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Abstract — A family of proper smooth curves of genus ≥ 2, parametrised by an open
dense subset U of a normal variety S, extends to S if the natural map π1U → π1S is
an isomorphism. The criterion of this note is actually more precise.

1 The monodromy criterion

(1.1) All schemes are locally noetherian. For a scheme S we denote by Mg,n(S) the
groupoid of smooth, proper S-curves with geometrically connected fibres of genus g and n
disjoint ordered sections, see [Kn83]. If 2− 2g − n is negative, Mg,n is a smooth Deligne-
Mumford stack over Spec(Z). The main result of this note is the following theorem.

Theorem 1.2 (monodromy criterion I). Let 2− 2g−n be negative. For a dense open
subscheme U of a normal, excellent scheme S the following holds.

(1) The restriction functor Mg,n(S) → Mg,n(U) is fully faithful.

(2) A U -curve C ∈ Mg,n(U) extends to an S-curve in Mg,n(S) if and only if for all
N ∈ N and geometric points u ∈ U⊗Z[ 1

N ] the following commutative diagram exists,
where the solid arrows are induced by the natural maps U → Mg,n and U ⊂ S:

π1(U ⊗ Z[ 1
N ], u) //

((RRRRRRRRRRRRR
π1(Mg,n ⊗ Z[ 1

N ], Cu)

π1(S ⊗ Z[ 1
N ], u)

55

(1.3) Remarks. (a) The base point Cu of Mg,n is the isomorphy class of the fibre Cu

of C over u. The fundamental group of the stack Mg,n is the pro-finite group classifying
finite étale covers of Mg,n.

(b) We may and will assume that S and consequently U are connected. Furthermore
we may and will ignore base points. The map π1(U ⊗ Z[ 1

N ]) → π1(S ⊗ Z[ 1
N ]) is surjective

for all N , such that U ⊗ Z[ 1
N ] is not empty.
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2 2 THE OUTER MONODROMY REPRESENTATION

(c) We will discuss later that Theorem 1.2 follows from the work of Moret-Bailly and
Oda-Tamagawa in case S is regular. Thus the new contribution of the present note consists
in the case of a singular, but normal base S.
(1.4) For C,C ′ ∈ Mg,n(S) a modification to the pointed case of [DM69] Thm 1.11 shows
that the S-scheme Isom(C/S,C ′/S) is finite (unramified) over S, i.e., the stack Mg,n is a
separated Deligne–Mumford stack, see [Kn83]. Hence a U -valued point for a dense open
U of a normal scheme S extends uniquely to an S-valued point. This proves part (1) of
Theorem 1.2.

We may and will replace S by S ⊗ Z[ 1
N ] for various N ∈ N and glue afterwards using

Theorem 1.2 (1). In particular we may assume that some prime ` ∈ N is invertible in S.

Corollary 1.5. Let 2 − 2g − n be negative and let k be a field. Let U be a dense open
subscheme of a normal, connected, excellent scheme S over Spec(k).

Then a U -curve C ∈ Mg,n(U) extends to an S-curve in Mg,n(S) if and only if the
following commutative diagram exists, where the solid arrows are induced by the natural
maps U → Mg,n ⊗ k and U ⊂ S:

π1U //

""E
EEEEEEE π1(Mg,n ⊗ k)

π1S

88

�

Corollary 1.6. In the context and notation of Corollary 1.5: if π1U → π1S is an iso-
morphism, then the restriction functor Mg,n(S) → Mg,n(U) is an equivalence. �

(1.7) Remark. The motivation behind Theorem 1.2 stems from Grothendieck’s idea that
Mg,n behaves ‘anabelian’, meaning that the pro-finite étale fundamental group should
control the geometry of Mg,n. In the analytic context, the orbifold space Mg,n(C) is a
K(π, 1) space for the Teichmüller mapping class group. Hence for varieties S over C our
Theorem 1.2 is trivial up to homotopy by topological methods. But still one needs to
prove that some homotopy classes of continuous maps from S(C) to Mg,n(C) contain a
unique algebraic map extending a given map on the dense open U(C).

Nevertheless, the difference between the analytic and algebraic situation lies in the
pro-finite completion of the fundamental group. The good K(π, 1) properties only prevail
in the pro-finite setting if the mapping class group is a good group in the sense of Serre.
And this is not known.

2 The outer monodromy representation

(2.1) In what follows, L is a set of prime numbers invertible on S. Let C/S be an S-curve
in Mg,n(S). Let C0 be the notation for the open complement of its sections, and C0

s is
the fibre of C0/S over the geometric point s ∈ S. Let c be a geometric point of C0

s . The
group πL

s,c = πL
1 (C0

s , c) is the pro-L completion of π1(C0
s , c), i.e., the maximal continuous

pro-finite quotient that is a pro-L group (a pro-finite limit of groups of order a product
of powers of primes from L). The group πL

s,c is noncanonically isomorphic to the pro-L
completion πL of the topological fundamental group of an oriented topological surface of
genus g with n cusps.
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Lemma 2.2. (1) The group πL is finitely generated as a pro-finite group. (2) The groups
Aut(πL) and Out(πL) are canonically pro-finite groups. (3) If 2− 2g−n is negative, then
the center of πL is trivial.

Proof: (1) See [SGA 1] XIII 2.12. (2) A finitely generated pro-finite group is a pro-finite
limit of characteristic finite quotients. (3) See [An74] Prop 8 and Prop 18. �
(2.3) Let K denote the kernel of the map π1(C0, c) → π1(S, s) and N be its smallest
normal closed subgroup such that K/N is a pro-L group. Then N is characteristic in
K and thus also a normal subgroup of π1(C0, c). We set π

(L)
1 (C0, c) for the quotient

π1(C0, c)/N . The sequence

πL
s,c → π

(L)
1 (C0, c) → π1(S, s) → 1 (∗)

is exact by [SGA 1] XIII 4.1/4.4. Moreover, if C0/S admits a section σ, then the sequence
(∗) is even split exact by [SGA 1] XIII 4.3/4.4, the splitting being induced by the section.

1 //πL
s,σ(s)

//π
(L)
1 (C0, σ(s)) //π1(S, s)

σ
qq

//1 (∗∗)

Up to a choice of an isomorphism πL ∼= πL
s,σ(s) the corresponding outer pro-L representation

ρC/S : π1(S, s) → Out
(
πL)

induced by conjugation is independent of the section and obeys functoriality with respect
to maps f : S′ → S and base change f∗C = C ×S S′, i.e., ρf∗C/S′ = ρC/S ◦ π1f , when
regarded as an outer homomorphims (up to composition with an inner automorphism).
(2.4) Changing the isomorphism πL ∼= πL

s,σ(s) composes ρC/S by an inner automorphism
of Out(πL), thus leaving the class as an outer homomorphism unchanged. In the sequel
outer representations will be regarded as outer homomorphisms. Diagrams of outer homo-
morphisms commute if they ‘commute up to inner automorphisms’ for representatives.
(2.5) In fact, the canonical outer pro-L representation does also exist in absence of a
section by the following proposition; see [MT98] for a characteristic 0 analogue.

Proposition 2.6. Let S be a connected scheme and let C/S be an S-curve in Mg,n(S).
Let L be a set of prime numbers which are invertible on S.

(1) There is a unique outer pro-L representation ρ : π1S → Out
(
πL)

, such that for all
f : S′ → S where f∗C/S′ admits a section the following diagram commutes.

π1S
′

ρf∗C/S′
//

π1f
""D

DD
DD

DD
DD

Out
(
πL)

π1S

ρ

::uuuuuuuuu

(2) For all f : S′ → S with S′, S connected the outer pro-L representations ρ (resp. ρ′)
from (1) applied to C/S (resp. f∗C/S′) satisfy ρ′ = ρ ◦ π1f .
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Proof: (2) follows from the uniqueness in (1) which follows from (∗) and the diagonal
section of C0 ×S C0. As any base change which allows a section of C0/S factors through
pr : C0 → S, it suffices for (1) to prove that ρ′ = ρpr∗C/C0 factors through π1C

0 � π1S.
In other words, we need to descend along pr : C0 → S the pro-étale Out

(
πL)

-torsor to
which the outer map ρ′ corresponds. The criterion that guarantees this descent was given
already in terms of fundamental groups in [SGA 1] IX 5.6. Unfortunately one has to be
careful and not mix outer homomorphisms with actual homomorphisms when applying
[SGA 1] IX 5.6. So for a moment we chose various base points and an identification
πL = πL

s,c so that ρ′ is represented by an actual group homomorphism that we denote by
ρ′ as well.

For better distinction between base and total space of the curve we set S′ = C0

with base point s′ = c and S′′ = S′ ×S S′ with base point s′′ = (s′, s′). Note that
both projections pri : S′′ → S′ for i = 1, 2 respect these base points. The respective
base changes of C0/S are denoted C ′0/S′ and C ′′0/S′′ with base points c′ = (c, c) and
c′′ = (c, c, c) on the diagonals. Note that both pr∗i C

′0 for i = 1, 2 coincide canonically with
the base change of C0/S under the projection S′′ → S; hence there is only one curve over
S′′ under consideration. Finally, let p̃ri : C ′′0 → C ′0 be the corresponding projection of
total spaces lying over the map pri on the bases.

By [SGA 1] IX 5.6 in order to complete the proof we only have to show that both
pro-L representations ρ′ ◦ π1(pri) : π1(S′′, s′′) → Out

(
πL)

for i = 1, 2 coincide (as group
homomorphisms, not only outer homomorphisms). But ρ′ ◦ π1(pr1) = ρ′ ◦ π1(pr2) follows
by diagram chase from the following diagram with i = 1, 2.

1 // πL // π
(L)
1 (C ′′0, c′′) //

π1( epri)

��

π1(S′′, s′′)

π1(pri)

��

// 1

1 // πL // π
(L)
1 (C ′0, c′) // π1(S′, s′) // 1

Here it is crucial that the fibres of C ′0/S′ and C ′′0/S′′ over the base points s′ and s′′ can be
canonically identified with C0

s independently of i = 1, 2, which in essence allows to identify
the respective pro-L completed fundamental groups of the fibres with πL

s,c and ulimately
with πL. Hence the identity appears as the left vertical arrow in the above diagram.

Changing the basepoint s or changing the isomorphism πL ∼= πL
s,c affects the outer

representation ρ by composing with an inner automorphism of Out(πL). This concludes
the proof of the proposition. �

Proposition 2.7. Let 2−2g−n be negative. Let S be a connected scheme and let C/S be
an S-curve in Mg,n(S). Let L be a set of prime numbers which are invertible on S. The
following diagram has exact rows.

1 // πL
s,c

//

∼=
��

π
(L)
1 (C0, c) //

ρ̃

��

π1(S, s)

ρ

��

// 1

1 // Inn(πL) // Aut(πL) // Out(πL) // 1

The extension of groups in the upper row is induced via ρ by the extension of the lower
row.
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Proof: It suffices to prove that πL
s,c → π

(L)
1 (C0, c) is injective. For then the outer

representation ρ of Proposition 2.6 equals the conjugation action by lifts under a chosen
identification πL ∼= πL

s,c. In particular the map ρ̃ is induced by conjugation.
Let K be as above the kernel of π1(C0, c) → π1(S, s). Because ρpr∗C/C0 factors through

π1(C0, c) → π1(S, s) by Proposition 2.6, the lift ρ̃ ◦ ∆ : π1(C0, c) → Aut(πL
s,c) invoking

the diagonal section ∆ of (pr∗C)0/C0 as above and the conjugation action ρ̃ maps K to
the group of inner automorphisms Inn(πL

s,c) which is a pro-L group. In particular ρ̃ ◦ ∆

factors through a map π
(L)
1 (C0, c) → Aut(πL

s,c). The restriction of ρ̃ ◦∆ to πL
s,c coincides

with the canonical map πL
s,c
∼= Inn(πL

s,c) being induced by the diagonal section of

1 → πL
s,c → πL

s,c × πL
s,c → πL

s,c → 1 .

Here we used a pro-L product formula for π1 which is valid as all primes from L are
invertible on S. The vanishing of the center of πL, see Lemma 2.2 (3), shows that ρ̃ ◦∆
is injective on πL

s,c and thus also the injectivity of the map πL
s,c → π

(L)
1 (C0, c). �

(2.8) Remarks. (a) Let L be a set of prime numbers. We set Z[ 1
L ] for the ring of

rational numbers whose denominator only contains primes from L. The construction
of the Out(πL)-torsor in Proposition 2.6 may be applied to the universal curve above
Mg,n ⊗ Z[ 1

L ]. We obtain the universal outer pro-L representation

ρuniv : π1

(
Mg,n ⊗ Z[ 1

L ]
)

//Out(πL) .

(b) Let G be a finite group. We may fuse the Out(πL)-torsor with the Out(πL)-set
Homout

surj(π
L, G) of surjective, outer homomorphisms πL � G. We obtain a finite étale

cover GM g,n → Mg,n⊗Z[ 1
#G ] of curves that are equipped with a nonabelian Teichmüller

level structure of level G, see [DM69], [PdJ94] §2.3, [BP00]. The stack GM g,n is an open
substack of the normalisation GM g,n of the stack M g,n of stable pointed curves in the
function field of GM g,n.

For d a product of powers of primes from L and G = πL[d] := πL/[πL, πL](πL)d we
denote the space GM g,n of curves with abelian level structures of level d by Mg,n[d].

If G surjects to πL[`r] for some ` ∈ L and `r ≥ 3, then GM g,n is actually a scheme
which is projective over Spec(Z[ 1

#G ]), see [PdJ94] Prop 2.3.4 and moreover [De85] §3.
Strictly speaking [PdJ94] and [De85] only treat the proper case (n = 0), but the general
case follows along the same lines.

(c) Note that the assumption 2−2g−n < 0 in Proposition 2.7 is essential. A counterex-
ample for the case M0,2 is as follows. The complement of the sections of the P1-bundle
P(O(−1)⊕O) over P1

C equipped with the two sections 0 and ∞ is isomorphic to A2
C−{0}.

Hence it is simply connected, whereas a fibre has fundamental group isomorphic to Ẑ.
(2.9) We can formulate a second monodromy criterion for extending curves in terms of
outer representations as follows.

Theorem 2.10 (monodromy criterion II). Let 2 − 2g − n be negative. Let U be a
dense open subscheme of a normal, connected, excellent scheme S.

Let C/U be a U -curve in Mg,n(U) and let πL be as above the pro-L completion of the
complement of the sections of C/U in a geometric fibre. Then C/U extends to an S-curve
in Mg,n(S) if and only if the following commutative diagram, where the solid arrows are
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induced by the natural maps U ⊂ S and the outer pro-L representation ρ associated to
C ⊗ Z[ 1

L ]/U ⊗ Z[ 1
L ],

π1

(
U ⊗ Z[ 1

L ]
) ρ

//

((PPPPPPPPPPPP
Out

(
πL)

π1

(
S ⊗ Z[ 1

L ]
)

77

exists for one of the following collections of sets of prime numbers L and additional con-
ditions on S:

(A) L = {`} for some prime number ` and S is of characteristic 0, or

(B) L = {`1, `2} for all pairs of sufficiently large prime numbers `1, `2 and no additional
conditions on S.

(2.11) Remarks. (a) It follows from the universal outer pro-L representation ρuniv and
functoriality that Thereom 2.10 is stronger than Theorem 1.2.

(b) It is plausible though, that Theorem 2.10 also holds under the following condition
on the collection of L’s:

(C) L = {`} for some prime number ` that is invertible on S.

Indeed, assumption (B) which involves two prime numbers only comes into play to apply
results from [Ta04] in the positive characteristic situation of Theorem 4.5, where alterna-
tive proofs are not out of sight, see the remarks there.

(c) In case S is the spectrum of a henselian discrete valuation ring, Theorem 2.10, under
condition (C) above, is nothing but the criterion for good reduction of Oda–Tamagawa
[Ta97] Thm 5.3. In particular, curves satisfying either monodromy criterion above extend
into codimension 1 points of the base. It remains to deal with U ⊂ S with boundary of
codimension ≥ 2.

(d) In [MB85a] Moret-Bailly proves a purity theorem for relative curves over regular
bases S. Namely, for U open dense in a regular S with S − U of codimension at least 2,
the restriction functor Mg,n(S) → Mg,n(U) is an equivalence of categories. Moret-Bailly’s
theorem together with Oda-Tamagawa’s criterion as mentioned in (c) imply our Theorem
2.10, if the base S is regular along the boundary S \U . In fact, by Zariski–Nagata purity
for the branch locus, Moret-Bailly’s theorem is equivalent to our monodromy criteria in
the case of a regular base and codimension of the boundary at least 2.

The new contribution of the present note thus only consists in the case where S is not
regular along the boundary.

In the beginning, the proof in [MB85a] and our treatment of the monodromy criterion
Theorem 2.10 follow the same strategy while the methods to enforce isotriviality along
subvarieties, that one needs to contract, are essentially different (even in the regular case).
More precisely, [MB85a] uses first a deformation argument to reduce to bases of dimension
2 to the effect that by induction and the theory of regular surfaces it suffices to contract
rational lines. Then [MB85a] uses results on pencils of stable curves over P1.

The deformation argument is not applicable in our case where the base is only assumed
to be normal. Instead, the present note exploits a recent result of Tamagawa [Ta04] on



7

the specialisation homomorphism for the fundamental group of curves in positive charac-
teristic, see also [Säı03].

(e) The result of [MB85a] has been extended in various ways to stable or log smooth
curves by de Jong–Oort [dJO97], Mochizuki [Mz99b] and T. Saito [Sai04]. The author
believes that the monodromy criteria of this note extend to the logarithmic situation, cf.
[St05] Thm 1.2.

(f) Theorem 5.2 at the end of this note contains an extended monodromy criterion
where the open immersion U → S is replaced by a morphism of finite type.

3 Extension after modification of the base

(3.1) The rest of this note is devoted to the proof of Theorem 2.10 and thus of part (2)
of Theorem 1.2. We only need to show that a curve C/U extends if the condition on the
fundamental groups holds.
(3.2) We can use part (1) of Theorem 1.2 and étale descent for curves to work locally on
S in the étale topology. The descent is effective by the presence of a canonical, relatively
ample line bundle: the bundle of relative differentials twisted by the locus of the sections.

For example, we may replace S by a finite étale cover S′ obtained by pullback of a finite
étale cover M ′ of Mg,n⊗Z[1` ] that is induced via the universal outer pro-` representation
by a finite quotient of Out

(
π`

)
. Indeed, under the map U → Mg,n the cover M ′ pulls

back to a finite étale cover U ′ of U that extends to S′ by the condition on the π1’s.
We apply the preceeding construction to the cover Mg,n[`r] of curves with abelian level

structure of level `r ≥ 3 for some prime `.
(3.3) The first step will be to prove that if a curve in Mg,n[`r](U) satisfies the monodromy
criterion then it extends as a curve with abelian level structure to a proper modification
S′ → S which is an isomorphism over U . This part of the theorem holds unconditionally
on ` ∈ O∗

S .

Theorem 3.4 (extension after modification). Let U be an open dense subscheme in
a normal, connected, excellent scheme S, and let ` be a prime number invertible on S. Let
C/U be a U -curve in Mg,n[`r](U) endowed with an abelian level structure of level `r for
some `r ≥ 3.

If the associated outer pro-` representation factors through π1U → π1S, then there
exists a proper birational map σ : S′ → S which is an isomorphism above U , such that

(i) S′ is normal,

(ii) σ∗OS′ = OS,

(iii) the U -curve C/U extends to an S′-curve with level structure in Mg,n[`r](S′) such
that the corresponding outer pro-` representation factors through π1σ : π1S

′ → π1S.

Moreover, if also the outer pro-L representation of C/U factors through π1U → π1S for
some set of primes L invertible on S, then the correponding outer pro-L representation of
the extension over S′ factors through π1σ : π1S

′ → π1S.

Proof: The curve C/U is represented by a map fU : U → Mg,n[`r] and we need to find
a modification σ : S′ → S such that fU extends to a map f ′ : S′ → Mg,n[`r]. Let S′ be
the normalisation of the closure in S ×M g,n[`r] of the graph of fU . The first projection
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σ : S′ → S satisfies the requirements. To see this, we argue that the second projection
f ′ : S′ → M g,n[`r] actually has image contained in Mg,n[`r]. The other requirements for
σ are immediate.

Assume on the contrary that s′ ∈ S′ is mapped to f ′(s′) in the boundary. We can
find a strict henselian, discrete valuation ring R and Spec(R) → S′ with the closed point
mapping to s′ and the generic point η mapping into U ⊂ S′. The composition with f ′

yields a map Spec(R) → M g,n[`r] such that the corresponding curve over Spec(R) has
bad reduction. Since, on the other hand, the assumption on the outer pro-` representation
implies that the corresponding map π1η → π1U → Out

(
π`

)
is trivial, this contradicts the

Oda–Tamagawa criterion for good reduction, [Ta97] Thm 5.3, that was already mentioned
above in remark (2.11 (c)). �
(3.5) Remark. For g ≥ 2 and n = 0 it follows from [PdJ94] Thm 3.1.3 that Mg,n⊗Z[1` ] is
universally ramified in M g,n⊗Z[1` ] with respect to `, see also [Br79] and [Lo94]. The latter
includes a definition of universal ramification. Conjecturally Mg,n ⊗ Z[1` ] has universal
ramification in M g,n⊗Z[1` ] with respect to ` for all (g, n) with 2− 2g−n negative. There
is a proof of Theorem 3.4 based on universal ramification, see [St04] §2. This would lead
to a geometric proof based on the moduli space of the Oda–Tamagawa criterion for good
reduction as a special case of Theorem 2.10.

4 Constant maps

(4.1) To complete the proof of Theorem 2.10 it remains to prove that the map f ′ from
the proof of Theorem 3.4 factors through σ : S′ → S under the monodromy conditions
of Theorem 2.10. More precisely, the latter imply as indicated in Theorem 3.4, that the
respective outer pro-L representations π1S

′ → Out(πL) factor through π1σ : π1S
′ → π1S.

(4.2) It suffices that f ′ factorises set-theoretically as f ′ = f ◦ σ. Indeed, S carries
the quotient topology under σ, hence f is automatically continuous. Then the property
σ∗OS′ = OS is responsible for the enrichment of f to a map of (locally) ringed spaces.
(4.3) For g ≤ 2 there is nothing to prove. Indeed, Mg,n[`r] is consecutively fibred in
affine curves over M2,0[`r], M1,1[`r] or M0,3[`r] respectively. These latter moduli spaces
are affine, whereas the fibres of σ are proper. In particular Theorem 2.10 holds even under
hypothesis (C) on ` and S in these cases.
(4.4) For g > 2 and a geometric fibre F of σ, the outer pro-L representations ρ : π1F →
Out

(
πL)

of the restriction of the S′-curve to F factors through π1S for the various sets L
in question. Hence ρ is trivial.

The following Theorem 4.5 accomplishes the last step in the proof of Theorem 2.10
and thus Theorem 1.2.

Theorem 4.5. Let 2 − 2g − n be negative. Let F be a reduced, connected variety over
an algebraically closed field k. Let ϕ : F → Mg,n be a map such that the outer pro-L
representation ρ : π1F → Out

(
πL)

is the trivial homomorphism for one of the following
collections of sets of prime numbers L and additional conditions on k:

(A) L = {`} for some prime number ` and k is of characteristic 0, or

(B) L = {`1, `2} for all pairs of sufficiently large prime numbers `1, `2 invertible in k and
k is of positive characteristic.
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Then ϕ is constant in the sense that the correspondig F -curve C/F ∈ Mg,n(F ) comes by
base extension from an object in Mg,n

(
Spec(k)

)
.

(4.6) Remark. The characteristic 0 part of the above theorem follows also from the work
of Mochizuki on pro-p anabelian geometry, see [Mz99a].

Proof: Let ` be a prime in L. By assumption, the map ϕ lifts to a map ϕ̃ : F →
Mg,n[`r]. As for `r ≥ 3 the target is now a scheme, it suffices to prove that ϕ̃ is a constant
map of sets in this case.

By covering F with images of curves we may assume that F is a smooth curve. Now
we apply Theorem 3.4 to ϕ̃ : F → Mg,n[`r] and deduce that we may extend the curve to
the smooth compactification of F . Still, the outer pro-L representation is trivial for the
respective L. Hence we may assume that F is even a proper smooth curve over k.

Next we observe that Mg,n+1[`r] → Mg,n[`r] is fibred in affine curves for n ≥ 1. By
induction on n we are reduced to the cases n ≤ 1. The last step Mg,1[`r] → Mg,0[`r] is
fibred in smooth proper curves of fixed genus g. Let us assume that we have successfully
dealt with the case n = 0. Then any non constant lift corresponds to a dominant map
from F to a fibre, i.e., a smooth proper curve X/k of genus g. This curve X is the base
for the family X ×X \∆ under second projection, where ∆ is the diagonal section. By
[As96] Prop 6 and (4.4.4), the corresponding outer pro-` representation factors through
the pro-` completion and yields an injective map π`

1X → Out(π`). Hence the induced map
π1F → π`

1X is trivial by the assumption on ρ (for (g, 1)). Therefore the map F → X lifts
to any finite `-primary Galois cover of X. As the genus of such covers tends to infinity
(here g ≥ 2) this is impossible.

It remains to deal with the cases g ≥ 3 and n = 0, because the moduli spaces are affine
in the other minimal cases (2, 0), (1, 1) and (0, 3).

We fix geometric points x ∈ F and c ∈ Cx, the fibre of C/F above x. The vanishing
of the outer pro-L representation and Proposition 2.7 yield a canonical isomorphism

π
(L)
1 (C, c) = πL

x,c × π1(F, x).

The finite étale cover Cx,Φ of Cx associated to a finite set Φ with continuous πL
x,c-action is

the fibre above x of a finite étale cover CΦ → C associated to the action of π
(L)
1 (C, c) on Φ

via projection to πL
x,c. If Cx,Φ is connected, then CΦ is a family of geometrically connected

curves over F . By construction we then have canonically π
(L)
1 CΦ = πL

Φ × π1F with the
group πL

Φ = πL
1 (Cx,Φ) ⊂ πL

x,c. It follows that any CΦ/F as above with geometrically
connected fibres has constant abelian `n level structure for all n ∈ N and ` ∈ L and
therefore obeys the following theorem.

Theorem 4.7. Let B be a normal variety over an algebraically closed field k. Let ` be
invertible in k. Let C/B be a curve with constant abelian `n level structure for all n ∈ N.
Then the following holds.

(i) The relative jacobian JacC/B is radicially isogenous to a constant abelian variety.

(ii) If k has characteristic p > 0, then the p-rank of the fibres Cb of C/B is a constant
function of b ∈ B.

Proof: Part (i) follows from [Gr66] Prop. 4.4 (or [O74] Thm 2.1), the essential in-
gredients are the theory of the k-trace of abelian varieties and the relative Mordell–Weil
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Theorem of Lang–Néron. For (ii) just notice that isogenous abelian varieties have the
same p-rank. �
(4.8) We come back to the proof of Theorem 4.5. If k is of characteristic 0 then by
(i) of Theorem 4.7 the relative jacobian is constant. Thus also its canonical principal
polarization and its abelian `n level structures are constant. By Torelli’s theorem, see
[OS79], the curve C/F must be constant and we are done. It remains to deal with positive
characteristic.
(4.9) Let k have positive characteristic p. We deduce from Theorem 4.7 that all families
CΦ/F as above have constant p-rank.
(4.10) Following ideas of Raynaud (for new ordinarity), in [Ta04] Theorem 0.7, Propo-
sition 0.8, Corollary 5.3, and Theorem 0.5 Tamagawa proved the existence of prime to p
covers C ′′

x → C ′
x → Cx of Cx = C ×F x, such that C ′′

x/C ′
x is

(i) prime cyclic Galois,

(ii) new ordinary: the growth in p-rank equals the growth in genus, and

(iii) ‘new Torelli’: the infinitesimal deformation functor of C ′
x is closedly immersed in the

infinitesimal deformation functor of the new part of the relative jacobian of C ′′
x/C ′

x,
a generalised Prym variety.

A close inspection of [Ta04] shows that we may moreover assume first, that C ′
x → Cx is

`1-primary for some arbitrary but sufficiently large prime `1, and then secondly the degree
of C ′′

x/C ′
x can be chosen to be a prime `2, which is again arbitrary but sufficiently large.

It is exactly here that our approach uses the outer pro-L representations for all pairs L of
two sufficiently large prime numbers `1, `2.

By what was said above, the étale covers C ′′
x → C ′

x → Cx are isomorphic to the fibres
above x of étale covers C ′′ → C ′ → C. The cover C ′′/C ′ remains prime cyclic Galois. It
follows that the new part of the relative jacobian of the cyclic cover C ′′/C ′ is a projective
family of ordinary abelian varieties, and hence constant by a theorem of Raynaud, Szpiro
and Moret-Bailly, see [MB85b] XI Thm 5.1. Consequently, by property (iii) ‘new Torelli’
above, the deformation C ′ of C ′

x is a constant family. A priori it is constant in the sense
that all fibres are mutually isomorphic, but as C ′ carries a level structure this implies that
C ′/F is constant. The original curve C/F is a quotient of the Galois closure of C ′/C and
thus also constant, which proves Theorem 4.7. �

An application of Theorem 4.5 is the following immediate corollary.

Corollary 4.11. Let X be a reduced, connected and simply connected variety, i.e. π1X =
1, over an algebraically closed field k. Then any smooth proper curve C over X of genus g
with n disjoint sections, where 2− 2g− n is negative, is a constant family of such curves,
i.e, comes by base change from an object in Mg,n

(
Spec(k)

)
.

(4.12) Remark. In particular, Corollary 4.11 claims that there are no P1’s on Mg,n for
2 − 2g − n < 0. Note that the corresponding result for polarized abelian varieties fails.
Oort has constructed a family of abelian varieties over P2

k with image of dimension 2 in the
moduli space of polarized abelian varieties, [O74] Rmk 2.6. Moreover, the coarse moduli
space Mg of proper smooth curves behaves also different from the fine moduli space Mg

that we use in this note. Again Oort proves the existence of a complete rational curve in
Mg ⊗ k for k of positive characteristic and suitable g, [O74] Thm 3.1.
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5 Concluding remarks

(5.1) Remarks. (a) Let S be a connected local complete intersection scheme and U a
dense open in S such that S − U has codimension at least 3. In [Gr68] Exp. X Thm
3.4 Grothendieck proves that π1U → π1S is an isomorphism. Hence, if S is normal, by
Theorem 1.2 the natural functor Mg,n(S) → Mg,n(U) is an equivalence of categories.

(b) In order to yield a more natural anabelian proof of Theorem 4.5, it would be
nice if the natural map H2(π1Mg,n, Q`) → H2(Mg,n, Q`) is an isomorphism. Note that
H2(Mg,n, Q`) = Q` · c1(λ). Then Theorem 4.5 allows a quick proof exploiting the `-adic
first Chern class of the Hodge bundle λ, see [St04]. In particular, this would give a proof
of Theorem 2.10 unconditionally on ` ∈ O∗

S for all characteristics.
The isomorphism H2(π1Mg,n, Q`) ∼= H2(Mg,n, Q`) has been announced by Boggi.

Theorem 5.2 (extended monodromy criterion). Let 2 − 2g − n be negative. Let
f : U → S be a map of finte type that factorizes as f = f ◦ j where j : U → X is a dense
open immersion into a normal scheme X, and f : X → S is a proper map that satisfies
f∗OX = OS. Furthermore we assume that S is excellent. Then the following holds.

(1) The pull back functor f∗ : Mg,n(S) → Mg,n(U) is fully faithful.

(2) A U -curve C ∈ Mg,n(U) comes by base change from an S-curve in Mg,n(S) if and
only if for all N ∈ N and geometric points u ∈ U ⊗ Z[ 1

N ] the following commutative
diagram exists, where the solid arrows are induced by the natural maps U → Mg,n

and f : U → S:

π1(U ⊗ Z[ 1
N ], u) //

((RRRRRRRRRRRRR
π1(Mg,n ⊗ Z[ 1

N ], Cu)

π1(S ⊗ Z[ 1
N ], u)

55

Proof: By applying Theorem 1.2 to U ⊂ X we may assume that f is proper. Using
again the finiteness of the isom-scheme of hyperbolic curves (resp. abelian level structures
plus descent), (1) and (2) come down to the property of f : X → S that a map of schemes
h : X → T factorizes through f if and only if it is constant along the fibres of f as a map
of sets. In particular, we use again Theorem 4.5 for claim (2). �

The obvious formulation of the analogous theorem in terms of outer pro-L representa-
tions is left to the reader.
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improved the content and the presentation of this note.
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