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Abstract

We study sufficient conditions for Hamiltonian cycles in hypergraphs and obtain
both Turán- and Dirac-type results. While the Turán-type result gives an exact
threshold for the appearance of a Hamiltonian cycle in a hypergraph depending
only on the extremal number of a certain path, the Dirac-type result yields just a
sufficient condition relying solely on the minimum vertex degree.
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1 Introduction and Results

1.1 Turán-type Results

For a fixed graph G we say that the extremal number ex (n,G) of G is the
largest integer m such that there exists a graph on n vertices with m edges
that does not contain a subgraph isomorphic to G. The corresponding graphs
are called extremal graphs. Naturally, one can extend this definition to a
forbidden spanning structure, e.g. a Hamiltonian cycle (a cycle of length n).
In [5] Ore proved that a non-Hamiltonian graph on n vertices has at most(

n−1
2

)
+ 1 edges, and further, that the unique extremal example is given by an
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(n− 1)-clique and a vertex of degree one that is adjacent to one vertex of the
clique.

A k-uniform hypergraph H, or k-graph for short, is a pair (V,E) with a
vertex set V = V (H) and an edge set E = E(H) ⊆

(
V
k

)
.

There are several definitions of Hamiltonian cycles in hypergraphs, e.g.
Berge Hamiltonian cycles [1]. This note yet follows the definition of Hamilto-
nian cycles established by Katona and Kierstead [4].

An l-tight Hamiltonian cycle in H, 0 ≤ l ≤ k − 1, (k − l)|n, is a spanning
sub-k-graph whose vertices can be cyclically ordered in such a way that the
edges are segments of that ordering and every two consecutive edges intersect
in exactly l vertices. We denote an l-tight Hamiltonian cycle in a k-graph H
on n vertices by C

(k,l)
n , and call the cycle tight if it is (k − 1)-tight.

Working on her thesis [9] in coding theory, Woitas raised the question
whether removing

(
n−2

2

)
− 1 edges from a complete 3-uniform hypergraph on

n vertices leaves a hypergraph containing a 1-tight Hamiltonian cycle. A gene-
ralization of this problem is to estimate the extremal numbers of Hamiltonian
cycles in k-graphs.

Katona and Kierstead were the first to study sufficient conditions for the
appearance of a C

(k,k−1)
n in k-graphs. In [4] they showed that for all integers

k and n with k ≥ 2 and 2k − 1 ≤ n,

ex
(
n,C(k,k−1)

n

)
≥

(
n− 1

k

)
+

(
n− 2

k − 2

)
.

In [8] Tuza proved the bound

ex
(
n,C(k,k−1)

n

)
≥

(
n− 1

k

)
+ p

(
n− 1

k − 2

)
for all k, n and p such that a partial Steiner system PS(k− 2, 2k− 3, n− 1) of
order n− 1 with p

(
n−1
k−2

)
/
(
2k−3
k−2

)
blocks exists, generalizing the result from [4].

An intuitive approach to forbid Hamiltonian cycles in hypergraphs is to
prohibit certain structures in the link of one fixed vertex. For a vertex v ∈ V ,
we define the link of v in H to be the (k − 1)-graph H(v) = (V \{v}, Ev) with
{x1, . . . , xk−1} ∈ Ev iff {v, x1, . . . , xk−1} ∈ E(H).

The structure of interest in our case is a generalization of a path for hy-
pergraphs. An l-tight k-uniform t-path, denoted by P

(k,l)
t , is a k-graph on t

vertices, (k − l) | (t − l), such that there exists an ordering of the vertices,
in such a way that the edges are segments of that ordering and every two
consecutive edges intersect in exactly l vertices. Observe that a P

(k,l)
t has t−l

k−l



edges. A k-uniform (k − 1)-tight path is called tight.

For arbitrary k and l we give the exact extremal number and the extremal
graphs of l-tight Hamiltonian cycles in this note. The extremal number and
the extremal graphs rely on the extremal number of P (k, l) := P

(k−1,l−1)

b k
k−lc(k−l)+l−1

and its extremal graphs, respectively.

Theorem 1.1 For any k ≥ 2, l ∈ {0, . . . , k − 1} there exists an n0 such that
for any n ≥ n0 and (k − l)|n,

ex
(
n,C(k,l)

n

)
=

(
n− 1

k

)
+ ex (n− 1, P (k, l))

holds. Furthermore, any extremal k-graph on n vertices contains an (n − 1)-
clique and a vertex whose link forms a P (k, l)-extremal (k − 1)-graph.

For example, in the case k = 3 and l = 1, the theorem above answers
the question of Woitas and shows that any C

(3,1)
n -extremal hypergraph on n

vertices consists of a clique K
(3)
n−1 and an isolated vertex. Moreover, in the case

k = 3 and l = 2, the C
(3,2)
n -extremal hypergraphs consists of a clique K

(3)
n−1

and a vertex whose link graph is extremal for path of length 3. Note that
this gives the extremal number for C

(3,2)
n to be

(
n−1

3

)
+ n− 1 if 3|(n− 1), and(

n−1
3

)
+ n− 2 otherwise.

1.2 Dirac-type Results

The problem of finding Hamiltonian cycles and perfect matchings in graphs
has been studied very intensively. There are plenty beautiful conditions guar-
anteeing the existence of such cycles, e.g. Dirac’s condition [2].

Over the last couple of years several Dirac-type results in hypergraphs were
shown, and along with them, different definitions of degree in a k-graph were
introduced. They all can be captured by the following definition. The degree
of {x1, . . . , xi}, 1 ≤ i ≤ k − 1, in a k-graph H is the number of edges the set
is contained in and is denoted by deg(x1, . . . , xi). Let

δd(H) := min{deg(x1, . . . , xd)|{x1, . . . , xd} ⊂ V (H)}

for 0 ≤ d ≤ k−1. If the graph is clear from the context, we omit H and write
for short δd. Note that δ0 = e(H) := |E(H)| and δ1 is the minimum vertex
degree in H.

Following the definitions of Rödl and Ruciński in [6], denote for every d, k, l
and n with 0 ≤ d ≤ k−1 and (k− l)|n the number hl

d(k, n) to be the smallest



integer h such that every n-vertex k-graph H satisfying δd(H) ≥ h contains

an l-tight Hamiltonian cycle. Observe that hl
0(k, n) = ex

(
n,C

(k,l)
n

)
+ 1.

For further information, an excellent survey of the recent results can be
found in [6].

Noting the fact that there are virtually no results on hl
d(k, n) for d ≤ k−2,

Rödl and Ruciński remarked in [6] that it does not even seem completely trivial
to show h2

1(3, n) ≤ c
(

n−1
2

)
for some constant c < 1. Further, they mentioned

the bound h2
1(3, n) ≤

(
11
12

+ o(1)
) (

n−1
2

)
.

We show the following general upper bound on hk−1
1 (k, n).

Theorem 1.2 For any k ∈ N there exists an n0 such that every k-graph

H on n ≥ n0 vertices with δ1 ≥
(

1− 1

22(1280k3)k−1

) (
n−1
k−1

)
contains a tight

Hamiltonian cycle.

Note that Theorem 1.2 implies hl
d(k, n) ≤

(
1− 1

22(1280k3)k−1

) (
n−d
k−d

)
for all

l ∈ {0, . . . , k − 1} and all 1 ≤ d ≤ k − 1. This shows that there exists a
constant c < 1 such that for all l, d it holds that hl

d(k, n) ≤ c
(

n−d
k−d

)
, although

the constant we show is clearly far from being optimal.

2 Outline of the Proofs

Suppose H = (V,E) is a k-graph on n vertices, n sufficiently large, with at
least (

n− 1

k

)
+ ex (n− 1, P (k, l))

edges and no vertex with a P (k, l)-free link. Then the vertex set can be
partitioned into two sets V = V ′ ∪ V ” with |V ′| = n′ and V ′′ = {v1, . . . , vt}
such that

δ1 (H ′) ≥ (1− ε)
(

n′

k − 1

)
(1)

with H ′ = H[V ′] and ε > 0 being some carefully chosen constant depending
only on k. To obtain V ′, we iteratively delete vertices v1, . . . , vt of minimum
degree from H till the δ1-condition (1) holds. Counting the non-edges one
observes that t ≤ 2

ε
.

By an end of a path P
(k,l)
t we mean the tuple consisting of its first k − 1

vertices, (x1, . . . , xk−1), or the tuple consisting of its last k − 1 vertices in
reverse order, (xt, . . . , xt−k+2), considering the ordered vertices. For an i-tuple
(x1, . . . , xi) in H we write xi, 1 ≤ i ≤ n. We call xk−1 good if all xis are



pairwise distinct and for all i ∈ {1, . . . , k − 1} it holds that

deg(x1, . . . , xi) ≥
(
1− %k−i

) (
n− i
k − i

)
, (2)

where % again depends on ε and k only. A path is called good if both of its
ends are good.

In the following we give a brief overview over the structure of the proofs
of Theorems 1.1 and 1.2, along with some more definitions. The main idea
is to utilize the notion of absorbers and connectors (the so-called absorbing
technique) that was originally developed by Rödl, Ruciński and Szemerédi [7].

i. At first, we prove the existence of a set S of one l-tight good path or
several vertex-disjoint good tight paths containing the vertices from V ′′.
(Actually one does not need this step in the proof of Theorem 1.2.)

ii. We say that a tuple x2k−2 absorbs a vertex v ∈ V if both
x2k−2 and (x1, . . . , xk−1, v, xk, . . . , x2k−2) induce good paths in H,
meaning that the corresponding ordering of the paths is x2k−2 or
(x1, . . . , xk−1, v, xk, . . . , x2k−2), respectively, and the ends are good. We
prove the existence of a set A of linear size, providing that any remaining
vertex from V ′ can be absorbed by linearly many tuples of A. We call
an element of A an absorber.

iii. For xi,yj ∈ V k−1 we define xi × yj = (x1, . . . , xi, y1, . . . , yj). Let xk−1

and yk−1 be good. We say that a tuple zk−1 connects xk−1 with yk−1

if (xk−1, . . . , x1)× zk−1 × yk−1 induces a path in H with respect to the
order. Notice that the connecting-operation is not symmetric. We prove
the existence of a set C such that any pair of good (k − 1)-tuples in H ′

can be connected by linearly many elements of C. We call the elements
of C connectors.

iv. We modify A and C such that A, C and S are pairwise vertex-disjoint.

v. We create a good tight path that contains all elements of the modified
A, respecting their ordering.

vi. We extend the path from Step v until it covers almost all of the remaining
vertices that do not participate in the modified C and S.

vii. Using connectors, we create a cycle containing the path(s) from S and
the good path from Step vi .

viii. In the final step all remaining vertices are absorbed by the absorbers in
the cycle.



For the full details we refer the reader to our paper [3].

3 Concluding Remarks

In general, we conjecture that an extremal graph of any bounded spanning
structure consists of an (n− 1)-clique and a further extremal graph.

Conjecture 3.1 For any k ∈ N there exists an n0 such that for every k-graph
H on n ≥ n0 vertices without a spanning subgraph isomorphic to a forbidden
hypergraph F of bounded maximum vertex degree,

|e(H)| ≤
(
n− 1

k

)
+ ex (n− 1, {F (v) : v ∈ V })

holds, and the bound is tight.
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