Étale contractible varieties in positive characteristic

ARMIN HOLSCHBACH, JOHANNES SCHMIDT, AND JAKOB STIX

Abstract — Unlike in characteristic 0, there are no non-trivial smooth varieties over an algebraically closed field k of characteristic p > 0 that are contractible in the sense of étale homotopy theory.

INTRODUCTION

Homotopy theory is founded on the idea of contracting the interval, either as a space, or as an actual homotopy, i.e., a path in a space of maps. In algebraic geometry, the affine line \mathbb{A}_k^1 serves as an algebraic equivalent of the interval, at least in characteristic 0.

Matters differ in characteristic p > 0 where $\pi_1(\mathbb{A}^1_k)$ is an infinite group: a group G occurs as a finite quotient of $\pi_1(\mathbb{A}^1_k)$ precisely if G is a quasi-p group¹ due to Abhyankar's conjecture for the affine line as proven by Raynaud. This raises the question whether there is an étale contractible variety in positive characteristic.

Theorem 1. Let k be an algebraically closed field of characteristic p > 0 and let U/k be a smooth variety. Then U is étale contractible, if and only if U = Spec(k) is the point.

We recall the relevant terminology and results of étale homotopy from [AM69].

Definition 2. Let k be an algebraically closed field.

- (1) A variety U over k is (étale) contractible if the map $U_{\text{\acute{e}t}} \to \operatorname{Spec}(k)_{\text{\acute{e}t}}$ is a weak equivalence of its étale homotopy type $U_{\text{\acute{e}t}}$ with $\operatorname{Spec}(k)_{\text{\acute{e}t}}$.
- (2) A variety U over k is (étale) n-connected for an $n \in \mathbb{N}$, if its étale homotopy groups $\pi_i^{\text{ét}}(U)$ vanish for all $i \leq n$.

The étale Hurewicz and Whitehead theorems, see [AM69, §4], lead to the following equivalent characterisations. The variety U/k is contractible if and only if it is *n*-connected for all $n \in \mathbb{N}$. Moreover, for $n \geq 1$, a normal variety U/k is *n*-connected if and only if

- (i) U is connected, and
- (ii) U is simply connected: $\pi_1^{\text{ét}}(U) = 1$, and
- (iii) U is cohomologically acyclic in degrees $\leq n$: for all $0 < i \leq n$ the groups $\operatorname{H}^{i}_{\operatorname{\acute{e}t}}(U, A)$ vanish for all finite abelian groups A.

It turns out that our discussion in positive characteristic uses only H^1 and H^2 , and moreover covers more than just smooth varieties. Here is the more precise result which proves Theorem 1 because smooth varieties are locally factorial and hence locally Q-factorial everywhere.

Theorem 3. Let k be an algebraically closed field of characteristic p > 0 and let U/k be a 2-connected normal variety such that one of the following holds:

- (a) U is quasi-projective, or
- (b) U is locally \mathbb{Q} -factorial everywhere, or
- $(c) \quad \dim(U) \le 2.$

Then U has dimension 0.

Date: October 10, 2013.

Supported by DFG-Forschergruppe 1920 "Symmetrie, Geometrie und Arithmetik", Heidelberg–Darmstadt.

¹A finite group is a **quasi**-p **group** if it is generated by its p-Sylow subgroups.

More precisely, we can prove the following Theorem 4 that has Theorem 3 with the assumptions (a) or (b) as a special case. Proposition 6 shows the existence of big Cartier divisors in this case. We recall big Cartier divisors on general varieties in Section §1.

Theorem 4. Let k be an algebraically closed field of characteristic p > 0 and let U/k be a connected normal variety with a big Cartier divisor and such that

(i) the group $\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(U, \mathbb{F}_{p})$ vanishes, and

(ii) there is a prime number $\ell \neq p$ such that $\mathrm{H}^{2}_{\mathrm{\acute{e}t}}(U, \mu_{\ell}) = 0$.

Then U has dimension 0.

The proof of Theorem 3 with the assumption (c) will be completed in Section 3 for normal surfaces, the case of normal curves being covered by assumption (a).

In the proof of Theorem 4 one would like to work with a completion $U \subseteq X$ and the geometry of line bundles on U versus X. For that strategy to work, we need a completion that is locally factorial along $Y = X \setminus U$. Since in characteristic p > 0 resolution of singularities is presently absent in dimension ≥ 4 we resort to desingularisation by alterations due to de Jong. Unfortunately, the alteration typically destroys the étale contractibility assumption. The strategy consists in first deducing more *coherent* properties from étale 2-connectedness that can be transferred to the alteration.

The key difference with characteristic 0 comes from Artin–Schreier theory relating $\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(U,\mathbb{F}_{p})$ to global rational functions.

Remark 5. Some further comments on the situation in characteristic 0 in contrast to Theorem 1:

- (1) In characteristic 0 smoothness seems to be a crucial property to get an interesting classification problem. Indeed, let $k = \mathbb{C}$, then the affine cone U over any projective variety has a \mathbb{C}^* -action with the cone point $0 \in U$ as its only attracting fixed point. It follows that $U(\mathbb{C})$ is homotopy equivalent to 0, and there are far too many (singular) contractible varieties for a manageable classification.
- (2) There are contractible complex smooth surfaces other than A²_C, the first such example is due to Ramanujam [Ra71, §3], see also tom Dieck and Petrie [tDP90] for explicit equations. All of them are affine and have rational smooth projective completions.
- (3) Smooth varieties U/\mathbb{C} different from affine space $\mathbb{A}^n_{\mathbb{C}}$ but with $U(\mathbb{C})$ diffeomorphic to \mathbb{C}^n are known as exotic algebraic structures on \mathbb{C}^n . These varieties are contractible and we recommend the Bourbaki talk on \mathbb{A}^n by Kraft [Kr94], or the survey by Zaĭdenberg [Za99]. A remarkable non-affine (but quasi-affine) example U was obtained by Winkelmann [Wi90] as a quotient $U = \mathbb{A}^5/\mathbb{G}_a$ and more concretely as the complement in a smooth projective quadratic hypersurface in $\mathbb{P}^5_{\mathbb{C}}$ of the union of a hyperplane and a smooth surface.

Notation. We keep the following notation throughout the note: k will be an algebraically closed field. By definition, a variety over k is a separated scheme of finite type over k. We will denote the étale fundamental group by π_1 and its maximal abelian quotient by π_1^{ab} . The sheaf μ_{ℓ} for ℓ different from the characteristic denotes the (locally) constant sheaf of ℓ -th roots of unity.

Acknowledgments. We would like to thank Alexander Schmidt and Malte Witte for comments on an earlier version of the paper.

1. BIG DIVISORS ON VARIETIES

Recall that for a Cartier divisor D on a normal variety U/k, its **Iitaka dimension** is

$$\kappa(D) = \begin{cases} \max_{m \in \mathbb{N}(D)} \{ \dim(\varphi_{|mD|}(U)) \} & \text{if } \mathbb{N}(D) = \{ m \in \mathbb{N} ; |mD| \neq \emptyset \} \neq \emptyset, \\ -\infty & \text{otherwise.} \end{cases}$$

Here $\varphi_{|mD|}$ denotes the rational map associated to the linear system |mD|, and $\varphi_{|mD|}(U)$ denotes the closure of its image. A Cartier divisor is **big** if

$$\kappa(D) = \dim(U),$$

i.e., if $\varphi_{|mD|}$ is generically finite for $m \gg 0$. The pullback of a big divisor under a generically finite morphism is obviously big itself.

Proposition 6. Let k be an algebraically closed field and let U/k be a variety such that one of the following holds:

(a) U is quasi-projective.

(b) U is normal and locally \mathbb{Q} -factorial everywhere.

Then U has a big Cartier divisor.

Proof. Let us first assume (a). Since any ample divisor is big, the conclusion holds.

If (b) holds, then we first choose a dense affine open $V \subseteq U$ and an effective big Cartier divisor D on V by the above, since V is quasi-projective. Let $B = U \setminus V$ be the boundary, in fact a Weil-divisor since V is affine, and let D' be the Zariski closure of D as a Weil divisor on U. By assumption (b) there is an $m \geq 1$ such that mD' and mB are both effective Cartier divisors and there are sections $s_0, \ldots, s_d \in \mathrm{H}^0(V, mD)$ such that the induced map $V \to \mathbb{P}^d_k$ is generically finite. For $r \gg 0$ the sections s_i extend to sections of

$$\mathrm{H}^{0}(U, mD + mrB)$$

so that mD + mrB is the desired big Cartier divisor on U.

2. Geometry of varieties with vanishing H^1 and H^2

2.1. Line bundles. Let U be a variety over k with $\mathrm{H}^{2}_{\mathrm{\acute{e}t}}(U, \mu_{\ell}) = 0$ for some prime number ℓ different from the characteristic of k. The Kummer sequence $0 \to \mu_{\ell} \to \mathbb{G}_{m} \to \mathbb{G}_{m} \to 0$ on U yields in étale cohomology the exact sequence

$$\operatorname{Pic}(U) \xrightarrow{\ell} \operatorname{Pic}(U) \to \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(U, \mu_{\ell}) = 0.$$

So $\operatorname{Pic}(U)$ is an ℓ -divisible abelian group.

2.2. **Regular functions.** The following argument crucially depends on k being a field of positive characteristic.

Proposition 7. Let k be of characteristic p > 0 and let U/k be a connected variety such that $\pi_1^{ab}(U) \otimes \mathbb{F}_p$ is finite. Then there is no non-constant map $f: U \to \mathbb{A}^1_k$. In other words

$$\mathrm{H}^{0}(U, \mathcal{O}_{U}) = k.$$

Proof. We argue by contradiction and assume that there is a dominant map $f: U \to \mathbb{A}^1_k$. Then the induced map

$$f_*: \pi_1^{\mathrm{ab}}(U) \otimes \mathbb{F}_p \to \pi_1^{\mathrm{ab}}(\mathbb{A}^1_k) \otimes \mathbb{F}_p$$

has image of finite index in the infinite group $\pi_1^{ab}(\mathbb{A}^1_k) \otimes \mathbb{F}_p$, a contradiction.

By the tautological duality $\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(U, \mathbb{F}_{p}) = \mathrm{Hom}(\pi_{1}^{\mathrm{ab}}(U), \mathbb{F}_{p})$ the vanishing of $\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(U, \mathbb{F}_{p})$ implies the assumption of Proposition 7.

2.3. Using alterations. Clearly, the content of Sections §2.1 and §2.2 reduce the proof of Theorem 4 to the following proposition.

Proposition 8. Let k be an algebraically closed field and let U/k be a connected normal variety with a big Cartier divisor and such that

(i) $\mathrm{H}^{0}(U, \mathcal{O}_{U}) = k$, and

(ii) there is a prime number ℓ such that Pic(U) is ℓ -divisible.

Then U has dimension 0.

Proof. By [dJ96, Theorem 7.3], there exists an alteration, i.e., a generically finite projective map $h: \tilde{U} \to U$ such that \tilde{U} can be embedded into a connected smooth projective variety \tilde{X} .

Step 1: Since U is normal, the maximal open $V \subset U$ such that the restriction

$$h|_{\tilde{V}}: \tilde{V} = \pi^{-1}(V) \to V$$

is a finite map has boundary $U \setminus V$ of codimension at least 2.

The k-algebra $\mathrm{H}^{0}(\tilde{V}, \mathcal{O}_{\tilde{V}})$ is an integral domain inside the function field of \tilde{V} . The minimal polynomial for a section $s \in \mathrm{H}^{0}(\tilde{V}, \mathcal{O}_{\tilde{V}})$ with respect to the function field of V has coefficients that are regular functions on V by normality and uniqueness of the minimal polynomial. Hence these coefficients are elements of $\mathrm{H}^{0}(V, \mathcal{O}_{V}) = \mathrm{H}^{0}(U, \mathcal{O}_{U}) = k$, and so

$$\mathrm{H}^{0}(\tilde{V}, \mathcal{O}_{\tilde{V}}) = k.$$

Step 2: The Picard scheme of \tilde{X} exists by [Kl05, Theorem 4.18.2] and satisfies the theorem of the base by [Kl71, Theorem 5.1], see also [Kl05, Theorem 6.16 and Remark 6.19], namely the Néron–Severi group

$$\operatorname{NS}(\tilde{X}) = \operatorname{Pic}(\tilde{X}) / \operatorname{Pic}^{0}(\tilde{X})$$

is a finitely generated abelian group. Since the restriction map $\operatorname{Pic}(\tilde{X}) \twoheadrightarrow \operatorname{Pic}(\tilde{U})$ is surjective the induced composite map

$$h^* : \operatorname{Pic}(U) \to \operatorname{coker}\left(\operatorname{Pic}^0(\tilde{X}) \to \operatorname{Pic}(\tilde{U})\right)$$
 (2.1)

maps an ℓ -divisible group to a finitely generated abelian group, hence has finite image of order prime to ℓ .

Step 3: Let D be a big Cartier divisor on U. Since $h: \tilde{U} \to U$ is generically finite, also the divisor h^*D is a big Cartier divisor on \tilde{U} . Moreover, as in the proof of Proposition 6, there is a big divisor \tilde{D} on \tilde{X} that restricts to h^*D on \tilde{U} . Upon replacing D and \tilde{D} by a positive multiple we may assume by the finiteness of the image of the map (2.1) that \tilde{D} is algebraically and thus numerically equivalent to a divisor B on \tilde{X} that is supported in $\tilde{X} \setminus \tilde{U}$.

Since bigness on projective varieties only depends on the numerical equivalence class, see [Laz04, Corollary 2.2.8], the divisor B is also big. But by restriction to \tilde{V}

$$\bigcup_{n\geq 0} \mathrm{H}^{0}(\tilde{X}, \mathcal{O}_{\tilde{X}}(nB)) \subseteq \mathrm{H}^{0}(\tilde{V}, \mathcal{O}_{\tilde{V}}) = k$$

by Step 1 above, and we conclude that $\dim(U) = \dim(\tilde{X}) = \kappa(B) \leq 0.$

2.4. Complementing examples. We present a few examples that illustrate the assumptions in Theorem 4 or Proposition 8 or properties of the variety U in question that can easily be derived from the cohomology vanishing assumption.

2.4.1. No non-constant functions and no proper curves. If we assume that U is normal and quasi-projective and the assumptions (i) and (ii) of Proposition 8 hold, then U cannot contain a curve $C \hookrightarrow U$ that is proper over k (by arguments that are more elementary than the proof of Proposition 8). Indeed, let \mathcal{L} be an ample line bundle on U, so that deg $\mathcal{L}|_C > 0$. On the other hand, we have deg $\mathcal{L}|_C = 0$, because $\mathcal{L} \in \text{Pic}(U)$ is ℓ -divisible and zero is the only ℓ -divisible value in \mathbb{Z} , contradiction.

It is therefore tempting to raise the following question: is necessarily U = Spec(k) for a connected normal variety U/k over an algebraically closed field k such that

(i)
$$\mathrm{H}^{0}(U, \mathcal{O}_{U}) = k$$
, and

(ii) there is no non-constant map $C \to U$ from a proper smooth curve C/k?

The answer is no as the following example based on work of Totaro shows.

Example 9. Let k be the algebraic closure of \mathbb{F}_p and consider a smooth curve $D \hookrightarrow \mathbb{P}^1_k \times \mathbb{P}^1_k$ of bi-degree (2,3). Let Y be the strict transform of D in the blow-up $\sigma : X \to \mathbb{P}^1_k \times \mathbb{P}^1_k$ of 12 points on D. Let U be the complement $X \setminus Y$. For a choice of parameters (the curve D and the 12 points) in a non-empty Zariski open of the space of all parameters, Totaro shows in [To09] that

$$\mathrm{H}^{0}(U, \mathcal{O}_{U}) = \bigcup_{n \ge 0} \mathrm{H}^{0}(X, \mathcal{O}_{X}(nY)) = k$$

contains only the constants, and Y is nef. In fact, Y meets all curves except those $C \hookrightarrow X$ such that $\sigma(C)$ meets D only in a subset of the 12 points and only at most transversally. Let $\sigma(C)$ be such a curve of bi-degree (a, b) moving in a family of dimension (a + 1)(b + 1) - 1. Then $2b + 3a = (\sigma(C) \cdot Y) \leq 12$ and for generic parameters the subspace with the described intersection locus has dimension

$$d = (a+1)(b+1) - 1 - (2b+3a) = (a-1)(b-2) - 2.$$

In the range $0 < 2b + 3a \le 12$ and $a, b \ge 0$ we have d < 0 and so there are simply no such curves C for generic parameter values.

Nevertheless, this U is smooth and thus fails to be étale contractible by Theorem 1.

2.4.2. Absence of big divisors. The condition in Theorem 4 that U contains a big divisor cannot be omitted.

We first recall two facts about complete toric varieties that are standard analytically over \mathbb{C} and which have étale counterparts for toric varieties over arbitrary algebraically closed base fields, in particular of characteristic p > 0.

Lemma 10. Let k be an algebraically closed field. Any complete toric variety X/k is étale simply connected: $\pi_1(X) = 1$.

Proof. By toric resolution, see [CLS11, §11.1], there is a resolution of singularities $\tilde{X} \to X$ with a smooth projective toric variety \tilde{X} . Since \tilde{X} is rational, birational invariance of the étale fundamental group shows $\pi_1(\tilde{X}) = \pi_1(\mathbb{P}^n_k) = 1$, and the surjection $\pi_1(\tilde{X}) \twoheadrightarrow \pi_1(X)$ shows that X is étale 1-connected.

Lemma 11. Let k be an algebraically closed field of characteristic p, and let X/k be a complete toric variety. Then for all $\ell \neq p$ we have

$$\mathrm{H}^{2}_{\mathrm{\acute{e}t}}(X, \mathbb{Z}_{\ell}(1)) \simeq \mathrm{Pic}(X) \otimes \mathbb{Z}_{\ell}.$$

Proof. In the context of toric varieties over \mathbb{C} and with respect to singular cohomology this is [CLS11, Theorem 12.3.3]. The ℓ -adic case for toric varieties over an algebraically closed field k of characteristic $\neq \ell$ follows with a parallel proof.

The examples showing that a big divisor is essential in Theorem 4 come from toric geometry.

Example 12. Let U = X be a complete normal non-projective toric variety X of dimension 3 with trivial Picard group. Such toric varieties have been constructed in [Eik92, Example 3.5], or [Ful93, pp. 25–26, 65]. These sources construct X over $\mathbb C$ but the constructions work mutatis mutandis over any algebraically closed base field k. Then

- $\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(X,\mathbb{F}_{p})=0$ by Lemma 10, and (i)
- (ii) $\mathrm{H}^{2}_{\mathrm{\acute{e}t}}(X,\mathbb{Z}_{\ell}(1)) = 0$ for all $\ell \neq p$ by Lemma 11, and since there is non-trivial torsion in ℓ -adic cohomology only for finitely many primes [Ga83], we conclude that $H^2(X, \mu_{\ell}) = 0$ for almost all $\ell \neq p$.

Therefore the assumptions of Theorem 4 hold with the exception of the presence of a big Cartier divisor. Nevertheless, these toric varieties are not étale contractible since $\operatorname{H}^{\delta}_{\mathrm{\acute{e}t}}(X, \mathbb{Z}_{\ell}(3)) = \mathbb{Z}_{\ell}$.

Of course, also the geometric assumptions of Proposition $\frac{8}{8}$ hold for the above toric variety examples:

 $\mathrm{H}^{0}(X, \mathcal{O}_{X}) = k$, and (i)

 $\operatorname{Pic}(X)$ is ℓ -divisible for some prime number $\ell \neq p$, (ii)

since these were deduced from the étale cohomological vanishing without the help of a big Cartier divisor. Yet again, these examples are showing that one cannot conclude X = Spec(k)in Proposition 8 without a big Cartier divisor.

3. Normal surfaces

In this section we give a proof of Theorem 3 in the case of assumption (c) for surfaces. Not every normal surface admits a big Cartier divisor, so something needs to be done. Examples of proper normal surfaces with trivial Picard group, in particular without big divisors, can be found in [Na58] and [Sch99]. Nevertheless, a specialisation argument allows us to conclude the existence of an ample Cartier divisor on a hypothetical normal 2-contractible surface in general.

Theorem 13. There is no normal connected surface U/k over an algebraically closed field k of characteristic p > 0 such that

- (i)
- $\begin{aligned} \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(U,\mathbb{F}_{p}) &= 0, \ and \\ \mathrm{H}^{2}_{\mathrm{\acute{e}t}}(U,\mu_{\ell}) &= 0 \ for \ some \ prime \ number \ \ell \neq p. \end{aligned}$ (ii)

Proof. By Nagata's embedding theorem and resolution of singularities for surfaces, the variety U is a dense open in a normal proper surface X/k with boundary $Y = X \setminus U$ being a normal crossing divisor. In particular, the surface X is smooth in a neighbourhood of Y. By the usual limit arguments, we may choose an integral scheme S of finite type over \mathbb{F}_p together with a proper flat $f: \mathscr{X} \to S$, a relative Cartier divisor \mathscr{Y} in \mathscr{X}/S with normal crossing relative to S and complement $\mathscr{U} = \mathscr{X} \setminus \mathscr{Y}$ such that all fibres are normal proper surfaces and such that there is a point $\eta : \operatorname{Spec}(k) \to S$ over the generic point of S such that the fibre over η agrees with the original $\mathscr{X}_{\eta} = X$ together with $\mathscr{U}_{\eta} = U$ and $\mathscr{Y}_{\eta} = Y$. We may further assume that the set of irreducible components of the fibres of $\mathscr Y$ forms a constant system, and each component of \mathscr{Y} is a Cartier divisor.

It follows from [SGA4 $\frac{1}{2}$, Finitude, Theorem 1.9] that we may further assume that $\mathbf{R}^2 f|_{\mathscr{U}*}\mu_{\ell}$ is locally constant and commutes with arbitrary base change. Since its fibre in η

$$\left(\operatorname{R}^{2} f|_{\mathscr{U}_{*}} \mu_{\ell}\right)_{n} = \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(U, \mu_{\ell}) = 0$$

vanishes we conclude that for all geometric points $\bar{s} \in S$ we have $\mathrm{H}^{2}_{\mathrm{\acute{e}t}}(\mathscr{U}_{\bar{s}}, \mu_{\ell}) = 0$, where $\mathscr{U}_{\bar{s}}$ is the fibre of $\mathscr{U} \to S$ in \bar{s} . As in the proof of Theorem 4 this implies that for every Cartier divisor D on $\mathscr{X}_{\bar{s}}$ there is an $m \geq 1$ and a Cartier divisor E on $\mathscr{X}_{\bar{s}}$ supported in $\mathscr{Y}_{\bar{s}}$ such that

 $mD \equiv E$

are numerically equivalent.

We apply this insight to geometric fibres $\mathscr{X}_{\bar{t}}$ above closed points $t \in S$. Since by a theorem of Artin [Ar62, Corollary 2.11], all proper normal surfaces over the algebraic closure of a finite field are projective, we conclude that there is a very ample Cartier divisor $H_{\bar{t}}$ on $\mathscr{X}_{\bar{t}}$ with support contained in $\mathscr{Y}_{\bar{t}}$.

Let $\mathscr{H} \hookrightarrow \mathscr{X}$ be the relative Cartier divisor with support in \mathscr{Y} that specialises to $H_{\bar{t}}$. By [EGA3, Theorem 4.7.1], the divisor \mathscr{H} is ample relative to S in an open neighbourhood of $t \in S$. Consequently, the normal proper surface X is projective, and in particular U admits a big divisor. The proof now follows from Theorem 4.

Remark 14. It follows from the proof of Theorem 13 that any proper non-projective normal surface X with trivial Picard group, in particular the examples of [Na58] and [Sch99], must have $H^2_{\text{ét}}(X, \mu_{\ell}) \neq 0$ and a forteriori must contain non-trivial ℓ -torsion classes in the cohomological Brauer group Br(X) for all ℓ different from the characteristic. The existence of nontrivial torsion classes in Br(X) under the above assumptions was proven by different methods in [Sch01, proof of Theorem 4.1 on page 453].

References

- [AM69] Artin, M., Mazur, B., *Étale homotopy*, Lecture Notes in Mathematics **100**, Springer, 1969.
- [Ar62] Artin, M., Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485–496.
- [CLS11] Cox, D. A., Little, J. B., Schenck, H. K., Toric varieties, Graduate Studies in Mathematics 124, American Mathematical Society, 2011, xxiv+841 pp.
- [dJ96] de Jong, A. J., Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93.
- [EGA3] Grothendieck, A., Dieudonné, J., Éléments de géométrie algébrique III, Étude cohomologique des faisceaux cohérents I+II, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167 pp, 17 (1963), 91 pp.
- [Eik92] Eikelberg, M., The Picard group of a compact toric variety, *Results Math.*, **22** (1992), no. 1–2, 509–527.
- [Ful93] Fulton, W., Introduction to toric varieties, volume 131 of Annals of Mathematics Studies, Princeton University Press, 1993.
- [Ga83] Gabber, O., Sur la torsion dans la cohomologie l-adique d'une variété, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 3, 179–182.
- [Kl71] Kleiman, St. L., Les théorèmes de finitude pour le foncteur de Picard, Exposé XIII in SGA 6: Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Math. 225 (1971), 616–666.
- [Kl05] Kleiman, St. L., The Picard scheme, in: Fundamental algebraic geometry, 235–321, Math. Surveys Monogr., 123, Amer. Math. Soc., Providence, RI, 2005.
- [Kr94] Kraft, H., Challenging problems on affine n-space, Séminaire Bourbaki, Vol. 1994/95, Astérisque 237 (1996), Exp. 802, No. 5, 295–317.
- [Laz04] Lazarsfeld, R., Positivity in algebraic geometry I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 2004.
- [Na58] Nagata, M., Existence theorems for nonprojective complete algebraic varieties, Illinois J. Math. 2 (1958), 490–498.
- [Ra71] Ramanujam, C. P., A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69–88.
- [Sch99] Schröer, St., On non-projective normal surfaces, Manuscripta Math. 100 (1999), no. 3, 317–321.
- [Sch01] Schröer, St., There are enough Azumaya algebras on surfaces, Math. Ann. 321 (2001), no. 2, 439–454.
- $[SGA4\frac{1}{2}]$ Deligne, P., Cohomologie étale $(SGA4\frac{1}{2})$, Lecture Notes in Mathematics 569, Springer, 1977.
- [tDP90] tom Dieck, T., Petrie, T., Contractible affine surfaces of Kodaira dimension one, Japan. J. Math. (N.S.) 16 (1990), no. 1, 147–169.
- [To09] Totaro, B., Moving codimension-one subvarieties over finite fields, Amer. J. Math. 131 (2009), no. 6, 1815–1833.
- [Wi90] Winkelmann, J., On free holomorphic \mathbb{C} -actions on \mathbb{C}^n and homogeneous Stein manifolds, *Math. Ann.* **286** (1990), 593–612.
- [Za99] Zaĭdenberg, M., Exotic algebraic structures on affine spaces, (Russian) Algebra i Analiz 11 (1999), no. 5, 3–73; translation in St. Petersburg Math. J. 11 (2000), no. 5, 703–760.

Armin Holschbach, Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

 $E\text{-}mail\ address:\ \texttt{holschbach@mathi.uni-heidelberg.de}$

Johannes Schmidt, Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

E-mail address: jschmidt@mathi.uni-heidelberg.de

JAKOB STIX, MATCH - MATHEMATISCHES INSTITUT, UNIVERSITÄT HEIDELBERG, IM NEUENHEIMER FELD 288, 69120 HEIDELBERG, GERMANY

E-mail address: stix@mathi.uni-heidelberg.de