ kv and ` not a norm from kv( 4

√
p)/kv}

is odd.

We furthermore need lifts s̃v : Galkv → π
(2)
1 (U) locally at places v | 2`p, but then the conditions (i) & (ii)

enforce 〈α, (sv)〉 = N/2 = 1/2 regardless of the choice of the adelic section (sv). The curve X has local
points for all places v of k if

(iii) for all v | 2`p we have
√
` ∈ kv or 4

√
p ∈ kv,

because then P or Q split locally for v | 2`p. The places of good reduction (resp. the infinite places) have
local points anyway (resp. by (i)).

In order to get a simpler list of conditions we specialize now to the case where p is a prime element of
Ok that is coprime with 2`. Moreover, we choose in (ii), for all places v 6= p, that √p ∈ kv. It follows that
the local quadratic norm residue symbol (`, p)v vanishes for all places v but possibly v = p, hence also at
v = p by reciprocity and thus

√
` ∈ kv for v = p. Using local class field theory to determine the norm group

of kv( 4
√
p)/kv for v = p, it is thus enough to ask

(i’) p is a prime element coprime to 2` and positive with respect to any real place of k.

(ii’) for v = p we have µ4 ⊂ kv and ` is not congruent to a 4th power modulo p.

(iii’) for all v | 2` we have √p ∈ kv and a local solution in kv, e.g., by requiring 4
√
p ∈ kv.

We further simplify to k = Q and set ` = ε
∏n
i=1 qi as a product of n ≥ 1 positive distinct prime numbers

qi and a sign ε = ±1. Moreover, we achieve condition (iii’) for v - 2 by asking √p ∈ kv but µ4 6⊂ kv. Hence
we need to satisfy the conditions

(i”) p > 0 is an odd prime number different from the prime factors qi of `.

(ii”) p ≡ 1 mod 4 and ` is not congruent to a 4th power modulo p.

(iii”) p is a square modulo qi for all i = 1, . . . , n, and qi ≡ 3 mod 4 for qi odd.

(iv”) p ≡ 1 mod 8 and we have a local solution in Q2, e.g., by requiring p ≡ 1 mod 16.

Let ` be even (but not divisible by 4). The number field F = Q( 4
√
`,
√
q1, . . . ,

√
qn, µ8) is of degree 2 over

E = Q(
√
q1, . . . ,

√
qn, µ8). Conditions (i”) - (iii”) on p translate to the condition that p is unramified in F/Q

and the Frobenius Frobp of a place p|p for the extension F/Q generates the central group Gal(F/E). The
solution in Q2 is now automatic as follows. We write the affine version of equation (5.6) as Z4 = p + `Y 2,
and p+`Y 2 must be ≡ 1 mod 16 in order to allow a 4th root in Q2. If p ≡ 1 mod 16 we put Y = 0, if p ≡ 9
mod 16 we put Y = 2, and we are done. Using the Chebotarev density theorem and

√
2 = (1 + i)/ζ8, we

find that a set of density 1
2n+2 of all prime numbers yield valid choices for p when ` is even and squarefree

and all odd prime factors of ` are ≡ 3 mod 4.
In case ` is odd, we have to replace F/E by Q( 4

√
`,
√
q1, . . . ,

√
qn, µ16)/Q(

√
q1, . . . ,

√
qn, µ16) with the

same translation of the conditions on p to the Frobenius Frobp for a place p|p. In this case, the Chebotarev
density theorem yields a set of density 1

2n+4 of all prime numbers as valid choices for p when ` is odd and
squarefree and all prime factors of ` are ≡ 3 mod 4. Concrete examples are given as follows.

(1) ` = 2 and p = 17, the Reichardt–Lind curve, or p = 41 or p = 97,
(2) ` = 6 and p = 73,
(3) ` = 11 and p = 97,
(4) ` = 19 and p = 17.

All these arithmetic twists yield more empty examples for the section conjecture where the existence of
sections is Brauer–Manin obstructed. In particular, there are infinitely many of these examples.
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5.6. An isotrivial family of examples
In the introduction of [Po01] Poonen reports an example constructed by Elkies. The smooth fibres of

the isotrivial family Xt with t ∈ P1 of arithmetic twists of the Reichardt-Lind curve, given in affine form by
the equation

2Y 2 = Z4 −N(t), N(t) =
(

1 +
2

1 + t+ t2

)4

+ 16,

yield for each t ∈ Q ∪ {∞} a counterexample to the Hasse principle. Rational points on the fibres Xt are
excluded by a Brauer–Manin obstruction, see [Po01]. Note that for t = ∞ the fibre X∞ coincides with
the original Reichardt–Lind curve. We recall the existence of local points and extend the discussion of the
Brauer–Manin obstruction to sections.

5.6.1. Local points
The key property of N(t) is that it takes only odd values at rational t. After rescaling we may replace

N = N(t) by a quartic free integer N0 = M4 · N(t) which equals N0 = A4 + 16B4 with A,B odd and
coprime integers. Clearly we have R-points as N0 > 0 and also Qp-points for p - 2N0, the primes of good
reduction of Xt.

For local points at p = 2 we note that N0 ≡ 1 mod 16, and thus N0 is a 4th power in Q2, which leads to
a Q2-point with Y = 0. For an odd prime p | N0 we find that −1 is a 4th power in Fp, hence p ≡ 1 mod 8,
and so 2 is a square in Fp. It follows that there is y ∈ Zp such that N0 + 2y2 is a 4th power modulo p and
thus also a 4th power in Qp which yields a Qp-point.

5.6.2. The absence of sections
Let Ut be the open subscheme of Xt given by

2Y 2 = Z4 −N(t), Y 6= 0.

Proposition 33. The fundamental group extension π1(Ut/Q) for the arithmetic twist Ut with t ∈ Q of the
affine Reichardt–Lind curve does not allow a section.

Proof: We rescale as above and replace N by N0 = A4 + 16B4 with A,B odd and coprime. The Brauer–
Manin obstruction for an adelic section (sp) with respect to the Brauer class α = χY ∪ χN0 can have a
nontrivial local contribution

invp(s∗p(α)) = invp
(
(Y (sp), N0)

)
at most at places p | N0. Then p ≡ 1 mod 8 and Qp contains µ4. Hence Qp( 4

√
N0) either equals Qp and

then invp(s∗p(α)) = 0, or Qp( 4
√
N0) is an abelian cyclic extension of Qp of degree 4. Local class field theory

shows, as in Section 5.2.2, that multiplication by 2 induces an injective map

µ2
∼= Q∗p/NQp(

√
N0)/Qp

(
Qp(

√
N0)∗

)
↪→ Q∗p/NQp( 4√N0)/Qp

(
Qp( 4

√
N0)∗

) ∼= µ4.

As 2Y (sp)2 is a norm from Qp( 4
√
N0), we conclude that invp(s∗p(α)) is nontrivial, namely Y (sp) is not a

norm form Qp(
√
N0), if and only if 2 is not a norm from Qp( 4

√
N0). If the exponent vp(N0) of p in N0 is

even, then 2 is not a norm from Qp( 4
√
N0) if and only if 2 is not a square in Fp, but which it always is due

to p ≡ 1 mod 8.
If the exponent vp(N0) of p in N0 is odd, then 2 is not a norm from Qp( 4

√
N0) if and only if 2 is not a

4th power in Fp, hence for such primes p we find

invp(s∗p(α)) =
(

2
p

)
4

under the identification 1
2Z/Z = µ2(Fp), and where

(
p

)
4
is the quartic residue map(

p

)
4

: F∗p → µ4(Fp), x 7→
(
x

p

)
4

= x(p−1)/4.
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The Brauer–Manin pairing thus evaluates as

〈α, (sp)〉 = #{p | N0 ; vp(N0) odd, and
(

2
p

)
4

= −1} · 1
2
∈ Q/Z.

Let p be a prime dividing N0, hence of the form p = a2 + 16b2 with a odd. Let ζp be a pth root of unity.
The subfield k of Q(ζp) of degree 4 over Q is uniquely determined by being cyclic of degree 4 over Q with
ramification only above p. Using [JLY02] Thm 2.2.5, we can determine k = Q(λ) with λ2 =

√
p(4b +

√
p).

The decomposition behaviour above (2) is given on the one hand by the Frobenius element(
2
p

)
4

∈ µ4(Fp) = Gal(k/Q),

and on the other hand explicitly as follows. The prime (2) is completely split in k if and only if √p(4b+
√
p)

is a square in Q2, or equivalently √
p(4b+

√
p) ≡ 1 mod 8

with respect to a choice of √p ∈ Q2. As p ≡ 1 mod 8, the latter is equivalent to b being even.
We resort to arithmetic of Z[i] to prove that any way of writing N0 as (A2)2 + 16(B2)2 comes from

writing its prime factors, which are all congruent to 1 modulo 8, in the form p = a2 + 16b2 for suitable
a, b ∈ Z, and then making inductively use of the identity

(a2 + 16b2) · (c2 + 16d2) =
(
ac− 16bd

)2 + 16
(
ad+ bc

)2
. (5.7)

In our application of (5.7) the integers a, c are always odd. Thus the parity of the second component
ad+ bc ≡ b+ d mod 2 is additive. We conclude that modulo 2

#{p | N0 ; vp(N0) odd, and
(

2
p

)
4

= −1} ≡
∑

p|N0 ;( 2
p )

4
=−1

vp(N0) ≡ B2 ≡ 1,

and thus 〈α, (sp)〉 6= 0. Hence π1(Ut/Q) does not admit sections due to the Brauer–Manin obstruction
coming from α. �

5.6.3. Sections for the total space
A natural explanation for the absence of sections in Proposition 33 would be a proof that we have a

non-split extension π1(U/Q) for the total space

U = {2Y 2 = Z4 −N(T )} ⊂ Spec
(
OS [Y, Y −1, Z]

)
of the fibration T : U → S, where S ⊂ P1

Q is the complement of the zeros and poles of N(T ) with T the
parameter of P1

Q. Let t̄ ∈ S be a geometric point and Ut̄ the corresponding geometric fibre. By [MT98]
Lemma 2.1, the fibre exact sequence reads

1→ π1(Ut̄)→ π1(U)→ π1(S)→ 1. (5.8)

Let us assume that s is a section of π1(U/Q). Then τ = π1(T ) ◦ s is a section GalQ → π1(S) and s induces
canonically a section of the pull back via τ

1→ π1(Ut̄)→ π1(U)×π1(S),τ GalQ → GalQ → 1

of the exact sequence (5.8), which by abuse of notation we denote by π1(Uτ/Q). As the referee kindly
pointed out, the section conjecture for S asserts that τ = st comes from a rational point t ∈ S(Q) whence
π1(Uτ/Q) is nothing but π1(Ut/Q). Indeed, in this case Proposition 33 even shows that π1(U/Q) does not
admit sections.
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Unfortunately, the naive approach of testing whether the class α = χY ∪ χN(T ) ∈ H2(U, µ2) provides a
Brauer–Manin obstruction for U(Q) does not work. Local points from different rational fibres Ut show the
insufficiency of the obstruction by 〈α,−〉.

However, the dependence from the section conjecture may be reduced to the weak section conjecture for
certain curves of genus 9. The rational function N = N(T ) yields a finite branched cover S → Gm. The
evaluation N(s) = N(τ) in the sense of Section 2.4 takes value for example in Q∗/(Q∗)4. Let a ∈ Q∗ be a
representative of N(τ). Then the image of s as a section of π1(Gm/Q) lifts along the map ha : Gm → Gm

given by W 7→ aW 4, so that by a simple diagram chase s lifts as a section of the finite étale cover Ua → U
given by

Ua = {2Y 2 = Z4 − aW 4} ⊂ Spec
(
OS [W,Y, Y −1, Z]/(N(T ) = aW 4)

)
.

By rescaling Y and Z by powers of the invertible W we find a product decomposition Ua = Va × Sa, where
Sa is the fibre product S ×Gm Gm along N and ha, and

Va = {2Y 2 = Z4 − a} ⊂ Spec
(
Q[Y, Y −1, Z]

)
.

As
π1(Ua) = π1(Va)×GalQ π1(Sa)

the lift of the section s induces a section of both π1(Va/Q) and π1(Sa/Q). The weak section conjecture
applied to the genus 9 curve Sa yields that up to 4th powers a equals N(t) for a suitable t ∈ Q. In this case,
again, Proposition 33 shows that π1(Va/Q) = π1(Ut/Q) has no sections.
Question 34. Is there a direct argument to show that for a ∈ Q∗ not both π1(Va/Q) and π1(Sa/Q) can have
sections simultaneously? A positive answer would prove that the extension π1(U/Q) for the affine surface
U/Q has no section, as predicted by the section conjecture since U/Q is elementary anabelian in the sense
of [Gr83].

6. Beyond sections of the abelianized fundamental group

The known obstructions against sections use, for example, period and index in the p-adic local case or the
Brauer–Manin obstruction in Section 3 and Section 5. The Brauer–Manin obstruction extends to 0-cycles.
As an obstruction against 0-cycles of degree 1 it only depends on abelian information that takes place on the
generalized semiabelian Albanese torsor U → SAlb1

U/k of the curve U/k. On curves of genus ≥ 2, however,
the Brauer–Manin obstruction depends on information beyond the abelian level, as there are examples of
curves X/k of index 1, hence πab

1 (X/k) = π1(SAlb1
U/k /k) splits, with adelic points but no global point, see

[Sk01] p.128 for an example of [LMB84].
Nevertheless, as the Reichardt–Lind curve has genus 1, the natural question arises, whether the above

method actually proves that the geometrically abelianized fundamental group extension πab
1 (U/k) already

fails to admit sections.
We will discuss this issue first for the above proof in the case of the Reichardt–Lind curve and then give

an example for the local p-adic obstruction on a curve of genus 2.

6.1. Abelian is enough for the Reichardt–Lind curve

We keep the notation from the preceding Section 5. Let π(ab,2)
1 (U/Q) be the maximal geometrically

abelian pro-2 quotient of π1(U/Q).

Lemma 35. (1) Inflation induces an isomorphism H1(π(ab,2)
1 (U), µ2)→ H1(π(2)

1 (U), µ2).
(2) The class αU = χY ∪ χ17 lifts uniquely to a class αab

U = χY ∪ χ17, where χY and χ17 are the
corresponding classes under the isomorphism from (1).

Proof: The Hochschild–Serre spectral sequence ab E for π(ab,2)
1 (U) → GalQ maps via inflation to the

corresponding spectral sequence E for π(2)
1 (U) → GalQ. The map ab Ep,q2 → Ep,q2 is an isomorphism for

q = 0, 1 which implies (1) and thus (2). �
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Theorem 36. The abelianized fundamental group extension πab
1 (U/Q) for the affine Reichardt–Lind curve

U/Q does not split.
More precisely, the geometrically pro-2 extension π(2)

1 (X/Q) of the projective Reichardt–Lind curve X/Q
does not admit a section s that allows a lifting s̃p

GalQp
s̃p

xx
s⊗Qp��

π
(ab,2)
1 (U) // // π(2)

1 (X)

locally at p = 2 and p = 17.

Proof: For the proof of Theorem 31 to work with the obvious modifications it suffices that αab
U lies in

the image of
H2(π(2)

1 (X), µ2)→ H2(π(ab,2)
1 (U), µ2).

Let F•H∗ denote the filtration from the Hochschild–Serre spectral sequences with respect to the projection
to GalQ, or, which amounts to the same in view of the comparison isomorphism, the filtration from the
Leray spectral sequence with respect to projection to Spec(Q). The proof of Lemma 35 shows furthermore
that inflation induces an isomorphism

F1 H2(π(ab,2)
1 (U), µ2)→ F1 H2(π(2)

1 (U), µ2).

The classes αU and αab
U die under the projection to gr0

F H2 due to the constant factor χ17 and thus lie in
the respective F1 H2. Hence, it suffices to find a lift α ∈ F1 H2(X,µ2) of αU .

We apply the snake lemma to the following diagram induced by restriction

1 // F1 H2(X,µ2) //

��

H2(X,µ2) //

��

gr0
F H2(X,µ2) //

��

1

1 // F1 H2(U, µ2) // H2(U, µ2) // gr0
F H2(U, µ2) // 1

and because gr0
F H2(U, µ2) = 0 obtain the exact sequence

H2
D(X,µ2) d−→ gr0

F H2(X,µ2) δ−→ F1 H2(U, µ2)/F1 H2(X,µ2)→ H2(U, µ2)/H2(X,µ2) (6.1)

where D = X − U = {P,Q} with a surjection H2
D(X,µ2)� ker

(
H2(X,µ2)→ H2(U, µ2)

)
from the relative

cohomology sequence. The Gysin isomorphism H0(D,Z/2Z) ∼= H2
D(X,µ2) and gr0

F H2 ⊂ E02
2 = Z/2Z show

that the map d in (6.1) is essentially the degree map, and thus has to vanish because deg(P ) = 4 and
deg(Q) = 2.

The class of αU in F1 H2(U, µ2)/F1 H2(X,µ2) maps to 0 in H2(U, µ2)/H2(X,µ2) because we know of a
lift to H2(X,µ2). Hence there is a unique class β ∈ gr0

F H2(X,µ2) with δ(β) = αU + F1 H2(X,µ2).
Now we exploit the naturality of (6.1) with respect to scalar extension and study the base change by

Q(
√

17)/Q. The divisor D⊗Q(
√

17) now consists of three points of degree 2 each, so that d⊗Q(
√

17) still
vanishes. In the diagram

gr0
F H2(X,µ2) δ //

−⊗Q(
√

17)

��

F1 H2(U, µ2)/F1 H2(X,µ2)

−⊗Q(
√

17)

��

gr0
F H2(X ⊗Q(

√
17), µ2)

δ // F1 H2(U ⊗Q(
√

17), µ2)/F1 H2(X ⊗Q(
√

17), µ2)
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all but possibly the right vertical arrow are injective. But as αU = χY ∪ χ17 and clearly χ17 vanishes upon
restriction to Q(

√
17), we find

0 = αU ⊗Q(
√

17) = δ(β)⊗Q(
√

17) = δ(β ⊗Q(
√

17)),

hence β = 0, which implies αU lifts to F1 H2(X,µ2) and completes the proof of the theorem. �

Remark 37. (1) By [EW10] Thm 2.1, we know that the birational analogue of πab
1 (U/Q) admits no section

because there is no divisor of degree 1 on X. Indeed, the projective Reichardt–Lind curve is a nontrivial
torsor under its jacobian and thus has index different from 1. Our Theorem 36 can be read as a quantitative
version of this statement, showing that even πab

1 (U/Q) does not admit a section. Note that [EW10] Thm
2.1 is conditional on the finiteness of X1(Q,Pic0

X), which is known for the Reichardt–Lind curve.
(2) We repeat the earlier remark that, based on our method, O. Wittenberg, [Wi1?] Thm 1.1, has recently

managed by a sophisticated argument to avoid the local conditions at 2 and 17 in Theorem 36. Thus even
the extension π(2)

1 (X/Q) for the projective Reichardt–Lind curve X/Q does in fact not split.

6.2. An example in genus 2
The idea is to exploit the annoying factor 2 from Lichtenbaum’s congruences for period and index of a

smooth projective curve over a p-adic field which shows up in the main result of [Sx10] Theorem 16.

Theorem 38. Let k be a finite extension of Qp, and let X/k be a smooth projective curve of genus ≥ 1.

(1) If πab
1 (X/k) splits, then period(X) is a power of p.

(2) As a partial converse: if period(X) equals 1, then πab
1 (X/k) splits.

(2) If we have a section for the natural map to Galk of the maximal quotient of π1(X) which geometrically
is the product of an abelian group of order prime to 2 with a 2-group, which is an abelian extension of
the H1(X ×k kalg,Z/2Z)-quotient, then the index is also a power of p.

Proof: This follows from a more careful study of [Sx10] Section 5. �
In order to get a curve X/k such that πab

1 (X/k) splits despite the fact that π1(X/k) does not allow
sections, we are led to look for curves of genus 2, period 1 and index 2. These are guaranteed by the results
of Clark [Cl07] and Sharif [Sh07].

Here is an alternative construction for p 6= 3. Let P be the Brauer–Severi variety for the Azumaya
algebra of invariant 1/2 over k. The curve P has genus 0, and thus has a point y of degree 2. There is a
non-constant rational function f on P with divisor z−y, where z is then necessarily also a point of degree 2.
The branched cover h : X → P defined by a cubic root of f is totally branched above y, z, and unramified
elsewhere. The curve X is of genus 2 by the Riemann–Hurwitz formula, its index is different from 1 but
divides 2g−2, hence index(X) = 2, and the period divides g−1 by [Li69] Thm 7, hence equals 1. The curve
X/k therefore gives an explicit example for a curve such that πab

1 (X/k) splits although π1(X/k) does not.

Question 39. Find an explicit example for a smooth projective curve X over a number field k which is a
counter example to the Hasse principle and such that πab

1 (X/k) splits despite the fact that π1(X/k) does
not allow sections. The existence of adelic points rules out that π1(X/k) does not split for local reasons,
and thus may be weakened to the requirement that there are local sections everywhere for a still interesting
example.

7. Example: the Selmer curve

7.1. Geometry and arithmetic of the Selmer curve
Another famous example of a curve violating the Hasse principle was found by Selmer in [Se51] as the

plane cubic curve S/Q of genus 1 which in homogeneous coordinates is given by

3X3 + 4Y 3 + 5Z3 = 0.
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The Jacobian E = Pic0
S of S is an elliptic curve with complex multiplication by Z[ζ3] given by the homoge-

neous equation
A3 +B3 + 60C3 = 0,

and [1 : −1 : 0] as its origin. The curve S, as a principal homogeneous space under E, describes a nontrivial
3-torsion element of X1(Q, E), see [Ma93] I §4+9.

Cassels gives in [Ca91] a proof of the absence of global points on S via étale covers as follows. There is a
finite étale cover h : S → E of degree 9, which is a torsor under the finite étale group scheme E[3]. Standard
methods in the arithmetic of elliptic curves allow Cassels to show that E(Q) = 0, see [Ca91] §18 Lemma 2,
so that S(Q) is contained in h−1(0) = S ∩ {XY Z = 0}, which does not contain rational points by direct
inspection. A sketch of Selmer’s original proof based on a 3-descent can be found in [Ca66] p. 206.

As X1(Q, E) is finite, see [Ma93] Thm 1 and §9, there must be a locally constant Brauer–Manin ob-
struction on S which explains the absence of rational points. We proceed with constructing the appropriate
global Brauer class in the next sections. The construction relies on computations with the computer alge-
bra package SAGE, see [S+08]. As the results on the Selmer curve only illustrate the difficulties with the
Brauer–Manin obstruction in the section conjecture, we can afford avoiding the details of these computations.

7.2. A degree 3 cover

For the rest of Section 7 we set k = Q(ζ3) for a fixed cubic root of unity ζ3, and K = k(ε) with ε = 3
√

6.
We denote by σ the generator of Gal(K/k) which maps ε to ζ3ε. The element

γ = ζ3ε
2 + (2ζ3 + 1)ε+ 2ζ3 ∈ K

is constructed as an element satisfying NK/k(γ) = −10 using SAGE, and turns out to be a product of the
prime above 2 by a prime above 5. We find

NK/k

(
2Y + εX

γZ

)
= 1,

and the Ansatz of the Lagrange resolvent yields

U =
(2Y + εX)(2Y + ζ3εX) + γZ(2Y + ζ3εX) + γ · σ(γ)Z2

(2Y + εX)(2Y + ζ3εX)
∈ K(S)∗,

such that
σ(U)/U =

2Y + εX

γZ

We define F ∈ k(S)∗ as

F = NK/k(U) =
σ2(γ)
γ
· U3 · 2Y + εX

2Y + ζ2εX
, (7.1)

so that its divisor equals

div(F ) = 3 div(U) + 3 · ([−2 : ε : 0]− [2, ζ2
3ε : 0]) = 3D.

The divisor D is k-rational, of degree 0 and describes a nontrivial 3-torsion class in E(k).

Lemma 40. The 3-torsion E[3] of E sits in a short exact sequence of GalQ-modules

0→ µ3 → E[3]→ Z/3Z→ 0, (7.2)

which as an extension is given by the Kummer character χ60 ∈ H1(Q, µ3). In particular, for any field
extension k′/Q, for which 60 is not a cube in k′, the restriction of (7.2) to Galk′-modules does not split and
E[3](k′) = µ3(k′).
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Proof: The group E[3] is given by the solutions of ABC = 0, and the point [−1, ζ3, 0] generates a
subgroup µ3 ⊂ E[3]. The quotient E[3]/µ3 has to be constant by detE[3] ∼= µ3 and the rest follows from
computing the Galois action on the preimage of a generator of Z/3Z. �

We deduce from Lemma 40, that D generates µ3 ⊂ E[3]. The associated 3-isogeny

f : E′ → E

has Galois group Z/3Z , the Cartier dual of the group generated by D. The cover

h : W → Sk = S ×Q k

which is constructed as the integral closure in the extension defined by 3
√
F yields a twisted version of

f : E′ → E. The associated surjective group homomorphism

mF : π1(Sk)→ Z/3Z ∈ H1(π1(Sk),Z/3Z)

computes as ζmF (g)
3 = χF (g) for g ∈ π1(Sk) and where χF is the cubic Kummer character associated to F .

The restriction to the pro-3 component of the geometric fundamental group we denote by

ϕ = mF |π1(S̄) : T3E = π3
1(E) = π3

1(S)→ Z/3Z.

The map ϕ is up to isomorphism the unique GalQ-map T3E → Z/3Z according to Lemma 40.

Lemma 41. The Z/3Z cover h : W → Sk has good reduction outside primes dividing 2 · 3 · 5.

Proof: As K/k is unramified above the primes in question, we may replace h by the base change
W ×k K → S ×Q K. Here, the cover is the normalisation in the extension of the function field given by
3
√
F which by (7.1) amounts to the same as by 3

√
σ2(γ)
γ · 2Y+εX

2Y+ζ2εX . We have to check for prime divisors with

multiplicity in div(σ
2(γ)
γ · 2Y+εX

2Y+ζ2εX ) not divisible by 3, hence only div(σ2(γ)/γ), which lives only in the fibres
above 2 and 5 by construction. �

7.3. The global Brauer class
The global Brauer class, which will occur in the Brauer–Manin obstruction against rational points on

the Selmer curve S will be the image of the cup product (a, cork/Q(mF )) ∈ H2(π1(S), µ3) for some suitable
a ∈ Z[1/30]∗, more precisely the inflation of its associated Kummer character in H1(Q, µ3). For an adelic
section (sp) ∈ Sπ1(S/Q)(AQ) we have the adjunction formula

〈(a, cork/Q(mF )), (sp)〉 =
∑
p

invp
(
s∗p(a, cork/Q(mF ))

)
=
∑
p

invp
(
(a, s∗p cork/Q(mF ))

)
(7.3)

=
∑
p

invp
(
(a, cork/Q(mF ◦ sp|Galkv

))
)

=
∑
p

invp
(

cork/Q(a,mF ◦ sv)
)

=
∑
v

invv
(
(a,mF ◦ sv)

)
= 〈(a,mF ), (sv)〉

with sv = sp|Galkv
for a place v|p of k with completion kv. Consequently, instead of obstructing Q-rational

points, or sections, via (a, cork/Q(mF )), we can and will discuss the obstruction against k-rational points or
sections of π1(Sk/k) via the class (a,mF ) for a ∈ Q∗. Because S as a cubic has Q-rational divisors of degree
3, the class of the extension π1(S/Q) has order dividing 3 and splits if and only if π1(Sk/k) splits.

Multiplying with our fixed ζ3 we can transform the local invariants invv
(
(a,mF ◦ sv)

)
into the local

cubic Hilbert pairing (a, F (sv)) with values in µ3. Here F (sv) is the abuse of notation for the class s∗vχF =
χF ◦ sv ∈ H1(kv, µ3). The local contribution for a section sxv associated to a point xv ∈ S(kv) where F is
invertible, computes then as (a, s∗xv (F )) = (a, F (xv)).

The alert reader will already have noticed that the Brauer–Manin obstruction that we will exploit for
the Selmer curve amounts to the descent obstruction imposed by h : W → Sk. For more details on the
descent obstruction and the section conjecture we refer to [HSx10] or [Sx11].
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7.4. Variance of the evaluation at points versus at sections
The computation of (7.3) shows moreover that the value of the local components of the Brauer–Manin

obstruction depend only on mF ◦ sv ∈ H1(kv,Z/3Z), which subsequently is paired with the class of a via
the local Tate-duality pairing

H1(kv,Z/3Z)×H1(kv, µ3)→ Q/Z. (7.4)

Let us identify E(kv) ⊗ Z3 via the Kummer sequence of E with its image in H1(kv,T3E). The range of
mF ◦ sv, where sv ranges over all sections associated to kv-points of S (resp. all sections), is given as an
affine subspace

mF ◦ s0 + ϕ
(
E(kv)⊗ Z3

)
⊆
(
resp. mF ◦ s0 + ϕ(H1(kv,T3E))

)
⊆ H1(kv,Z/3Z), (7.5)

where s0 is the section for some point in S(Qp) for v|p. As Gal(k/Q) is of order prime to 3, the corresponding
situation over Qp is just given by the +-eigenspaces for the Galois action:

mF ◦ s0 + ϕ
(
E(Qp)⊗ Z3

)
⊆
(
resp. mF ◦ s0 + ϕ(H1(Qp,T3E))

)
⊆ H1(Qp,Z/3Z). (7.6)

For the latter it was essential to choose the section of reference s0 associated to a Qp-point of S.

7.4.1. Explicit computation of the variance
The isogeny f : E′ → E yields a short exact sequence of GalQ-modules

0→ T3E
′ π1(f)−−−→ T3E

ϕ−→ Z/3Z→ 0. (7.7)

Before we exploit this cohomologically we need several observations. After base change to k the isogeny of
degree 3 over Ek is still unique up to isomorphism by Lemma 40. But complex multiplication by Z[ζ3] is
now defined, so that f becomes isomorphic to the multiplication map [ζ3 − 1] : Ek → Ek, which is of degree
deg[ζ3 − 1] = Nk/Q(ζ3 − 1) = 3. A description over Q is as follows.

Lemma 42. (1) The curve E′ is the quadratic twist of E by the character GalQ → Gal(k/Q) = {±1}.
(2) In explicit equations we have E′ = {v2 = u3 + 900} and E = {b2 = a3 − 24300} with the isogeny

f : E′ → E being isomorphic to the map

(u, v) 7→ (a, b) = (
u3 + 3600

u2
, v · u

3 − 7200
u3

). (7.8)

(3) The map f is surjective on Q3-points.

Proof: (1) follows visibly from (2). The isomorphism of E as a cubic {A3 + B3 + 60C3 = 0} to the
Weierstraß-form given in the proposition comes by the map

[A : B : C] 7→ (a, b) = (−180 · C

A+B
, 270 · A−B

A+B
).

The map defined by (7.8) is a degree 3 isogeny, which we know is unique up to isomorphism.
In order to prove the surjectivity of f on Q3 points we may argue for all but finitely many points

(a, b) ∈ E(Q3). We have to solve the equations

a =
u3 + 3600

u2
and b = v · u

3 − 7200
u3

in u, v ∈ Q3 which automatically (up to maybe the finitely many exceptions when u3 = 7200) yields a
point (u, v) ∈ E′(Q3). The equation for v is linear, so we need to worry only about the equation for u.
Substituting T = u/a (except for the case a = 0) we need to guarantee a solution in Q3 of the equation

T 3 − T 2 + 3600/a3 = 0, (7.9)
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as long as a is part of a point (a, b) ∈ E(Q3). As v3(b2) is even and v3(24300) = 5, the triangle equality
holds with a minimum v3(a3) = min{v3(b2), 5}. But v3(a3) is divisible by 3, thus v3(a3) = v(b2) < 5, and
so the value is divisible by 6 and negative. Now equation (7.9) has coefficients in Z3 and reduces to T 3−T 2

modulo 3. The separable solution T = 1 lifts to a solution of (7.9) by Hensel’s Lemma, which proves the
lemma. �

Lemma 43. Let M 6= (0) be a Z3[ζ3]-module of finite length, which is cyclic as an abelian group. Then M
is isomorphic to Z/3Z.

Proof: We have M ∼= Z3[ζ3]/(ζ3 − 1)n for some n. If n ≥ 2, then we have a quotient

M � Z3[ζ3]/(ζ3 − 1)2 = Z/3Z⊕ Z/3Z · ζ3

which fails to be cyclic as an abelian group. Hence n = 1, which proves the lemma. �

Proposition 44. Let v be a place of k such that 60 is not a cube in kv.

(1) The map H2(kv,T3E) → H2(kv,Z/3Z) induced by ϕ is an isomorphism of GalQ-modules isomorphic
to µ3.

(2) H2(kv,T3E
′) ∼= Z/3Z with trivial action of Gal(k/Q).

(3) The sequence of Gal(k/Q)-modules

H1(kv,T3E)
ϕ−→ H1(kv,Z/3Z)

(−,60)−−−−→ Z/3Z→ 0

is exact, where (−, 60) is the pairing with the Kummer character associated to 60.
(4) ϕ(H1(kv,T3E)) ⊂ H1(kv,Z/3Z) is equal to the annihilator of 〈60〉 ⊂ H1(kv, µ3) under the local Tate-

duality pairing.

Let v be an arbitrary place of k.

(5) If v - 3, then E(kv)⊗ Z3 = H1(kv,T3E).

Proof: (1) By local Tate-duality the dual map equals µ3(kv)→ E[3∞](kv), which is injective. By Lemma
40 and Lemma 43 the kv-rational 3-primary torsion E[3∞](kv) is cyclic of order 3.

(2) This follows from (1) as E′ is the quadratic twist of E by Lemma 42.
For (3) we use the cohomology sequence for (7.7) and (1) and (2), and it only remains to compute the

boundary map H1(kv,Z/3Z) → H2(kv,T3E
′). The short exact sequence (7.7) maps canonically to (7.2)

inducing isomorphisms on the relevant terms of the cohomology sequence by (2), so that the boundary map
equals

− ∪ 60 : H1(kv,Z/3Z)→ H2(kv, µ3),

which is nothing but the pairing map with the Kummer class associated to 60, the class of the extension
(7.2) following Lemma 40. (4) is merely a reformulation of (3).

(5) The ’multiplication by 3n’-sequences and continuous cohomology à la Jannsen yield the short exact
sequence

0→ E(kv)⊗ Z3 → H1(kv,T3E)→ T3(H1(kv, E))→ 0.

By local Tate-duality H1(kv, E) equals Hom(E(kv),Q/Z), which has finite 3-primary torsion part and thus
T3(H1(kv, E)) = Hom(Q3/Z3,H1(kv, E)) vanishes. �

Proposition 45. Let v = (ζ3 − 1) be the place of k dividing 3.

(1) ϕ(E(kv)⊗ Z3) ⊂ H1(kv,Z/3Z) is equal to the annihilator of 〈2, 3〉 ⊂ H1(kv, µ3) under the local Tate-
duality pairing.

(2) ϕ(E(Q3)⊗ Z3) = 0 in H1(Q3,Z/3Z).
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Proof: The snake lemma applied to

0 // E′(kv)⊗ Z3

f
��

// H1(kv,T3E
′)

f
��

// T3(H1(kv, E′))

f
��

// 0

0 // E(kv)⊗ Z3
// H1(kv,T3E) // T3(H1(kv, E)) // 0

(7.10)

yields
(E(kv)⊗ Z3)/f(E′(kv)⊗ Z3) = ϕ(E(kv)⊗ Z3).

As Z3[ζ3]-module we have E(kv)⊗ Z3 = Z3[ζ3]⊕ F3 and f corresponds to multiplication by ζ3 − 1, at least
after identifying E′k = Ek correctly, and hence dimF3 ϕ(E(kv)⊗ Z3) = 2.

The subgroup 〈2, 3〉 is the +-part of H1(kv, µ3) under the action of Gal(k/Q), so that its annihilator
under the Tate-duality pairing equals the −-part of H1(kv,Z/3Z) and has dimension 2 over F3. For (1) it
therefore suffices to show that ϕ(E(kv)⊗ Z3) has trivial +-eigenspace, which is exactly statement (2).

The analog of (7.10) with kv replaced by Q3 yields

(E(Q3)⊗ Z3)/f(E′(Q3)⊗ Z3) = ϕ(E(Q3)⊗ Z3),

which vanishes by Proposition 42 (3). �

7.5. The locally constant Brauer class for the Selmer curve
Theorem 46. The class α = (2,mF ) ∈ H2(π1Sk, µ3) maps to a locally constant Brauer class A in
B(Sk), and the class cork/Q(α) = (2, cork/Q(mF )) ∈ H2(π1S, µ3) maps to a class in B(S) that generates
B(S)/Br(Q).

Proof: Let Av be the pull back of A to Br(S ×Q kv). By Lichtenbaum duality and because S is of genus
1, the class Av is locally constant if and only if its evaluation at kv points is independent of the chosen point
in S(kv).

The class α is unramified at places v - 2 · 3 · 5 by Lemma 41, so that Av(xv) for xv ∈ S(kv) vanishes. At
v | 5 we find that 2 is a cube and thus αv = 0.

At v | 2 we may apply Proposition 44. Because 15 is a cube in Q2, the annihilator of 2 and of 60 under
the local Tate-duality pairing agree, and so A(x2) is independent of x2 ∈ S(kv). Let w be a place above v
in K. In fact, the exact value is 0, because F (x2) is a norm from Kw/kv and 10 is a norm from K/k, which
by local class field theory implies that

〈10〉 · (k∗v)3 = NKw/kvK
∗
w ⊂ k∗v .

But the cubic Hilbert symbol (2, 10) for kv vanishes, hence also A(x2). It remains to deal with the place v
above 3. Here Proposition 45(1) tells us that the evaluation of A is independent of the point.

With the class α, also cork/Q(α) is locally constant. By [Ma93] Thm 1 and §9, we know that X1(Q, E)
is isomorphic to Z/3Z × Z/3Z, hence B(S)/Br(Q) is cyclic of order 3, see Section 4.2.1. In order to prove
the last statement of the theorem it thus suffices to show that α does not come from Br(k). Let δ = 3

√
10

be a cube root of 10 in Q3. The value of F at [0 : δ : −2] can be effortlessly evaluated with SAGE as

F ([0 : δ : −2]) = NK/k

(
δ2 − γδ + γ · σ(γ)

δ2

)
= −9

5
ζ3δ

2 + (
9
5
ζ3 +

36
5

)δ − 81
5
ζ3 + 9

which up to cubes in Q3(ζ3) equals (ζ3−1)(1+(ζ3−1)2), and pairs nontrivially with 2 under the local cubic
Hilbert pairing of Q3(ζ3), which can be evaluated (using SAGE) via the explicit formula for the Hilbert
pairing from [FV02] VII §4. �

Our discussion of the arithmetic of the Selmer curve so far allows to immediately disprove any hope that
sections of π1(S/Q) might be Brauer–Manin obstructed in the same way as rational points are.
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Theorem 47. There is an adelic section (sp) ∈ Sπ1(S/Q)(AQ) which survives the Brauer–Manin obstruction
from classes of H2

B(π1(S), µ3), in particular from the class cork/Q(α) of Theorem 46.

Proof: We have a short exact sequence

0→ Pic(S)⊗ F3 → H2
B(π1(S), µ3)/H2(Q, µ3)→ B(S)/Br(Q)→ 0,

in which Pic(S) ⊗ F3 and B(S)/Br(Q) are both cyclic of order 3. The Brauer–Manin obstruction is linear
in the class from H2

B(π1(S), µ3) and vanishes on the image of H2(Q, µ3) by inflation. Hence it suffices to
consider the Brauer–Manin obstruction imposed by the class cork/Q(α) from Theorem 46, and that imposed
by a generator of Pic(S)⊗ F3.

By the proof of Theorem 46 and by Proposition 44 we find that the local components of 〈cork/Q(α), (sp)〉
vanish except for possibly the component above 3.

At 3, Proposition 44(4) shows that the variation of mF ◦ s3 with s3 the 3-adic component of an adelic
section is the annihilator of 60, which is a larger space than the variation of mF ◦ sx3 for x3 ∈ S(Q3) after
Proposition 45. In particular, because

mF ◦ s[0:δ:−2] ∈ 〈60〉⊥ = ϕ(H1(Q3,T3E))⊕ 〈2, 3〉⊥,

there is a 3-adic section s3, which necessarily does not belong to a point in S(Q3), such that mF ◦ s3 lies in
the annihilator of 〈2, 3〉. Hence, if we choose this section as the 3-adic component, then the Brauer–Manin
pairing with cork/Q(α) vanishes.

Now we look at a generator of Pic(S)⊗F3, which we choose as the divisor of the homogeneous coordinate
X, so for δ = 3

√
10 we look at

D = [0 : δ : −2] + [0 : ζ3δ : −2] + [0 : ζ2
3δ : −2].

As 10 becomes a cube in Q3, we may assume δ ∈ Q3 and compute in Pic(S ⊗Q Q3)⊗ F3

D ≡ D − 3 · [0 : δ : −2] = [0 : ζ3δ : −2] + [0 : ζ2
3δ : −2]− 2 · [0 : δ : −2] = div(

X

2Y + δZ
).

Therefore the associated Brauer–Manin obstruction against adelic sections has no contribution at 3. The
summands at p 6= 3 vanish as well, because by Proposition 44(5) we may assume that the p-adic section
belongs to a p-adic point, and for those vanishing is obvious by functoriality and Pic(Q) = 0. �

One may argue that Theorem 47 misses the point, because the section conjecture does not predict that
π1(S/Q) has no section. In fact, the trouble in Theorem 47 originates from the existence of 3-adic sections
which do not come from a 3-adic point.

Following a suggestion of the referee, we define a Selmer-section to be a section s ∈ Sπ1(X/k) for a
geometrically connected variety X over a number field k such that for every place v of k the local section
s⊗ kv comes from a kv-rational point.

Corollary 48. The extension π1(S/Q) of the Selmer curve S/Q has no Selmer-section.

Proof: By definition, the set of Selmer-sections is the fibre product

Sπ1(S/Q) ×Sπ1(S/Q)(AQ) S(AQ)•

that by Theorem 15 and Proposition 17 agrees with

Sπ1(S/Q) ×Sπ1(S/Q)(AQ)Br S(AQ)Br
• .

But the proof of Theorem 46 shows that S(AQ)Br
• = ∅, so that π1(S/Q) fails to admit Selmer-sections. �

The discussion of the Selmer curve in light of the section conjecture would not be complete without
posing the following question, which the author so far is unable to decide.
Question 49. Does π1(S/Q) split?

Of course, the extension π1(S/Q) is the fibre product over GalQ of the geometrically pro-3 exten-
sion π3

1(S/Q) with the geometrically prime-to-3 extension π3′

1 (S/Q). The latter splits due to a corestric-
tion/restriction argument and by means of a point of S in a field extension of Q of degree 3. Consequently,
the splitting of π1(S/Q) is equivalent to the splitting of π3

1(S/Q).
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Appendix A. Letter from Deligne to Thakur

We reproduce the following letter by P. Deligne to D. Thakur with Deligne’s gratefully acknowledged au-
thorization.

March 7, 2005
Dear Thakur,

I thought I had a proof, but it is wrong. It contained one observation which I still like, which follows.

Let X be smooth over a ring of S-integers O of a number field F . Suppose XF /F absolutely irreducible.
If we choose an algebraic closure F̄ of F , and a geometric point x̄ of XF̄ , we get an exact sequence of
profinite groups

1→ π1(X̄)→ π1(X)→ π1(F )→ 1 (A.1)

with π1(X̄) := π1(XF̄ , x̄), π1(X) := π1(X, x̄) and π1(F ) = π1(Spec(F ),Spec(F̄ )). A point s ∈ X(F ) given
with a path, on XF̄ from s(Spec(F̄ )) to x̄, defines a splitting of (A.1), and s alone defines a π1(X̄)-conjugacy
class of splittings.

Observation: Let S be the union of the conjugacy classes of splitting of (A.1) defined by points s ∈ X(O).
The set S is equicontinuous.

In other words, for any open subgroup K of π1(X), there exists an open subgroup L of π1(F ) such that
all s ∈ S define the same composite map L→ π1(F )→ π1(X)→ π1(X)/K.

It follows from this observation that the closure S̄ of S (in the space of continuous maps from π1(F ) to
π1(X) is compact, and also that the quotient of S̄ by π1(X̄)-conjugation is compact. If X/O is proper, we
have X(F ) = X(O), and if all π1(X̄)-conjugacy classes of sections correspond one to one to points, this will
give X(F ) a compact (pro-finite) topology. I believe now that my conviction of long ago that this would
give a contradiction if X was a curve of genus ≥ 2 and if X(F ) were (denumerably) infinite was wishful
thinking.

Here is the proof of the observation.

Shrink Spec(O) such that X/O can be compactified with a relative divisor with normal crossing at
infinity.

The group π1(X̄) being finitely generated (as a profinite group), it has only a finite number of (open)
subgroups of index ≤ n. Let K be their intersection. It is an open characteristic subgroup, and π1(X̄)(n) :=
π1(X̄)/K has an order all of whose prime divisors are ≤ n. The group π1(X̄) is the projective limit of the
π1(X̄)(n). Dividing by K, we deduce from (A.1) an exact sequence

1→ π1(X̄)(n) → π1(X)(n) → π1(F )→ 1 (A.2)

A splitting of (A.1) induces a splitting of (A.2), and we will show that the splittings in S induce morphisms
π1(F )→ π1(X)(n) which are all equal on a suitable subgroup of finite index of π1(F ).

Define O(n) = O[1/n!] and π1(O(n)) = π1(Spec(O(n)),Spec(F̄ )). The sequence (A.2) is the pull back by
π1(F )→ π1(O(n)) of a sequence

1→ π1(X̄)(n) → π1(XO(n))(n) → π1(O(n))→ 1 (A.3)

where π1(O(n)) is the quotient of π1(XO(n) , x̄) by the image of K. A point s ∈ X(O) (or just X(O(n)) defines
a π1(X̄)(n)-conjugacy class of splittings of (A.3), and the splitting of (A.2) deduced from the splitting of
(A.1) in S are pull back by π1(F )→ π1(O(n)). It remains to prove the

Lemma. The set of splittings of the short exact sequence (A.3) is finite.

32



Proof: By Minkowski, π1(O(n)) has only a finite number of (open) subgroup of a given index. Let a be the
order of Aut(π1(X̄)(n)) and z the order of the center of π1(X̄)(n). Let H be the intersection of the subgroups
of π1(O(n)) of index dividing a2z. It is a subgroup of finite index, and I claim that any two sections agree
on H, a claim from which the lemma follows. Indeed, a section s defines as : π1(O(n))→ Aut(π1(X̄)(n)). If
s and t are sections, on ker(as) ∩ ker(at), s and t are with value in the centralizer of π1(X̄(n)), and differ
by an homomorphism to the center of π1(X̄)(n). The section s and t hence agree on a subgroup of index
dividing a2z, and a fortiori on H.

All the best,

P. Deligne
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