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Abstract — Unlike in characteristic 0, there are no non-trivial smooth varieties over
an algebraically closed field k of characteristic p > 0 that are contractible in the sense
of étale homotopy theory.

Introduction

Homotopy theory is founded on the idea of contracting the interval, either as a space, or as
an actual homotopy, i.e., a path in a space of maps. In algebraic geometry, the affine line A1

k
serves as an algebraic equivalent of the interval, at least in characteristic 0.

Matters differ in characteristic p > 0 where π1(A1
k) is an infinite group: a group G occurs as a

finite quotient of π1(A1
k) precisely if G is a quasi-p group1 due to Abhyankar’s conjecture for the

affine line as proven by Raynaud. This raises the question whether there is an étale contractible
variety in positive characteristic.

Theorem 1. Let k be an algebraically closed field of characteristic p > 0 and let U/k be a
smooth variety. Then U is étale contractible, if and only if U = Spec(k) is the point.

We recall the relevant terminology and results of étale homotopy from [AM69].

Definition 2. Let k be an algebraically closed field.
(1) A variety U over k is (étale) contractible if the map Uét → Spec(k)ét is a weak equiva-

lence of its étale homotopy type Uét with Spec(k)ét.
(2) A variety U over k is (étale) n-connected for an n ∈ N, if its étale homotopy groups

πét
i (U) vanish for all i ≤ n.

The étale Hurewicz and Whitehead theorems, see [AM69, §4], lead to the following equivalent
characterisations. The variety U/k is contractible if and only if it is n-connected for all n ∈ N.
Moreover, for n ≥ 1, a normal variety U/k is n-connected if and only if
(i) U is connected, and
(ii) U is simply connected: πét

1 (U) = 1, and
(iii) U is cohomologically acyclic in degrees ≤ n: for all 0 < i ≤ n the groups Hi

ét(U,A) vanish
for all finite abelian groups A.

It turns out that our discussion in positive characteristic uses only H1 and H2, and moreover
covers more than just smooth varieties. Here is the more precise result which proves Theorem 1
because smooth varieties are locally factorial and hence locally Q-factorial everywhere.

Theorem 3. Let k be an algebraically closed field of characteristic p > 0 and let U/k be a
2-connected normal variety such that one of the following holds:
(a) U is quasi-projective, or
(b) U is locally Q-factorial everywhere, or
(c) dim(U) ≤ 2.
Then U has dimension 0.
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1A finite group is a quasi-p group if it is generated by its p-Sylow subgroups.
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More precisely, we can prove the following Theorem 4 that has Theorem 3 with the assump-
tions (a) or (b) as a special case. Proposition 6 shows the existence of big Cartier divisors in
this case. We recall big Cartier divisors on general varieties in Section §1.

Theorem 4. Let k be an algebraically closed field of characteristic p > 0 and let U/k be a
connected normal variety with a big Cartier divisor and such that
(i) the group H1

ét(U,Fp) vanishes, and
(ii) there is a prime number ` 6= p such that H2

ét(U, µ`) = 0.
Then U has dimension 0.

The proof of Theorem 3 with the assumption (c) will be completed in Section 3 for normal
surfaces, the case of normal curves being covered by assumption (a).

In the proof of Theorem 4 one would like to work with a completion U ⊆ X and the ge-
ometry of line bundles on U versus X. For that strategy to work, we need a completion that
is locally factorial along Y = X \ U . Since in characteristic p > 0 resolution of singularities
is presently absent in dimension ≥ 4 we resort to desingularisation by alterations due to de
Jong. Unfortunately, the alteration typically destroys the étale contractibility assumption. The
strategy consists in first deducing more coherent properties from étale 2-connectedness that can
be transferred to the alteration.

The key difference with characteristic 0 comes from Artin–Schreier theory relating H1
ét(U,Fp)

to global rational functions.

Remark 5. Some further comments on the situation in characteristic 0 in contrast to Theorem 1:
(1) In characteristic 0 smoothness seems to be a crucial property to get an interesting clas-

sification problem. Indeed, let k = C, then the affine cone U over any projective variety
has a C∗-action with the cone point 0 ∈ U as its only attracting fixed point. It follows
that U(C) is homotopy equivalent to 0, and there are far too many (singular) contractible
varieties for a manageable classification.

(2) There are contractible complex smooth surfaces other than A2
C, the first such example is

due to Ramanujam [Ra71, §3], see also tom Dieck and Petrie [tDP90] for explicit equations.
All of them are affine and have rational smooth projective completions.

(3) Smooth varieties U/C different from affine space AnC but with U(C) diffeomorphic to Cn
are known as exotic algebraic structures on Cn. These varieties are contractible and we
recommend the Bourbaki talk on An by Kraft [Kr94], or the survey by Zăıdenberg [Za99].
A remarkable non-affine (but quasi-affine) example U was obtained by Winkelmann [Wi90]
as a quotient U = A5/Ga and more concretely as the complement in a smooth projective
quadratic hypersurface in P5

C of the union of a hyperplane and a smooth surface.

Notation. We keep the following notation throughout the note: k will be an algebraically closed
field. By definition, a variety over k is a separated scheme of finite type over k. We will denote
the étale fundamental group by π1 and its maximal abelian quotient by πab

1 . The sheaf µ` for `
different from the characteristic denotes the (locally) constant sheaf of `-th roots of unity.

Acknowledgments. We would like to thank Alexander Schmidt and Malte Witte for comments
on an earlier version of the paper.

1. Big divisors on varieties

Recall that for a Cartier divisor D on a normal variety U/k, its Iitaka dimension is

κ(D) =

{
maxm∈N(D){dim(ϕ|mD|(U))} if N(D) = {m ∈ N ; |mD| 6= ∅} 6= ∅,

−∞ otherwise.



Étale contractible varieties in positive characteristic 3

Here ϕ|mD| denotes the rational map associated to the linear system |mD|, and ϕ|mD|(U) denotes
the closure of its image. A Cartier divisor is big if

κ(D) = dim(U),

i.e., if ϕ|mD| is generically finite for m � 0. The pullback of a big divisor under a generically
finite morphism is obviously big itself.

Proposition 6. Let k be an algebraically closed field and let U/k be a variety such that one of
the following holds:

(a) U is quasi-projective.
(b) U is normal and locally Q-factorial everywhere.

Then U has a big Cartier divisor.

Proof. Let us first assume (a). Since any ample divisor is big, the conclusion holds.
If (b) holds, then we first choose a dense affine open V ⊆ U and an effective big Cartier divisor

D on V by the above, since V is quasi-projective. Let B = U \ V be the boundary, in fact a
Weil-divisor since V is affine, and let D′ be the Zariski closure of D as a Weil divisor on U . By
assumption (b) there is an m ≥ 1 such that mD′ and mB are both effective Cartier divisors
and there are sections s0, . . . , sd ∈ H0(V,mD) such that the induced map V → Pdk is generically
finite. For r � 0 the sections si extend to sections of

H0(U,mD +mrB)

so that mD +mrB is the desired big Cartier divisor on U . �

2. Geometry of varieties with vanishing H1 and H2

2.1. Line bundles. Let U be a variety over k with H2
ét(U, µ`) = 0 for some prime number `

different from the characteristic of k. The Kummer sequence 0 → µ` → Gm → Gm → 0 on U
yields in étale cohomology the exact sequence

Pic(U)
`−→ Pic(U)→ H2

ét(U, µ`) = 0.

So Pic(U) is an `-divisible abelian group.

2.2. Regular functions. The following argument crucially depends on k being a field of positive
characteristic.

Proposition 7. Let k be of characteristic p > 0 and let U/k be a connected variety such that
πab

1 (U)⊗ Fp is finite. Then there is no non-constant map f : U → A1
k. In other words

H0(U,OU ) = k.

Proof. We argue by contradiction and assume that there is a dominant map f : U → A1
k. Then

the induced map

f∗ : πab
1 (U)⊗ Fp → πab

1 (A1
k)⊗ Fp

has image of finite index in the infinite group πab
1 (A1

k)⊗ Fp, a contradiction. �

By the tautological duality H1
ét(U,Fp) = Hom(πab

1 (U),Fp) the vanishing of H1
ét(U,Fp) implies

the assumption of Proposition 7.



4 ARMIN HOLSCHBACH, JOHANNES SCHMIDT, AND JAKOB STIX

2.3. Using alterations. Clearly, the content of Sections §2.1 and §2.2 reduce the proof of
Theorem 4 to the following proposition.

Proposition 8. Let k be an algebraically closed field and let U/k be a connected normal variety
with a big Cartier divisor and such that

(i) H0(U,OU ) = k, and
(ii) there is a prime number ` such that Pic(U) is `-divisible.

Then U has dimension 0.

Proof. By [dJ96, Theorem 7.3], there exists an alteration, i.e, a generically finite projective map
h : Ũ → U such that Ũ can be embedded into a connected smooth projective variety X̃.

Step 1: Since U is normal, the maximal open V ⊂ U such that the restriction

h|Ṽ : Ṽ = π−1(V )→ V

is a finite map has boundary U \ V of codimension at least 2.
The k-algebra H0(Ṽ ,OṼ ) is an integral domain inside the function field of Ṽ . The minimal

polynomial for a section s ∈ H0(Ṽ ,OṼ ) with respect to the function field of V has coefficients
that are regular functions on V by normality and uniqueness of the minimal polynomial. Hence
these coefficients are elements of H0(V,OV ) = H0(U,OU ) = k, and so

H0(Ṽ ,OṼ ) = k.

Step 2: The Picard scheme of X̃ exists by [Kl05, Theorem 4.18.2] and satisfies the theorem
of the base by [Kl71, Theorem 5.1], see also [Kl05, Theorem 6.16 and Remark 6.19], namely the
Néron–Severi group

NS(X̃) = Pic(X̃)/Pic0(X̃)

is a finitely generated abelian group. Since the restriction map Pic(X̃) � Pic(Ũ) is surjective
the induced composite map

h∗ : Pic(U)→ coker
(

Pic0(X̃)→ Pic(Ũ)
)

(2.1)

maps an `-divisible group to a finitely generated abelian group, hence has finite image of order
prime to `.

Step 3: Let D be a big Cartier divisor on U . Since h : Ũ → U is generically finite, also the
divisor h∗D is a big Cartier divisor on Ũ . Moreover, as in the proof of Proposition 6, there is a
big divisor D̃ on X̃ that restricts to h∗D on Ũ . Upon replacing D and D̃ by a positive multiple
we may assume by the finiteness of the image of the map (2.1) that D̃ is algebraically and thus
numerically equivalent to a divisor B on X̃ that is supported in X̃ \ Ũ .

Since bigness on projective varieties only depends on the numerical equivalence class, see
[Laz04, Corollary 2.2.8], the divisor B is also big. But by restriction to Ṽ⋃

n≥0

H0(X̃,OX̃(nB)) ⊆ H0(Ṽ ,OṼ ) = k

by Step 1 above, and we conclude that dim(U) = dim(X̃) = κ(B) ≤ 0. �

2.4. Complementing examples. We present a few examples that illustrate the assumptions
in Theorem 4 or Proposition 8 or properties of the variety U in question that can easily be
derived from the cohomology vanishing assumption.
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2.4.1. No non-constant functions and no proper curves. If we assume that U is normal and
quasi-projective and the assumptions (i) and (ii) of Proposition 8 hold, then U cannot contain
a curve C ↪→ U that is proper over k (by arguments that are more elementary than the proof of
Proposition 8). Indeed, let L be an ample line bundle on U , so that degL|C > 0. On the other
hand, we have degL|C = 0, because L ∈ Pic(U) is `-divisible and zero is the only `-divisible
value in Z, contradiction.

It is therefore tempting to raise the following question: is necessarily U = Spec(k) for a
connected normal variety U/k over an algebraically closed field k such that
(i) H0(U,OU ) = k, and
(ii) there is no non-constant map C → U from a proper smooth curve C/k?
The answer is no as the following example based on work of Totaro shows.

Example 9. Let k be the algebraic closure of Fp and consider a smooth curve D ↪→ P1
k × P1

k of
bi-degree (2, 3). Let Y be the strict transform of D in the blow-up σ : X → P1

k×P1
k of 12 points

on D. Let U be the complement X \ Y . For a choice of parameters (the curve D and the 12
points) in a non-empty Zariski open of the space of all parameters, Totaro shows in [To09] that

H0(U,OU ) =
⋃
n≥0

H0(X,OX(nY )) = k

contains only the constants, and Y is nef. In fact, Y meets all curves except those C ↪→ X
such that σ(C) meets D only in a subset of the 12 points and only at most transversally. Let
σ(C) be such a curve of bi-degree (a, b) moving in a family of dimension (a + 1)(b + 1) − 1.
Then 2b + 3a = (σ(C) · Y ) ≤ 12 and for generic parameters the subspace with the described
intersection locus has dimension

d = (a+ 1)(b+ 1)− 1− (2b+ 3a) = (a− 1)(b− 2)− 2.

In the range 0 < 2b+ 3a ≤ 12 and a, b ≥ 0 we have d < 0 and so there are simply no such curves
C for generic parameter values.

Nevertheless, this U is smooth and thus fails to be étale contractible by Theorem 1.

2.4.2. Absence of big divisors. The condition in Theorem 4 that U contains a big divisor cannot
be omitted.

We first recall two facts about complete toric varieties that are standard analytically over
C and which have étale counterparts for toric varieties over arbitrary algebraically closed base
fields, in particular of characteristic p > 0.

Lemma 10. Let k be an algebraically closed field. Any complete toric variety X/k is étale simply
connected: π1(X) = 1.

Proof. By toric resolution, see [CLS11, §11.1], there is a resolution of singularities X̃ → X

with a smooth projective toric variety X̃. Since X̃ is rational, birational invariance of the étale
fundamental group shows π1(X̃) = π1(Pnk) = 1, and the surjection π1(X̃) � π1(X) shows that
X is étale 1-connected. �

Lemma 11. Let k be an algebraically closed field of characteristic p, and let X/k be a complete
toric variety. Then for all ` 6= p we have

H2
ét(X,Z`(1)) ' Pic(X)⊗ Z`.

Proof. In the context of toric varieties over C and with respect to singular cohomology this is
[CLS11, Theorem 12.3.3]. The `-adic case for toric varieties over an algebraically closed field k
of characteristic 6= ` follows with a parallel proof. �

The examples showing that a big divisor is essential in Theorem 4 come from toric geometry.
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Example 12. Let U = X be a complete normal non-projective toric variety X of dimension 3
with trivial Picard group. Such toric varieties have been constructed in [Eik92, Example 3.5],
or [Ful93, pp. 25–26, 65]. These sources construct X over C but the constructions work mutatis
mutandis over any algebraically closed base field k. Then
(i) H1

ét(X,Fp) = 0 by Lemma 10, and
(ii) H2

ét(X,Z`(1)) = 0 for all ` 6= p by Lemma 11, and since there is non-trivial torsion in
`-adic cohomology only for finitely many primes [Ga83], we conclude that H2(X,µ`) = 0
for almost all ` 6= p.

Therefore the assumptions of Theorem 4 hold with the exception of the presence of a big Cartier
divisor. Nevertheless, these toric varieties are not étale contractible since H6

ét(X,Z`(3)) = Z`.
Of course, also the geometric assumptions of Proposition 8 hold for the above toric variety

examples:
(i) H0(X,OX) = k, and
(ii) Pic(X) is `-divisible for some prime number ` 6= p,
since these were deduced from the étale cohomological vanishing without the help of a big
Cartier divisor. Yet again, these examples are showing that one cannot conclude X = Spec(k)
in Proposition 8 without a big Cartier divisor.

3. Normal surfaces

In this section we give a proof of Theorem 3 in the case of assumption (c) for surfaces. Not
every normal surface admits a big Cartier divisor, so something needs to be done. Examples
of proper normal surfaces with trivial Picard group, in particular without big divisors, can be
found in [Na58] and [Sch99]. Nevertheless, a specialisation argument allows us to conclude the
existence of an ample Cartier divisor on a hypothetical normal 2-contractible surface in general.

Theorem 13. There is no normal connected surface U/k over an algebraically closed field k of
characteristic p > 0 such that
(i) H1

ét(U,Fp) = 0, and
(ii) H2

ét(U, µ`) = 0 for some prime number ` 6= p.

Proof. By Nagata’s embedding theorem and resolution of singularities for surfaces, the variety
U is a dense open in a normal proper surface X/k with boundary Y = X \ U being a normal
crossing divisor. In particular, the surface X is smooth in a neighbourhood of Y . By the usual
limit arguments, we may choose an integral scheme S of finite type over Fp together with a
proper flat f : X → S, a relative Cartier divisor Y in X /S with normal crossing relative to
S and complement U = X \ Y such that all fibres are normal proper surfaces and such that
there is a point η : Spec(k) → S over the generic point of S such that the fibre over η agrees
with the original Xη = X together with Uη = U and Yη = Y . We may further assume that the
set of irreducible components of the fibres of Y forms a constant system, and each component
of Y is a Cartier divisor.

It follows from [SGA41
2 , Finitude, Theorem 1.9] that we may further assume that R2 f |U ∗µ`

is locally constant and commutes with arbitrary base change. Since its fibre in η(
R2 f |U ∗µ`

)
η

= H2
ét(U, µ`) = 0

vanishes we conclude that for all geometric points s̄ ∈ S we have H2
ét(Us̄, µ`) = 0, where Us̄ is

the fibre of U → S in s̄. As in the proof of Theorem 4 this implies that for every Cartier divisor
D on Xs̄ there is an m ≥ 1 and a Cartier divisor E on Xs̄ supported in Ys̄ such that

mD ≡ E

are numerically equivalent.
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We apply this insight to geometric fibres Xt̄ above closed points t ∈ S. Since by a theorem of
Artin [Ar62, Corollary 2.11], all proper normal surfaces over the algebraic closure of a finite field
are projective, we conclude that there is a very ample Cartier divisor Ht̄ on Xt̄ with support
contained in Yt̄.

Let H ↪→ X be the relative Cartier divisor with support in Y that specialises to Ht̄. By
[EGA3, Theorem 4.7.1], the divisor H is ample relative to S in an open neighbourhood of
t ∈ S. Consequently, the normal proper surface X is projective, and in particular U admits a
big divisor. The proof now follows from Theorem 4. �

Remark 14. It follows from the proof of Theorem 13 that any proper non-projective normal
surface X with trivial Picard group, in particular the examples of [Na58] and [Sch99], must have
H2

ét(X,µ`) 6= 0 and a forteriori must contain non-trivial `-torsion classes in the cohomological
Brauer group Br(X) for all ` different from the characteristic. The existence of nontrivial torsion
classes in Br(X) under the above assumptions was proven by different methods in [Sch01, proof
of Theorem 4.1 on page 453].
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