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Introduction

Mathematical Analysis of Algorithms is the field where characteristic parame-
ters of algorithms are studied under a suitable probabilistic model. Most signifi-
cant parameters of an algorithm are its running time and the amount of storage
needed. The stochastic component arises by modeling the (unknown) input by
some probability distribution. This distribution is usually chosen uniformly on
the set of possible inputs. Also the algorithm itself may be random. One motiva-
tion to consider such random algorithms is that their performance then often is
independent of a special fixed input. The parameters indicating the performance
of the algorithm in a probabilistic model become random variables.

The most fundamental algorithms deal with problems arising in sorting,
searching, selection, arithmetic operations, random number generation, and the
organization of storage. An encyclopedic treatise are the three volumes of D.E.
Knuth (1997a, 1997b, 1998). Such basic algorithms are formulated independently
of a specific programming language, so that an analysis does not depend on a
particular implementation. One of the most famous algorithms is the Quicksort
algorithm created by C.A.R. Hoare in 1961 for sorting a file of items. Quicksort is
of great practical interest. A median-of-three variant has become the basis for the
Unix “sort” feature. Quicksort for decades has served as a model for the analysis
of algorithms in general, since it embodies two key paradigms of the design of
algorithms, namely the concept of divide and conquer and randomization.

The mean running time of Quicksort to sort a file of n items, which are per-
muted uniformly at random, is of the order Θ(n log n). However, it is also known
that in the worst case the algorithm needs O(n2) steps. There exist sorting al-
gorithms which also in the worst case only need Θ(n log n) steps. Nevertheless
these algorithms are in practice usually beaten by Quicksort. Thus one needs a
finer stochastic analysis to gain a more detailed understanding of this behavior.
Therefore, in addition to the average case behavior of an algorithm also distri-
butional properties are of interest. This leads to the analysis of higher order
moments, exponential moments, concentration around the mean, large devia-
tions, limit laws, and the study of the tails of the distributions. Investigations of
this type are the subject of the present work.

The first chapter is devoted to searching. An analysis of the cost of a partial
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ii INTRODUCTION

match query in comparison based structures is given. Partial match query is
a fundamental search routine in the use of data bases. The structures under
consideration are the classical K-d tree, the locally balanced K-d-t tree, the
random relaxed K-d tree, and the quadtree. For all these structures first order
asymptotics are known for the mean of the cost of a partial match query in the
uniform probabilistic model. The variances were derived for the two-dimensional
quadtree and the random relaxed K-d tree. In the first chapter the missing
variances are derived and limit laws of the scaled costs are given. Furthermore,
results on the existence and convergence of the moments and on concentration
around the mean are given.

Generalizations of the sorting algorithm Quicksort are discussed in the second
chapter. By a well-known equivalence the running time of Quicksort is distrib-
uted as the internal path length of the random binary search tree. Parameters
of trees like the depth of a node, the height and the internal path length corre-
spond to the costs of insertion operations in a tree. These parameters have been
analyzed for various special trees. L. Devroye (1998) introduced a general tree
model which includes many common trees and studied the depth of insertion and
the height of his random split tree resulting in a uniform validity. In the second
chapter an analysis for the internal path length of the random split tree is pre-
sented. Under proper assumptions the first order asymptotic of the variance, the
limit theorem, and results on exponential moments and large deviations of the
internal path length are given. This particularly applies to the random quadtree
and the m-ary search tree, for which the limit theorems have been unknown so
far.

The third chapter is concerned with the subject of selection. A limit law
for the running time of the median-of-three version of the algorithm multiple
Quickselect is given. Multiple Quickselect is a generalization of C.A.R. Hoare’s
Find algorithm. More explicit results for the median-of-three version of Find are
stated including the asymptotics of all moments, Laplace and Fourier transforms
and large deviations.

The investigations of the first three chapters are based on the contraction
method. This method was introduced by U. Rösler (1991) for the derivation of
the limit theorem for the running time of Quicksort. The contraction method was
further developed independently in Rösler (1992) and Rachev and Rüschendorf
(1995). A survey was given in Rösler and Rüschendorf (1999). Applying this
method one starts with a distributional recursive equation satisfied by the cost
(respectively running time) under consideration. The scaling of the cost leads to
a modified recursion for the normalized cost. This modified recursion should con-
verge to a limiting form in a certain way. Then this limiting equation gives rise
to a corresponding operator on the space of probability measures being endowed
with a metric which is complete on an appropriate subspace. Showing contrac-
tivity of the operator and using Banach’s fixed point theorem we are led to a
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fixed point, which is the candidate for the weak limit of the scaled cost. Deriving
convergence is the last and technically most intricate step of the method.

The last two chapters are devoted to the analysis of related random recursive
structures. In the fourth chapter the point to which an interval splitting scheme
shrinks is under consideration. A new type of convergence rate for such splitting
schemes is introduced. A relation to products of two-dimensional random sto-
chastic matrices also leads to an approach to the convergence of these products
in terms of probability metrics.

In the last chapter a random affine recursion of a branching type is discussed.
Limit laws and formulae for the derivation of the first and second moment nec-
essary for the normalization are given. One approach is based on contraction
arguments involving L2-assumptions. In the last section another approach is
discussed, which makes use of representations involving products of independent
matrices in connection with the concept of Lyapunov exponents.
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Notation

The following notation is used throughout this work. M1(Rd,Bd) stands for
the space of probability measures on Rd. By Eµ the expectation of a random
variable (r.v.) with distribution µ ∈ M1(Rd,Bd) is denoted. For d = 1 we use
also Var µ for the corresponding variance. Define

Md
γ,p := {µ ∈ M1(Rd,Bd) : Eµ = γ,

∫
‖x‖p dµ(x) < ∞} (1)

for γ ∈ Rd and p ≥ 1. In particular Md
0,2 are the centered probability measures on

Rd with existing second moment. In dimension d = 1 we abriviate Mγ,p := M1
γ,p.
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Convergence in probability is denoted by
P→, furthermore

D
= and ∼ mean

equality in distribution either for two random variables or a random variable
and a probability measure. The distribution of an r.v. X is denoted by PX and
L(X). We write PX |Y for the conditional distribution for X given Y .

B(n, p) and M(n, u) are the binomial respectively multinomial distributions
with parameters n ∈ N, p ∈ [0, 1] and u ∈ Rd with

∑
ui = 1. If U = (U1, . . . , Ud)

is a random vector with
∑

Ui = 1 then X ∼ M(n, U) states that PX |U=u =
M(n, u) for PU–almost all u. The density of the beta distribution beta(a, b) with
parameters a, b > 0 is

f(x) = 1[0,1](x)
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1 for x ∈ R. (2)

For µ, ν ∈ M1(Rd,Bd) the convolution is denoted by µ ∗ ν, the product
measure by µ⊗ ν. If T is an appropriate measurable map then T (µ) stands for
the image measure of µ under T . By dµ

dν
the Radon-Nikodym derivative of µ with

respect to ν is denoted, λd is the d-dimensional Lebesgue measure.
The minimal `p-metric

`p(µ, ν) := inf{(E ‖X − Y ‖p)1/p : X
D
= µ, Y

D
= ν} (3)

is defined for all p ≥ 1 and µ, ν ∈ M1(Rd,Bd) with existing pth moment.
(Md

0,p, `p) is a complete metric space and convergence in the `p-metric is equiv-
alent to weak convergence plus convergence of the pth moments (cf. Rachev
(1991)). For r.v. X, Y also the notation `p(X,Y ) := `p(PX ,PY ) is used.

By 〈 · , · 〉 the standard inner product on Rd is denoted, ‖ · ‖ stands for the
euclidian norm either on Rd or on some set of real matrices, ‖ · ‖op denotes the
operator norm of a matrix.



Chapter 1

Partial match query

Databases for multidimensional data are of special interest for many applications
in computer science, e.g. for geographical information systems, computer graph-
ics and computational geometry. Data structures for multiattribute keys should
support the usual dictionary operations as well as some associative queries. Ex-
amples for such associative queries are nearest neighbor queries, partial match
queries and convex or orthogonal range queries. For each of these queries a cer-
tain condition is given and all keys of the file have to be retrieved, which satisfy
this condition, for example report all data in the file lying in a certain range of
the data space. Data structures which maintain multidimensional data are con-
sidered in the books of Knuth (1998) and Samet (1990). These structures can
be divided into comparison based algorithms and methods based on digital tech-
niques. The digital techniques use binary representations of the keys. Examples
are tries, digital search trees, and Patricia tries. Examples for comparison based
structures are quadtrees and multidimensional binary search trees (K-d trees).
These algorithms work with comparisons of the whole keys instead of binary
representations. For a stochastic analysis of the performance of basic parameters
for these structures see Mahmoud (1992).

In this chapter an asymptotic distributional analysis for the cost of partial
match queries in comparison based structures is presented.

We assume the data to belong to some d-dimensional domain D = D1× . . .×
Dd, which using binary encodings we can assimilate to the unit cube [0, 1]d. For
a partial match query a query q = (q1, . . . , qd) is given where qi ∈ [0, 1] ∪ {∗} for
1 ≤ i ≤ d. Here ∗ denotes that this component is left unspecified. Then all data
in the file have to be retrieved, which match the query q. This means to report
all keys which are identical to q in all the components where q is specified, i.e.
the components with qi 6= ∗. The specification pattern u ∈ {S, ∗}K of a query q
is the vector whose entries are S in the components where the query is specified
and ∗ otherwise.

For the probabilistic analysis of partial match retrieval we assume the uniform
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2 CHAPTER 1. PARTIAL MATCH QUERY

probabilistic model following Flajolet and Puech (1986). The uniform probabilis-
tic model assumes all components in the data and the specified components in
the query to be independent and uniformly distributed on [0, 1]. For comparison
based algorithms this is equivalent to the more general model where the compo-
nents are assumed to be drawn independently from any continuous distribution
over any interval. Quadtrees and K-d trees built up by independent and uni-
formly distributed data are called random quadtrees respectively random K-d
trees.

The quadtree structure is due to Finkel and Bentley (1974). It extends the
classical idea of binary search trees to multidimensional data. For the construc-
tion of the quadtree we refer to Mahmoud (1992). Essentially a data point
partitions the search space by the hyperplanes perpendicular to the axes. Used
recursively this principle leads to a decomposition of the search space into quad-
rants. The quadtree corresponds to this partitioning.

The K-dimensional binary search tree, or K-d tree, was introduced by Bentley
in 1975. It is a binary tree in which each node contains a K-dimensional key.
Here a data point partitions the search space by a hyperplane perpendicular to
one of the axes into two halfspaces. The precise way this is done depends on
the special kind of K-d tree under consideration. Note that for quadtrees the
dimension of the search space is denoted by d whereas for the K-d trees the
dimension is denoted by K.

In this chapter the cost of a partial match query in multidimensional
quadtrees, K-d trees and two variants of K-d trees, the locally balanced K-
d-t tree of Cunto, Lau and Flajolet (1989) and the random relaxed K-d tree of
Duch, Estivill-Castro and Mart́ınez (1998) is investigated. Many further variants
of Bentley’s original K-d tree have been introduced and analyzed e.g. optimized
K-d trees, dynamically balanced K-d trees, divided K-d trees and squarish K-
d trees. For references to these trees see the preprints of Duch et al. (1998),
Mart́ınez et al. (1998) and Devroye et al. (1999). A limit theorem for the cost
of a partial match query in the 2-dimensional trie is given in the preprint of
Schachinger (1999).

For a partial match query in all the trees under consideration we have to start
at the root of the tree. According to the comparisons of the specified components
of the query with the corresponding components of the root some of the subtrees
of the root have to be considered recursively for the further search. The cost of
a partial match query is measured by the number of nodes traversed during the
search. We denote this cost in a tree containing n nodes by Cn.

For the trees treated here the mean of the cost (in the uniform probabilistic
model) is known to be

ECn ∼ γnα−1 (1.1)

with some constant γ > 0 and α in the exponent given by some algebraic equa-
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tion. These parameters depend on the specification pattern of the query and of
course on the special tree. The average performance of quadtrees and K-d trees
does not attain the optimal order of magnitude of a fully balanced binary tree

∼ const n1−s/K (1.2)

for a query with 1 ≤ s ≤ K − 1 components of a K-dimensional space specified.
This was observed first by Flajolet and Puech (1986) for the case of the K-d tree
disproving an older conjecture that random K-d trees behave in the average as
fully balanced binary trees. Also K-d-t trees and random relaxed K-d trees do
not attain the optimal exponent. Recently Devroye, Jabbour, and Zamora-Cura
(1999) obtained the optimal time bound introducing the squarish K-d tree, which
reaches the average time performance for partial match query of Θ(n1−s/K).

The standard deviation in the case of quadtrees and K-d trees is of the same
order of magnitude as the mean. The main results in this chapter are limit laws
for the normalized cost

Xn :=
Cn − ECn

nα−1
. (1.3)

In each tree Xn converges weakly to a random variables which is characterized
as the fixed point of a random affine operator. Explicit first order asymptotics
of the variance of Cn are also derived, known so far only for the random relaxed
K-d tree and the 2-dimensional quadtree (see Mart́ınez et al. (1998)). At the
end of this chapter results on the Laplace transform of Xn are discussed.

For the proofs we use the contraction method. From the point of view of the
contraction method the problem of partial match query has some similarity to
the running time of the Find-algorithm in the model of Mahmoud, Modarres,
and Smythe (1995); see chapter 3 of the present work. The fact that mean and
standard deviation are of the same order of magnitude simplifies the analysis for
these problems compared to the analysis of Quicksort and the related problems of
internal path lengths in random trees treated in chapter 2. For the partial match
query problem a first order asymptotic of the mean is sufficient in order to define
the corresponding limiting operators. Nevertheless these limiting operators are
more involved than the corresponding operators for the Find-algorithm, which is
caused by the purely one-sided character of the Find problem.

1.1 Bentley’s K-d tree

The K-d tree is generated by inserting the first key into the root of the initially
empty tree. Then the first component of the root serves as a discriminator
for the further insertions process. The first components of the following keys
are compared with the first component of the root. If they are smaller then
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they are recursively inserted into the left subtree of the root, otherwise they are
inserted recursively into the right subtree. Then on the second level of the tree
the second components of the keys are used for the splitting process. On the
following levels the components 1, . . . , K are drawn cyclically as discriminators.
A detailed description is given in Mahmoud (1992).

A partial match query in a K-d tree starts at the root. At each node the search
has to inspect one or both of the subtrees according whether the corresponding
component is specified or not. Let u ∈ {S, ∗}K be a specification pattern and
denote by U, Y the first component of the root respectively the first component of
the query if this component is specified. Then in the uniform probabilistic model
U, Y are independent and uniformly distributed on [0, 1]. The subtrees of a K-d
tree are given their cardinality again shaped like binary search trees and mutually
independent. This implies that after inspecting the root the search algorithm
calls recursively partial match queries in the subtrees in the same probabilistic
model. Of course the specification pattern for the subsequent queries has to be
shifted left cyclically. Denote the cost of a partial match query with specification
pattern u in a K-d tree with n keys inserted by C

(u)
n . Then with v ∈ {S, ∗}K−1

in distribution the following recursive equations are valid

C(Sv)
n

D
= 1{Y <U}C

(vS)
Z + 1{Y≥U}C

(vS)

n−1−Z + 1, (1.4)

C(∗v)
n

D
= C

(v∗)
Z + C

(v∗)
n−1−Z + 1. (1.5)

Here (C
(vS)

i ) ∼ (C
(vS)
i ) and (C

(v∗)
i ) ∼ (C

(v∗)
i ). Z is the cardinality of the left

subtree of the root, i.e.

PZ |U=p = B(n− 1, p) for p ∈ [0, 1], (1.6)

and Y, (U,Z), (C
(vS)
i ), C

(vS)

i ) respectively Y, (U,Z), (C
(v∗)
i ), (C

(v∗)
i ) are indepen-

dent.
We want to show weak convergence for scaled versions of C

(u)
n . In order to

apply the contraction method the equations (1.4) and (1.5) have to be scaled.

The distributions (even the expectations) of the C
(u)
n depend on the particular

specification pattern u. For this reason it is not suitable to scale directly the
equations (1.4), (1.5). Let the query inspect the levels 0, . . . , K − 1 explicitly.
Then 2K−s of the 2K subtrees on level K have to be inspected recursively with
the original specification pattern. 1 ≤ s ≤ K−1 denotes the number of specified
components in the specification pattern u and 1 ≤ r1 < r2 < . . . < rs ≤ K the
coordinates of the specified components. Assume the specification pattern to be
fixed. The dependence on u is suppressed in the notation. Denote

Dn := {0, 1}n for n ∈ N,
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D0 := {∅}, and D(K) :=
K−1⋃
n=0

Dn. (1.7)

For σ ∈ Dn, σ = (σ1, . . . , σn) and 1 ≤ j ≤ n let σ|j := (σ1, . . . , σj) ∈ Dj and
σ|0 := ∅, |σ| denotes the length of a σ ∈ D(K). The nodes of the levels 0, . . . , K−1
are numbered by the elements of D(K). The nodes on level 0 ≤ j ≤ K − 1
are counted by the elements of Dj from the left to right in increasing order
interpreting the elements of Dj as dual representations of integers. The subtrees
on the level K are numbered by the elements of DK analogously. Assume for a
moment that all nodes of the levels 0, . . . , K − 1 are internal nodes of the K-d
tree. Denote by uσ ∈ R the component of the key stored in node σ ∈ D(K),
which is used as the discriminator for the splitting process (this is the |σ| + 1st
component of the key) and by y1, . . . , ys ∈ R the specified components of the
query. Then for the recursion step exactly those subtrees σ ∈ DK on level K
have to be inspected for the subsequent search, which satisfy

yj < uσ|(rj−1) if σrj
= 0

yj ≥ uσ|(rj−1) if σrj
= 1. (1.8)

for all 1 ≤ j ≤ s.
For the stochastic analysis in the uniform probabilistic model denote by

Uσ, σ ∈ D(K) analogously to uσ the (random) component of the key in node
σ ∈ DK , which is used as discriminator. It has to be distinguished whether the
levels 0 . . . , K − 1 are totally full with keys or not. The probability

pn ∈ [0, 1] (1.9)

for the event that the levels 0, . . . , K − 1 are full after inserting n keys into
the empty tree satisfies pn → 1 for n → ∞. For deeper results concerning the
saturation level see Devroye (1986). In the case of full levels denote by

UK := {Uσ : σ ∈ D(K)} (1.10)

this family of discriminators. UK is a family of independent, uniformly on [0, 1]
distributed r.v. The independence follows from the fact that for the insertion of a
key stored in node σ ∈ D(K) only the components less that the active component
are used. Let Y = (Y1, . . . , Ys) be the vector of the specified components of the
query. Corresponding to (1.8) define for σ ∈ D(K)

1σ(Y,UK) :=
∏

1≤j≤s
σrj =0

1{Yj<Uσ|(rj−1)}
∏

1≤j≤s
σrj =1

1{Yj≥Uσ|(rj−1)}. (1.11)

This indicator is one if and only if the subtree σ ∈ DK has to be inspected for
the subsequent search given the query Y and the discriminators UK . Denote
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by (I
(n)
σ )σ∈DK

the cardinalities of the subtrees on level K if n keys are in the

tree. If the levels 0, . . . , K − 1 are not full we arrange I
(n)
σ := 0 for the ’not

existing’ subtrees σ ∈ DK . Conditionally given full levels and discriminators UK

the vector (I
(n)
σ )σ∈DK

is multinomial distributed. The parameters are given as
the probabilities to follow the paths to a certain subtree :

〈UK〉σ :=
∏

1≤j≤K
σj=0

Uσ|(j−1)

∏
1≤j≤K
σj=1

(1− Uσ|(j−1)), σ ∈ DK . (1.12)

This implies

PI(n)

= pnM(n− 2K + 1, 〈UK〉) + (1− pn)µn (1.13)

with an additional probability measure µn on R. A weak law of large numbers
follows:

I(n)

n

P−→ 〈UK〉 = (〈UK〉σ)σ∈DK
. (1.14)

The cost of a partial match query satisfies the distributional recursive equation

Cn
D
=

∑
σ∈DK

1σ(Y,UK)C
(σ)

I
(n)
σ

+ Nn. (1.15)

Here Y1, . . . , Ys, (UK , I(n)), (C
(σ)
i )i∈N, σ ∈ DK are independent, Yj, Uσ uniformly

distributed on [0, 1] (1 ≤ j ≤ s, σ ∈ D(K)), (C
(σ)
i ) ∼ (Ci) for σ ∈ DK , I(n) as in

(1.13), and Nn is the number of nodes traversed during the query on the levels
0, . . . , K − 1, in particular 0 ≤ Nn ≤ 2K . Define C0 := 0. The mean of the cost
Cn has been studied in Flajolet and Puech (1986):

ECn ∼ γun
α−1, (1.16)

with α being the unique solution in (1, 2) of the indicial equation

(α + 1)sαK−s = 2K (1.17)

and a constant γu > 0 depending on the specification pattern u. γu can be
approximated numerically (see Flajolet and Puech (1986)). The variance of Cn

has been investigated in a more general situation (see next section) in Cunto,
Lau, and Flajolet (1989). For the scaling assume

Var(Cn) ∼ βun
2α−2 (1.18)

with a constant βu > 0. This asymptotic is proved in Corollary 1.1.3 with an
explicit formula for βu in terms of α and γu. Therefore we introduce

Xn :=
Cn − ECn

nα−1
. (1.19)
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A straightforward calculation using (1.15) yields to the distributional recursion
for Xn:

Xn
D
=

∑
σ∈DK

1σ(Y,UK)

(
I

(n)
σ

n

)α−1 (
X

(σ)

I
(n)
σ

+ γu

)
− γu + o(1). (1.20)

In (1.20) the (in-)dependencies and distributions are analogously to (1.15). The
o(1) depends on randomness but the convergence is uniform. This modified
recursion and the convergence of the occurring prefactors (cf. (1.14)) suggest
that a limit X of Xn is a solution of the limiting equation

X
D
=

∑
σ∈DK

1σ(Y,UK)〈UK〉α−1
σ

(
X(σ) + γu

)− γu. (1.21)

Here Y and UK are as in (1.15) and {X(σ), σ ∈ DK} is a family of independent
r.v. identically distributed as X and independent of Y,UK . The limiting equation
(1.21) allows to define the limiting operator acting on probability measures. This
operator has a unique fixed point in a suitably chosen domain. Then convergence
of Xn to this fixed point can be established. Let

Tu : M1(R1,B1) → M1(R1,B1)

Tu(µ)
D
=

∑
σ∈DK

1σ(Y,UK)〈UK〉α−1
σ

(
Z(σ) + γu

)− γu. (1.22)

In (1.22) Y , UK and Z(σ) are independent, Z(σ) ∼ µ for σ ∈ DK and Y , UK are
as in (1.21) .

Lemma 1.1.1 Tu : M0,2 → M0,2, with Tu given in (1.22) is a contraction w.r.t.
`2:

`2(Tu(µ), Tu(ν)) ≤ ξu `2(µ, ν) for all µ, ν ∈ M0,2, (1.23)

ξu =
(
αs(α− 1/2)K−s

)−1/2
< 1. (1.24)

Proof: This is the special case t = 0 of Lemma 1.2.1 in the next section.

By Banach’s fixed point theorem Tu has a unique fixed point ρ in M0,2 and

`2(T
n
u (µ), ρ) → 0 (1.25)

exponentially fast for any µ ∈ M0,2. A random variable X with distribution ρ is
also called a fixed point of T (compare equation (1.21)).

The proof of the following limit theorem is a typical application of the con-
traction method. It is given here in detail and referred to it in the next sections
for limit laws for variants of the K-d tree. For a unifying setting of related divide
and conquer algorithms see section 3 in Rösler (1999).
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Theorem 1.1.2 (Limit Theorem for Partial Match Query in random K-d trees)
The normalized number of nodes Xn traversed during a partial match query with
specification pattern u ∈ {S, ∗}K in a random K-d tree converges w.r.t. `2 to the
unique fixed point X in M0,2 of the limiting operator Tu, i.e.

`2(Xn, X) → 0. (1.26)

Proof: Let X
(σ)
n ∼ Xn, X

(σ) ∼ X for σ ∈ DK such that (X
(σ)
n , X(σ))

are optimal couplings of Xn, X, i.e. `2
2(Xn, X) = E (X

(σ)
n − X(σ))2. Let

UK := {Uσ : σ ∈ D(K)}, Y = (Y1, . . . , Ys) be a family respectively vector of
independent r.v. uniformly distributed on [0, 1]. Furthermore let I(n) be distrib-
uted as in (1.13), in particular I(n)/n → 〈UK〉 in probability as given in (1.14).

Finally assume that (I(n),UK), Y, ((X
(σ)
n ), X(σ))(σ ∈ DK) are independent. In

order to derive a reduction inequality for `2(Xn, X) we use the L2-distances of
the special representations of Xn and X given by (1.20) resp. (1.21). Then using

the independence properties and EX(σ) = EX
(σ)
n = 0 we obtain

`2
2(Xn, X) ≤ E

( ∑
σ∈DK

1σ(Y,UK)

( (
I

(n)
σ

n

)α−1 (
X

(σ)

I
(n)
σ

+ γu

)

− 〈UK〉α−1
σ

(
X(σ) + γu

) )
+ o(1)

)2

= E
∑

σ∈DK

1σ(Y,UK)

( (
I

(n)
σ

n

)α−1 (
X

(σ)

I
(n)
σ

+ γu

)

− 〈UK〉α−1
σ

(
X(σ) + γu

) )2

+ o(1). (1.27)

The mixed terms are o(1) by independence and E [(I(n)/n)α−1−〈UK〉α−1
σ ] = o(1)

for σ ∈ DK . The summands in (1.27) are identically distributed. With a fixed
σ ∈ DK this yields

`2
2(Xn, X)

≤ 2K E
[
1σ(Y,UK)

( (
I

(n)
σ

n

)α−1 (
X

(σ)

I
(n)
σ

+ γu

)

− 〈UK〉α−1
σ

(
X(σ) + γu

) )2]
+ o(1)

= 2K E
[
1σ(Y,UK)

( (
I

(n)
σ

n

)α−1 (
X

(σ)

I
(n)
σ

−X(σ)
)
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+




(
I

(n)
σ

n

)α−1

− 〈UK〉α−1
σ


 (

X(σ) + γu

) )2]
+ o(1)

= 2K E
[
1σ(Y,UK)

(
I

(n)
σ

n

)2α−2 (
X

(σ)

I
(n)
σ

−X(σ)
)2

]

+ 2K E
[
1σ(Y,UK)




(
I

(n)
σ

n

)α−1

− 〈UK〉α−1
σ




2

(
X(σ) + γu

)2
]

+ 2K2E
[
1σ(Y,UK)

(
I

(n)
σ

n

)α−1 (
X

(σ)

I
(n)
σ

−X(σ)
)

×



(
I

(n)
σ

n

)α−1

− 〈UK〉α−1
σ


 (

X(σ) + γu

) ]
+ o(1). (1.28)

With (1.14) it follows

E




(
I

(n)
σ

n

)α−1

− 〈UK〉α−1
σ




2

→ 0 for n →∞. (1.29)

Therefore the second summand in (1.28) converges to 0. With the Cauchy-
Schwarz inequality and (1.29) the third term in its absolute value is estimated
from above by

2K2E







(
I

(n)
σ

n

)α−1

− 〈UK〉α−1
σ




2

(
X(σ) + γu

)2




1/2

E
[(

X
(σ)

I
(n)
σ

−X(σ)
)2

]1/2

= o(1)E
[(

X
(σ)

I
(n)
σ

−X(σ)
)2

]1/2

≤ o(1)E
(
X

(σ)

I
(n)
σ

−X(σ)
)2

+ o(1). (1.30)

The last inequality holds since both sides are o(1) if the expectation is less than
1. Therefore from (1.28) we derive with an := `2

2(Xn, X) and fixed σ ∈ DK

an ≤ 2K E





1σ(Y,UK)

(
I

(n)
σ

n

)2α−2

+ o(1)




(
X

(σ)

I
(n)
σ

−X(σ)
)2


 + o(1)

= 2K

n−1∑
i=0

E

[(
1{I(n)

σ =i}1σ(Y,UK)

(
i

n

)2α−2

+ o(1)

)(
X

(σ)
i −X(σ)

)2
]
+o(1)
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= 2K

n−1∑
i=0

E

[
1{I(n)

σ =i}1σ(Y,UK)

(
i

n

)2α−2

+ o(1)

]
ai + o(1). (1.31)

By (1.14) and an explicit calculation (cf. (1.70), (1.71) for t = 0 below) it follows

E


1σ(Y,UK)

(
I

(n)
σ

n

)2α−2

 −→ E

[
1σ(Y,UK)〈UK〉2α−2

σ

]
=

ξ2
u

2K
(1.32)

with ξu given in (1.24). This implies

an ≤ 2K

n−1∑
i=0

E

[
1{I(n)

σ =i}1σ(Y,UK)

(
i

n

)2α−2

+ o(1)

]
sup

1≤i≤n−1
ai + o(1)

= 2K E
[
1σ(Y,UK)〈UK〉2α−2

σ

]
sup

1≤i≤n−1
ai + o(1)

= (ξ2
u + o(1)) sup

1≤i≤n−1
ai + o(1). (1.33)

Thus (an)n∈N is bounded. Denote a := lim supn→∞ an. Now we can conclude
as in Rösler (1991). For a given ε > 0 there exists a n0 ∈ N and ξ+ < 1 with
an ≤ a + ε and ξ2

u + o(1) ≤ ξ+ < 1 for all n ≥ n0. Then from (1.31) it follows

an ≤ 2K

n0−1∑
i=0

E

[
1{I(n)

σ =i}1σ(Y,UK)

(
i

n

)2α−2

+ o(1)

]
ai

+ 2K

n−1∑
i=n0

E

[
1{I(n)

σ =i}1σ(Y,UK)

(
i

n

)2α−2

+ o(1)

]
(a + ε) + o(1)

≤ ξ+(a + ε) + o(1). (1.34)

Now n →∞ yields a ≤ ξ+(a + ε), which implies a = 0.

Convergence in `2 implies convergence of the second moments. Thus a first
order asymptotic for the variance of Cn follows.

Corollary 1.1.3 The variance of the limiting distribution for the normalized
number of nodes traversed during a partial match query with specification pattern
u ∈ {S, ∗}K in a random K-d tree is given by

βu :=

[
(2α− 1)B(α, α)

αs(α− 1/2)K−s − 1

∑

l∈U

(
2(2α− 1)

α2

)K−l

ηs−sl
α − 1

]
γ2

u (1.35)
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with

ηα =
α (8α2 − 2α− 2− α(α + 1)B(α, α))

2(α + 1)(2α− 1)(2α + 1)
. (1.36)

In (1.35) U⊂ {1, . . . , K} denotes the set of unspecified components of u and sl

the number of specified components less than l ∈U. α and γu are given by (1.16),
(1.17), B( · , · ) denotes the Eulerian beta integral. The variance of the (unscaled)
cost Cn satisfies

Var(Cn) ∼ βun
2α−2. (1.37)

Proof: The translation X̃ := X + γu of the fixed point X of Tu is determined
as the unique solution in Mγu,2 of the distributional equation

X̃
D
=

∑
σ∈DK

1σ(Y,UK)〈UK〉α−1
σ X̃(σ) (1.38)

where the independencies and distributions are as in (1.21) and X̃(σ) ∼ X̃ for
σ ∈ DK . It is

Var(X) = Var(X̃) = E X̃2 − γ2
u (1.39)

and

E X̃2 = E

[ ∑
σ,τ∈DK

1σ(Y,UK)1τ (Y,UK)〈UK〉α−1
σ 〈UK〉α−1

τ X̃(σ)X̃(τ)

]

= E

[∑
σ=τ

1σ(Y,UK)〈UK〉2α−2
σ X̃2

]

+E

[∑

σ 6=τ

1σ(Y,UK)1τ (Y,UK)〈UK〉α−1
σ 〈UK〉α−1

τ X̃(σ)X̃(τ)

]
. (1.40)

Since the summands with σ = τ are identically distributed and with a calculation
as in (1.32) the first summand in (1.40) is equal to

2K2−K 1

αs(α− 1/2)K−s
E X̃2. (1.41)

The second summand is (cf. (1.11), (1.12))
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∑
σ,τ∈DK

σ 6=τ

E
[ ∏

1≤j≤s
σrj =0

1{Yj<Uσ|(rj−1)}
∏

1≤j≤s
σrj =1

1{Yj≥Uσ|(rj−1)}

∏
1≤j≤s
τrj =0

1{Yj<Uτ |(rj−1)}
∏

1≤j≤s
τrj =1

1{Yj≥Uτ |(rj−1)}

∏
1≤j≤K
σj=0

Uα−1
σ|(j−1)

∏
1≤j≤K
σj=1

(1− Uσ|(j−1))
α−1

∏
1≤j≤K

τj=0

Uα−1
τ |(j−1)

∏
1≤j≤K

τj=1

(1− Uτ |(j−1))
α−1

]
. (1.42)

For σ, τ ∈ DK with σ 6= τ denote by

lσ,τ := max{1 ≤ j ≤ K : σ|(j − 1) = τ |(j − 1)}
= min{1 ≤ j ≤ K : σj 6= τj} (1.43)

the first component where the vectors σ, τ differ. If lσ,τ is a specified component
then the expectation in (1.42) for these σ, τ is zero by disjoint indicator sets.
Further denote

sl := card{1 ≤ j ≤ s : rj < l} (1.44)

the number of specified components less than l and U := {1, . . . , K}\{r1, . . . , rs}
the set of unspecified components. The distribution of the summand in (1.42)
depends only on lσ,τ and the number of specified components greater than lσ,τ in
which σ and τ differ. For this number we write

hσ,τ := card{slσ,τ + 1 ≤ j ≤ s : σrj
6= τrj

}. (1.45)

For given l ∈ {1, . . . , K} and h ∈ {0 . . . , s− sl} there exist

2K

(
s− sl

h

)
2K−l−(s−sl) (1.46)

pairs (σ, τ) ∈ DK × DK with σ 6= τ, lσ,τ = l and hσ,τ = h. For these pairs the
summands in (1.42) are identically distributed. With Y, U, V independent and
uniformly distributed on [0, 1] these expectations are given by

E
[
1{Y <U}U

2α−2
]sl E

[
U2α−2

]l−1−sl E
[
Uα−1(1− U)α−1

]

× E
[
Uα−1V α−1

]K−l−(s−sl) E
[
1{Y <U}U

α−11{Y≥V }(1− V )α−1
]h

× E
[
1{Y <U}1{Y <V }U

α−1V α−1
]s−sl−h

. (1.47)
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Explicit calculations yield

E
[
1{Y <U}U

2α−2
]

= 1/(2α), E
[
U2α−2

]
= 1/(2α− 1),

E
[
Uα−1(1− U)α−1

]
= B(α, α), E

[
Uα−1V α−1

]
= 1/(α2),

E
[
1{Y <U}U

α−11{Y≥V }(1− V )α−1
]

=
α− 1 + αB(α, α + 2)

α2(α + 1)
,

E
[
1{Y <U}1{Y <V }U

α−1V α−1
]

= 2/((α + 1)(2α + 1)). (1.48)

Altogether for the second summand in (1.40) we derive

∑

l∈U

22K−l−(s−sl)B(α, α)

(
1

α2

)K−l−(s−sl)
(

1

2α− 1

)l−1−sl

(1.49)

×
s−sl∑

h=0

(
s− sl

h

)(
α− 1 + αB(α, α + 2)

α(α + 1)

)h (
2

(α + 1)(2α + 1)

)s−sl−h

.

Using the binomial formula, B(α, α + 2) = (α + 1)/(2(2α + 1))B(α, α) and some
simplifications this is

∑

l∈U

22K−l−sB(α, α)

(
1

α

)2(K−l)+sl
(

1

2α− 1

)l−1−sl

×
(

8α2 − 2α− 2− α(α + 1)B(α, α)

2(α + 1)(2α− 1)(2α + 1)

)s−sl

. (1.50)

With (1.39)–(1.41) this leads to the stated variance βu. By convergence of the
second moments of Xn we conclude

Var(Cn) = Var(nα−1Xn) = Var(Xn)n2α−2 = (Var(X) + o(1))n2α−2

∼ βun
2α−2. (1.51)

1.2 The locally balanced K-d-t tree

The K-d-t trees introduced in Cunto, Lau and Flajolet (1989) are intermediate
structures between the original K-d tree investigated in the previous section and
fully balanced K-d trees generated by a total reorganization of the tree (see
Bentley (1975)). Such fully balanced K-d trees achive an optimal exponent for
the expected cost of a partial match query:

ECn ∼ const n1−s/K (1.52)
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where again 1 ≤ s ≤ K−1 is the number of specified components of an arbitrary
specification pattern. For the classical K-d tree the asymptotic of Flajolet and
Puech (1986) for the average cost (cf. (1.16)) can be written in the form

ECn ∼ γun
1−s/K+θ(s/K) (1.53)

with a strictly positive function θ(x) for 0 < x < 1 with maximum value ≤ 0.07.
The K-d-t trees have been introduced to improve this performance through a
local online reorganization method, which only adds a constant extra effort to
updating operations. A K-d-t tree is a K-d tree wherein each subtree of size
greater than 2t has at least t nodes on each side. In particular, if a subtree has
2t + 1 nodes then the key with the median of the components which are used as
discriminator at this level is stored in its root. For t = 0 the K-d-t tree coincides
with the K-d tree. For details of an implementation of such a structure we refer
to Cunto, Lau, and Flajolet (1989). As a main result Cunto et al. derive

EC(t)
n ∼ γt,un

1−s/K+θ(s/K,t) (1.54)

where C
(t)
n denotes the cost of a partial match query (depending on the specifica-

tion pattern u) in a K-d-t tree with n nodes inserted. γt,u is a positive constant
and θ(x, t) a positive function for x ∈ (0, 1), t ∈ N with

θ(x, t) → 0 for t →∞. (1.55)

From this point of view the K-d-t trees improve the K-d tree up to the behavior
of a fully balanced K-d tree for t →∞.

The analysis of a partial match query in random K-d trees given in the
previous section can be generalized to random K-d-t trees. Again inspect the
levels 0, . . . , K − 1 for a search followed by a recursive search in some of the
subtrees on level K, where the original specification pattern can be used. Assume
a fixed specification pattern u ∈ {S, ∗} and suppress the dependency on u in the
notation. The nodes and subtrees are numbered as in (1.7). Analogously to (1.9)

let p
(t)
n denote the probability that in a random K-d-t tree with n keys inserted

all subtrees on level K − 1 have more than 2t nodes. By the local reorganization
this means that all subtrees on level K have at least t nodes. Then p

(t)
n → 1

for n → ∞. In this case the discriminators on the levels 0, . . . , K − 1 occur as
the median of 2t + 1 independent uniformly on [0, 1] distributed r.v. Therefore
they are beta(t + 1, t + 1) distributed and independent for the same reason as in
the case t = 0 in the previous section. Thus denote by UK := {Uσ : σ ∈ D(K)}
a family of independent, beta(t + 1, t + 1) distributed r.v. which serves as the
discriminators on the levels 0, . . . , K − 1. Then the cardinalities of the subtrees
(I

(n)
σ )σ∈DK

on level K, n keys being inserted in the tree, satisfy

PI(n)

= p(t)
n M(n− 2K + 1, 〈UK〉) + (1− p(t)

n )µn (1.56)
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with a probability measure µ
(t)
n . With the notation (1.12) it follows

I(n)

n

P−→ 〈UK〉 = (〈UK〉σ)σ∈DK
. (1.57)

Denote the specified components in the query by Y = (Y1, . . . , Ys). Then

Y1, . . . , Ys are independent and uniformly distributed on [0, 1]. The cost C
(t)
n

of a partial match query then satisfies using notation (1.11)

C(t)
n

D
=

∑
σ∈DK

1σ(Y,UK)C
(t,σ)

I
(n)
σ

+ N (t)
n . (1.58)

Here Y, (UK , I(n)), (C
(t,σ)
i )i∈N, σ ∈ DK are independent, (C

(t,σ)
i ) ∼ (C

(t)
i ) for σ ∈

DK , I(n) is as in (1.56) and N
(t)
n is the number of nodes traversed during the

query on the levels 0, . . . , K − 1, in particular 0 ≤ N
(t)
n ≤ 2K . The asymptotic

for the mean of C
(t)
n (cf. (1.54)) given in Cunto et al. (1989) is

EC(t)
n ∼ γt,un

αt−1 (1.59)

where γt,u > 0 and αt ∈ (1, 2) is determined by the indicial equation
(
(αt + t)t+1

)K−s (
(αt + t + 1)t+1

)s

=
(
(t + 2)t+1

)K

. (1.60)

Here xt denotes the upper factorial power, i.e. xt := x(x + 1) · . . . · (x + t− 1) for
x ∈ R and t ∈ N. Observe that we write αt−1 for the exponent in (1.59) instead
of α as in Cunto et al. As an asymptotic of the variance Cunto et al. derived

Var(C(t)
n ) = C2,tn

2αt−2 + C1,tn
αt−1(1 + o(1)) (1.61)

with C1,t > 0 and C2,t → 0 for t →∞. The normalized cost (assume a fixed t)

Xn :=
C

(t)
n − EC

(t)
n

nαt−1
(1.62)

satisfies the distributional recursive equation

Xn
D
=

∑
σ∈DK

1σ(Y,UK)

(
I

(n)
σ

n

)αt−1 (
X

(σ)

I
(n)
σ

+ γt,u

)
− γt,u + o(1). (1.63)

with (in-)dependencies and distributions as in (1.58). By the convergence of
I(n)/n in (1.57) we are led to the limiting operator

Tt,u : M1(R1,B1) → M1(R1,B1)

Tu(µ)
D
=

∑
σ∈DK

1σ(Y,UK)〈UK〉αt−1
σ

(
Z(σ) + γt,u

)− γt,u. (1.64)

Here Y1, . . . , Ys, Uσ(σ ∈ D(K)), Z(σ)(σ ∈ DK) are independent, Yi uniformly dis-
tributed on [0, 1], Uσ ∼ beta(t + 1, t + 1) and Z(σ) ∼ µ.
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Lemma 1.2.1 Tt,u : M0,2 → M0,2 is a contraction w.r.t. `2:

`2(Tt,u(µ), Tt,u(ν)) ≤ ξt,u `2(µ, ν) for all µ, ν ∈ M0,2, (1.65)

ξt,u =




(
(t + 2)t+1

)K

(
(2αt + t)t+1

)s (
(2αt + t− 1)t+1

)K−s




1/2

< 1. (1.66)

Proof: First we proof that Tt,u : M0,2 → M0,2 is well defined. Obviously Var
T (µ) < ∞. The summands in (1.64) are identically distributed. This implies

ETt,u(µ) = 2K E
[
1σ(Y,UK)〈UK〉αt−1

σ

]
γt,u − γt,u. (1.67)

It is

E
[
1σ(Y,UK)〈UK〉αt−1

σ

]
= E

[
1{Y1<U∅}U

αt−1
∅

]s E
[
Uαt−1
∅

]K−s
. (1.68)

Explicit calculations yield

E
[
1{Y1<U∅}U

αt−1
∅

]
=

B(αt + t + 1, t + 1)

B(t + 1, t + 1)

=
(
(αt + t + 1)t+1

)−1

(t + 1)t+1,

E
[
Uαt−1
∅

]
=

B(αt + t, t + 1)

B(t + 1, t + 1)
=

(
(αt + t)t+1

)−1

(t + 1)t+1. (1.69)

Therefore

2K E
[
1σ(Y,UK)〈UK〉αt−1

σ

]

= 2K
(
(t + 1)t+1

)K (
(αt + t + 1)t+1

)−s (
(αt + t)t+1

)−(K−s)

=
(
(t + 2)t+1

)K (
(αt + t + 1)t+1

)−s (
(αt + t)t+1

)−(K−s)

= 1 (1.70)

where the indicial equation (1.60) has been used. This implies ETt,u(µ) = 0, so
Tt,u : M0,2 → M0,2 is well defined.

In order to prove contractivity let µ, ν ∈ M0,2 and let (W (σ), Z(σ)), Y , UK

be independent, (W (σ), Z(σ)) be optimal `2–couplings of (µ, ν), i.e. W (σ) ∼ µ,
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Z(σ) ∼ ν and `2
2(µ, ν) = E (W (σ) − Z(σ))2 for σ ∈ DK , Y and UK as in (1.64).

Then using the independence properties and EW (σ) = EZ(σ) = 0 we conclude

`2
2(Tt,u(µ), Tt,u(ν))

= E
∑

σ∈DK

1σ(Y,UK)〈UK〉2αt−2
σ (W (σ) − Z(σ))2

= 2K E
[
1{Y1<U∅}U

2αt−2
∅

]s E
[
U2αt−2
∅

]K−s
`2
2(µ, ν)

= 2K

(
(t + 1)t+1

(2αt + t)t+1

)s (
(t + 1)t+1

(2αt + t− 1)t+1

)K−s

`2
2(µ, ν)

=

(
(t + 2)t+1

)K

(
(2αt + t)t+1

)s (
(2αt + t− 1)t+1

)K−s
`2
2(µ, ν). (1.71)

This yields assertion (1.65). αt > 1 implies 2αt + t > αt + t+1 and 2αt + t− 1 >
αt + t. Together with the indicial equation (1.60) we deduce

ξ2
t,u =

(
(t + 2)t+1

)K (
(2αt + t)t+1

)−s (
(2αt + t− 1)t+1

)−(K−s)

<
(
(t + 2)t+1

)K (
(αt + t + 1)t+1

)−s (
(αt + t)t+1

)−(K−s)

= 1. (1.72)

By Banach’s fixed point theorem there exists a unique fixed point X of Tt,u.
Similarly to the proof of Theorem 1.1.2 convergence of (Xn)n∈N to X in the
`2-metric can be established.

Theorem 1.2.2 (Limit Theorem for Partial Match Query in random K-d-t
trees) The normalized number of nodes Xn traversed during a partial match query
with specification pattern u ∈ {S, ∗}K in a random K-d-t tree converges w.r.t. `2

to the unique fixed point X in M0,2 of the limiting operator Tt,u, i.e.

`2(Xn, X) → 0. (1.73)

In particular this implies that the constants C2,t in (1.61) are strictly positive:

Corollary 1.2.3 The variance of the cost C
(t)
n of a partial match query with

specification pattern u ∈ {S, ∗}K in a random K-d-t tree satisfies

Var(C(t)
n ) ∼ βt,un

2α−2 (1.74)

with a constant βt,u > 0.
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Proof: The constant βt,u is derived to be the variance of the fixed point X of
the operator Tt,u similarly to (1.51). X is nondegenerated, thus βt,u > 0.

In principle it is possible (but very tiresome) to calculate βt,u in terms of γt,u, α
and t following the proof of Corollary 1.1.3.

1.3 The random relaxed K-d tree

Updating operations in classical K-d trees are very laborious. Especially deleting
near to the root causes tedious reorganization operations in the whole tree. Fur-
thermore the distribution of the random tree may be changed executing updating
operations. This means that the analysis of certain parameters of the original
tree built up by the data does not hold true after an alternation of deletions and
new insertions. To overcome these problems Duch, Estivill-Castro, and Mart́ınez
(1998) recently introduced the random relaxed K-d tree. As for the classical K-d
tree at each node a certain attribute of the keys is used as the discriminator for
the insertion process and queries. Instead of rotating cyclically the components
as for the K-d tree for the relaxed K-d tree (r-K-d tree) a relaxation is intro-
duced. At each node additionally to the key a discriminant j ∈ {1, . . . , K} is
stored. This discriminant indicates which component of the keys is drawn for
the splitting process at this node. In the random r-K-d tree these discriminants
are taken uniformly at random in {1, . . . , K} and independent at each node. For
details and (randomized) procedures for building up and updating the random
r-K-d tree without changing its distribution see Duch et al. (1998).

The performance of some associated queries in random r-K-d trees has al-
ready been investigated in Duch et al. (1998) and Mart́ınez, Panholzer and
Prodinger (1998). A partial match query does not depend on the particular
specification pattern. It only depends on s/K where 1 ≤ s ≤ K − 1 is the
number of components specified in the query. Let % := s/K. For the cost Cn of
a partial match query in a random r-K-d tree with n nodes inserted Duch et al.
(1998) and Mart́ınez et al. (1998) derive

ECn = βnα−1 +O(1) (1.75)

where

α =
1

2
+

1

2

√
9− 8% (1.76)

is a solution of the indicial equation

α2 − α− 2(1− %) = 0 (1.77)
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and

β =
Γ(2α− 1)

(1− %)αΓ3(α)
. (1.78)

Furthermore

Var(Cn) ∼ vn2α−2 (1.79)

and v has an elaborated representation in terms of α (see Theorem 3 in Mart́ınez
et al. (1998)). In order to deduce a distributional recursive equation for the cost
Cn observe that the random discriminant J at the root of the tree indicates a
specified component of the query with probability s/K. In this case the subse-
quent search considers only one of the subtrees depending on the key comparison
at the root. Otherwise the query has to follow both subtrees. Denote by U the
Jth component of the key stored in the root and by Y the Jth component of the
query if this component is specified. Y, U are independent and uniformly distrib-
uted on [0, 1]. The subtrees of the random r-K-d tree are given their cardinality
again random r-K-d trees. Denote by B a Bernoulli r.v. with success probability
s/K, B ∼ B(1, s/K). Then the following recursion is valid:

Cn
D
= B

(
1{Y <U}C

(1)

I
(n)
1

+ 1{Y≥U}C
(2)

I
(n)
2

)
+ (1−B)

(
C

(1)

I
(n)
1

+ C
(2)

I
(n)
2

)
+ 1. (1.80)

Here B, Y, (U, I(n)), (C
(1)
i ), (C

(2)
i ) are independent, (C

(1)
i ), (C

(2)
i ) ∼ (Ci) and the

cardinalities I(n) = (I
(n)
1 , I

(n)
2 ) of the subtrees of the root satisfy

PI(n) |U=u = M(n− 1, u, (1− u)). (1.81)

For the normalized cost

Xn :=
Cn − ECn

nα−1
(1.82)

it follows

Xn
D
= B

(
1{Y <U}

(
I

(n)
1

n

)α−1(
X

(1)

I
(n)
1

+ β

)
+ 1{Y≥U}

(
I

(n)
2

n

)α−1(
X

(2)

I
(n)
2

+ β)

))

+ (1−B)

( (
I

(n)
1

n

)α−1 (
X

(1)

I
(n)
1

+ β

)
+

(
I

(n)
2

n

)α−1 (
X

(2)

I
(n)
2

+ β

))

− β + o(1). (1.83)
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The (in-)dependencies and distributions are analogously to (1.80). The o(1)
depends on randomness but the convergence is uniformly. By (1.81) for the
scaled subtree sizes I(n)/n a weak law of large numbers holds:

I(n)

n

P−→ (U, 1− U). (1.84)

Therefore the limiting operator is given by

T : M1(R1,B1) → M1(R1,B1)

T (µ)
D
= B

(
1{Y <U}U

α−1
(
Z(1) + β

)
+ 1{Y≥U}(1− U)α−1

(
Z(2) + β)

) )

+ (1−B)

(
Uα−1

(
Z(1) + β

)
+ (1− U)α−1

(
Z(2) + β

) )

− β. (1.85)

Here B, Y, U, Z(1), Z(2) are independent, B ∼ B(1, s/K), Y, U are uniformly dis-
tributed on [0, 1] and Z(1), Z(2) ∼ µ.

Lemma 1.3.1 T : M0,2 → M0,2 is a contraction w.r.t. `2:

`2(T (µ), T (ν)) ≤ ξ `2(µ, ν) for all µ, ν ∈ M0,2, (1.86)

ξ =

(
2

1− % +
√

9− 8%

9− 8% +
√

9− 8%

)1/2

< 1. (1.87)

Proof: T : M0,2 → M0,2 is well defined: Var(T (µ)) < ∞ is obvious. It is

ET (µ) = %2E [1{Y <U}U
α−1]β + (1− %)2E [Uα−1]β − β

=

[
2%

α + 1
+

2(1− %)

α

]
β − β

=
2%α + 2(1− %)(α + 1)

α2 + α
β − β

=
2α + 2(1− %)

2α + 2(1− %)
β − β. (1.88)

For the last equality the indicial equation (1.77) has been used. Therefore,
T : M0,2 → M0,2 is well defined. To prove contractivity let µ, ν ∈ M0,2 and let
(W (1), Z(1)), (W (2), Z(2)), Y , U be independent, Y , U uniformly distributed on
[0, 1]. Let (W (i), Z(i)) be optimal `2–couplings of (µ, ν), i.e. W (i) ∼ µ, Z(i) ∼ ν,
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and `2
2(µ, ν) = E (W (i) − Z(i))2 for i = 1, 2. Then using the independence prop-

erties and EW (i) = EZ(i) = 0

`2
2(T (µ), T (ν))

≤ E
(

B

(
1{Y <U}U

α−1(W (1) − Z(1)) + 1{Y≥U}(1− U)α−1(W (2) − Z(2))

)

+ (1−B)

(
Uα−1(W (1) − Z(1)) + (1− U)α−1(W (2) − Z(2))

))2

= E
[
B1{Y <U}U

2α−2(W (1) − Z(1))2 + B1{Y≥U}(1− U)2α−2(W (2) − Z(2))2

+ (1−B)U2α−2(W (1) − Z(1))2 + (1−B)(1− U)2α−2(W (2) − Z(2))2

]

= 2
(
E [B1{Y <U}U

2α−2] + E [(1−B)U2α−2]
)
`2
2(µ, ν). (1.89)

It is

E [B 1{Y <U}U
2α−2] =

%

2α
, E [(1−B)U2α−2] =

1− %

2α− 1
. (1.90)

This implies

`2
2(T (µ), T (ν)) ≤

(
%

α
+

1− %

2α− 1

)
`2
2(µ, ν). (1.91)

The representation (1.76) of α leads to the stated prefactor ξ in (1.87). An
explicit calculation shows ξ < 1.

By Banach’s fixed point theorem T has a unique fixed point % in M0,2. The
representation of the limiting operator can be simplified. We have

T (µ)
D
= B U

α−1
2

(
Z(1) + β

)
(1.92)

+ (1−B)
(
Uα−1

(
Z(1) + β

)
+ (1− U)α−1

(
Z(2) + β

) )
− β.

with B,U, Z(1), Z(2) being independent, B ∼ B(1, s/K), U uniformly distributed
on [0, 1] and Z(1), Z(2) ∼ µ. The proof follows from an elementary calculation
observing that the sets of the indicator functions in (1.85) are disjoint and

√
U

has the density 2x for 0 ≤ x ≤ 1. By an additional translation it follows that X
is a fixed point of T in M0,2 if and only if X̃ := X + β is a fixed point of

T̃ (µ)
D
= BU

α−1
2 Z(1) + (1−B)

(
Uα−1Z(1) + (1− U)α−1Z(2)

)
(1.93)
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in Mβ,2.
The convergence in `2 of Xn can be established following the scheme of the

proof of Theorem 1.1.2. The corresponding quantities can easily be identified
(cf. section 3 in Rösler (1999)).

Theorem 1.3.2 (Limit Theorem for Partial Match Query in random relaxed
K-d trees) The normalized number Xn of nodes traversed during a partial match
query in a random r-K-d tree with 1 ≤ s ≤ K−1 components specified converges
w.r.t. `2 to the unique fixed point X in M0,2 of the limiting operator T , i.e.

`2(Xn, X) → 0. (1.94)

The translated limiting distribution X̃ := X + β is the unique solution in Mβ,2

of the limiting equation

Z
D
= BU

α−1
2 Z(1) + (1−B)

(
Uα−1Z(1) + (1− U)α−1Z(2)

)
(1.95)

with B,U, Z(1), Z(2) independent, B ∼ B(1, s/K), U uniformly distributed on
[0, 1], and Z(1), Z(2) ∼ Z.

Since the parameters α and β have explicit representations in terms of s/K
it is possible to sample the limit distributions approximately for special values
of s/K iterating the limiting equation.
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The approximations of the densities of the limiting equations for the parame-
ters % = s/K = 0.1, 0.25, 0.5, 0.75, 0.9 were produced by iterating 10 times the

translated limiting operator T̃ starting with δβ, the Dirac measure in β. 10 000

samples of T̃ 10(δβ) were produced and a standard smoothing-routine of S-Plus
on the histogram of the data was applied. The densities have been scaled to have
variance 1, i.e. the plotted densities correspond to the limits of Cn/

√
Var(Cn).

1.4 The multidimensional Quadtree

Consider a partial match query for a d-dimensional random quadtree with 1 ≤
s ≤ d − 1 components specified. By symmetry we can assume w.l.g. these are
the first s coordinates. Then after a comparison of the search pattern with an
internal node of the quadtree we have to inspect 2d−s subtrees at this node for
the subsequent search. A node u ∈ [0, 1]d partitions the quadrant it belongs to
into 2d subquadrants. Let the number of a subquadrant be given by

d∑
i=1

2d−i1{ui≤si}, u = (ui), s = (si) (1.96)

if s is a point in this subquadrant. A key p is inserted in the kth subtree if it
belongs to the kth subquadrant. For the binary representation of 0 ≤ k ≤ 2d− 1

k =
d∑

i=1

ai2
d−i, ai = ai(k) ∈ {0, 1} (1.97)

let

E(k) := {i ∈ {1 . . . , d} | ai(k) = 1}, (1.98)

N(k) := {i ∈ {1 . . . , d} | ai(k) = 0}. (1.99)

Then equivalently, p is inserted in the kth subtree of a node w if pi ≥ wi for all
i ∈ E(k) and pi < wi for all i ∈ N(k).
For the root u ∈ [0, 1]d of the tree the volumina of the generated quadrants are
given by

〈u〉k :=
∏

i∈N(k)

ui

∏

i∈E(k)

(1− ui). (1.100)

〈u〉 := (〈u〉0, . . . , 〈u〉2d−1) denotes the vector of the generated volumes. The
vector I(n) of the cardinalities of the subtrees of a random d-dimensional quadtree
with n nodes is conditionally given the root U multinomial distributed:

PI(n)|U=u = M(n− 1, 〈u〉), (1.101)
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where U , the first key to be inserted, is uniformly distributed on [0, 1]d.The weak
law of large numbers for I(n)/n follows:

I(n)

n

P−→ 〈U〉 = (〈U〉0 . . . , 〈U〉2d−1). (1.102)

We denote the s specified components of the search pattern by Y = (Y1, . . . , Ys).
The Yi are independent, uniformly distributed on [0, 1] and independent of the
random quadtree. In order to give a concise form of the recursive distributional
equation for the number Cn of nodes traversed during a partial match query in
a random d-dimensional quadtree with n nodes and 1 ≤ s ≤ d − 1 components
specified we define for j1, . . . , js ∈ {0, 1}

1j1,...,js(U, Y ) :=
∏

1≤i≤s
ji=0

1{Yi<Ui}
∏

1≤i≤s
ji=1

1{Yi≥Ui}. (1.103)

Then the cost Cn satisfies

Cn
D
=

∑
j1,...,js=0,1

1j1,...,js(U, Y )
∑

js+1,...,jd=0,1

C
(j)

I
(n)
j

+ 1. (1.104)

Here (j1, . . . , jd) is the binary representation of j, i.e.

j =
d∑

i=1

ji2
d−i. (1.105)

In (1.104) Y = (Y1, . . . , Ys), U = (U1, . . . , Ud), (C
(0)
i ), . . . , (C2d−1

i ) are indepen-
dent, Y and U are uniformly distributed on [0, 1]s and [0, 1]d respectively,

C
(k)
i

D
= Ci and I(n) is conditionally given U = u multinomial M(n − 1, 〈u〉)

distributed.
For d-dimensional quadtrees a first order asymptotic is known only for the

mean of Cn. In Flajolet, Gonnet, Puech, and Robson (1993) the asymptotic
expansion

ECn ∼ γs,dn
α−1 (1.106)

is proved. Here γs,d is a positive constant which in principle can be approximated
numerically and α ∈ (1, 2) is the unique solution of the indicial equation

αd−s(α + 1)s = 2d. (1.107)

An asymptotic for the variance of Cn has not been known so far. We will prove
later that

Var(Cn) ∼ βs,dn
2α−2, (1.108)
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where βs,d has an explicit representation in terms of α and γs,d.
The normalized number of traversed nodes

Xn :=
Cn − ECn

nα−1
(1.109)

with α given by (1.107) satisfies the modified recursion

Xn
D
=

∑
j1,...,js=0,1

1j1,...,js(U, Y )

×
∑

js+1,...,jd=0,1

(
I

(n)
j

n

)α−1

(X
(j)

I
(n)
j

+ γs,d)− γs,d + o(1). (1.110)

We define

Uj1,...,jd
:=

∏
1≤i≤d
ji=0

Ui

∏
1≤i≤d
ji=1

(1− Ui) (1.111)

for j1, . . . , jd ∈ {0, 1}. By the convergence of the coefficients in (1.102) it seems
reasonable that a distributional limit X of (Xn) is a solution of the limiting
equation

X
D
=

∑
j1,...,jd=0,1

1j1,...,js(U, Y )Uα−1
j1,...,jd

(X(j) + γs,d)− γs,d. (1.112)

Therefore, we define the limiting operator

T : M1(R1,B1) → M1(R1,B1)

T (µ) :
D
=

∑
j1,...,jd=0,1

1j1,...,js(Y, U)Uα−1
j1,...,jd

(Z(j) + γs,d)− γs,d, (1.113)

where Y, U, Z(0), . . . , Z(2d−1) are independent, Y and U are uniformly distributed

on [0, 1]s and [0, 1]d respectively, Z(j) D
= µ for j = 0, . . . , 2d − 1.

Lemma 1.4.1 The limiting operator T : M0,2 → M0,2 is a contraction w.r.t. `2:

`2(T (µ), T (ν)) ≤ ξ `2(µ, ν) for all µ, ν ∈ M0,2, (1.114)

ξ =
1√

αs(α− 1/2)d−s
< 1. (1.115)
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Proof: Obviously Var(T (µ)) < ∞. Since the summands in (1.113) are identi-
cally distributed we derive

ET (µ) = 2d E

[
s∏

i=1

1{Yi<Ui}
d∏

i=1

Uα−1
i

]
γs,d − γs,d

= 2d E
[
1{Y1<U1}U

α−1
1

]s E
[
Uα−1

1

]d−s
γs,d − γs,d

= 2d(α + 1)−sα−(d−s)γs,d − γs,d

= 2d2−dγs,d − γs,d = 0, (1.116)

where the indicial equation (1.107) has been used. So T : M0,2 → M0,2 is well
defined.
To prove contractivity let µ, ν ∈ M0,2 and let (W (k), Z(k)), Y be independent,
Y, U uniformly distributed on [0, 1]s and [0, 1]d respectively. Let (W (k), Z(k))
be optimal `2–couplings of (µ, ν), i.e. W (k) ∼ µ, Z(k) ∼ ν, and `2

2(µ, ν) =
E (W (k) − Z(k))2 for k = 0, . . . , 2d − 1. Then using the independence properties
and EW (k) = EZ(k) = 0 we conclude

`2
2(T (µ), T (ν))

≤ E


 ∑

j1,...,js=0,1

1j1,...,js(Y, U)
∑

js+1,...,jd=0,1

U2α−2
j1,...,jd

(Z(j) −W (j))2




= 2d E

[
s∏

i=1

1{Yi<Ui}U
2α−2
i

d∏
i=s+1

U2α−2
i

]
`2
2(µ, ν)

= 2d(2α)−s(2α− 1)−(d−s)`2
2(µ, ν)

=
1

αs(α− 1/2)d−s
`2
2(µ, ν). (1.117)

This implies assertion (1.114). Since α ∈ (1, 2) we have 2α > α+1 and 2α−1 > α
which together with (1.107) yields

ξ =
(
αs(α− 1/2)d−s

)−1/2
=

(
2d

(2α)s(2α− 1)d−s

)1/2

<
2d

(α + 1)sαd−s
= 1. (1.118)
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The representation of the limiting operator T can be simplified. Denote

U js+1,...,jd
:=

∏
s+1≤i≤d

ji=0

Ui

∏
s+1≤i≤d

ji=1

(1− Ui). (1.119)

for js+1, . . . , jd ∈ {0, 1}. Then

T (µ)
D
=

s∏
i=1

U
α−1

2
i


 ∑

js+1,...,jd=0,1

U
α−1

js+1,...,jd
(X(js+1,...,jd) + γs,d)


− γs,d, (1.120)

where {U,X(js+1,...,jd) : js+1, . . . , jd = 0, 1} is independent, U uniformly distrib-

uted on [0, 1]d and X(js+1,...,jd) D
= µ for all js+1, . . . , jd = 0, 1. The proof follows

from an elementary calculation observing that some sets of the indicator functions
in (1.112) resp. (1.103) are disjoint and

√
U has the density 2x for 0 ≤ x ≤ 1.

With an additional translation this can be written more concisely. X is a fixed
point of T in M0,2 if and only if X̃ := X + γs,d is a fixed point of the operator T̃
on Mγs,d,2 given by

T̃ (µ) :
D
=

s∏
i=1

U
α−1

2
i

∑
js+1,...,jd=0,1

U
α−1

js+1,...,jd
X̃(js+1,...,jd). (1.121)

In (1.121) again {U, X̃(js+1,...,jd) : js+1, . . . , jd = 0, 1} is independent, U uniformly

distributed on [0, 1]d and X̃(js+1,...,jd) D
= µ ∈ Mγs,d,2.

Theorem 1.4.2 (Limit Theorem for Partial Match Query in Quadtrees) The
normalized number Xn of nodes traversed during a partial match query in a
random d-dimensional quadtree with 1 ≤ s ≤ d−1 components specified converges
w.r.t. `2 to the unique fixed point X in M0,2 of the limiting operator T given in
(1.113), i.e.

`2(Xn, X) → 0. (1.122)

The translated limiting distribution X̃ := X + γs,d is the unique fixed point in
Mγs,d,2 of the operator

T̃ (µ)
D
=

s∏
i=1

U
α−1

2
i

∑
js+1,...,jd=0,1

U
α−1

js+1,...,jd
X̃(js+1,...,jd) (1.123)

given in (1.121).
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Proof: Using (1.102), (1.110), and (1.114) the proof of Theorem 1.1.2 can be
adapted to this situation. With an := `2

2(Xn, X) analogously to (1.27)–(1.31) the
recursion

an ≤ 2d

n−1∑
j=0

E

[
s∏

i=1

1{Yi<Ui}1{I(n)
1 =j}(j/n)2α−2 + o(1)

]
ai + o(1) (1.124)

can be derived. Then as in (1.33)

an ≤ 2d

(
E

[
s∏

i=1

1{Yi<Ui}U
2α−2
i

d∏
i=s+1

U2α−2
i

]
+ o(1)

)
sup

1≤i≤n−1
ai + o(1)

= (ξ2 + o(1)) sup
1≤i≤n−1

ai + o(1) (1.125)

with ξ given in (1.115). This implies that (an)n∈N is bounded. The convergence
then follows as in (1.34).

Convergence in the `2-metric implies convergence of the second moments. There-
fore a first order asymptotic of the variance of the number of traversed nodes
Cn can be derived in dimension d with 1 ≤ s ≤ d− 1 components in the search
pattern specified. We use the simplified form of the fixed point equation (1.121).

Corollary 1.4.3 (Variance of Partial Match Query in Quadtrees) The variance
of the limiting distribution for the normalized number of traversed nodes during
a partial match query in a random d-dimensional quadtree with 1 ≤ s ≤ d − 1
components specified is given by

βs,d :=

[
((2α− 1)B(α, α) + 1)d−s − 1

αs(α− 1/2)d−s − 1
− 1

]
γs,d. (1.126)

The variance of the number of traversed nodes Cn satisfies

V ar(Cn) ∼ βs,dn
2α−2. (1.127)

The constants α and γs,d are given by (1.106)–(1.107) and B( · , · ) denotes the
Eulerian beta integral.

Proof: Observe that

Var(X) = Var(X̃) = E X̃2 − γ2
s,d (1.128)

where X̃ is the fixed point of the operator in (1.121). From (1.121) we obtain

E X̃2 = E




s∏
i=1

Uα−1
i

∑
js+1,...,jd=0,1

ks+1,...,kd=0,1

U
α−1

js+1,...,jd
U

α−1

ks+1,...,kd
X̃(js+1,...,jd)X̃(ks+1,...,kd)



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= α−s

[ ∑

∀ i: ji=ki

EU
2α−2

js+1,...,jd
E X̃2

+
∑

∃ i: ji 6=ki

E
[
U

α−1

js+1,...,jd
U

α−1

ks+1,...,kd

]
(E X̃)2

]
. (1.129)

The expectations of the occurring Us can be calculated explicitly:

EU
2α−2

js+1,...,jd
= (2α− 1)−(d−s) (1.130)

and for (js+1, . . . , jd), (ks+1, . . . , kd) and

h := card{s + 1 ≤ i ≤ d : ji 6= ki},

E
[
U

α−1

js+1,...,jd
U

α−1

ks+1,...,kd

]
=

(
EU2α−2

1

)d−s−h (
E (U1(1− U1))

α−1
)h

= (2α− 1)−(d−s−h)(B(α, α))h. (1.131)

With (1.131) in (1.129) we derive

E X̃2 = α−s

[
2d−s(2α− 1)−(d−s) E X̃2

+
d−s∑

h=1

2d−s

(
d− s

h

)
(2α− 1)−(d−s−h)(B(α, α))hγ2

s,d

]
. (1.132)

Using the binomial formula it follows

E X̃2

(
1− α−s

(
2

2α− 1

)d−s
)

= α−s2d−s

[(
B(α, α) +

1

2α− 1

)d−s

−
(

1

2α− 1

)d−s
]

γ2
s,d. (1.133)

A simplification leads to

E X̃2 =
((2α− 1)B(α, α) + 1)d−s − 1

αs(α− 1/2)d−s − 1
γ2

s,d. (1.134)

Together with (1.128) this implies the first assertion.
By convergence of the second moments of Xn we finally conclude

Var(Cn) = Var(nα−1Xn) = Var(Xn)n2α−2 = (Var(X) + o(1))n2α−2

∼ βs,dn
2α−2. (1.135)
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The standard quadtree in dimension d = 2:

For the 2-dimensional quadtree the constants γ1,2 and α in (1.106) are explicitly
known: Flajolet, Gonnet, Puech, and Robson (1993) derive

ECn ∼ γnα−1 (1.136)

with

α =

√
17− 1

3
and γ =

Γ(2α)

2Γ3(α)
. (1.137)

Therefore we can state our results in dimension 2 more explicitly. The contraction
factor ξ in (1.115) is given by

ξ =
2√

19− 3
√

17
= 0.776 . . . (1.138)

The simplified limiting operator reads

T (µ)
D
= U

α−1
2 {V α−1(Z(1) + γ) + (1− V )α−1(Z(2) + γ)} − γ (1.139)

with U, V, Z(1), Z(2) being independent, U, V uniformly distributed on [0, 1], and

Z(1), Z(2) D
= µ. By the additional translation it follows that X is the weak limit

of the normalized cost Xn of a partial match query in a random 2-dimensional
quadtree if and only if X̃ := X + γ is the fixed point of

T̃ (µ) :
D
= U

α−1
2 (V α−1Z̃(1) + (1− V )α−1Z̃(2)) (1.140)

in Mγ,2.
Since the constants α, γ have explicit representations we can simulate an

approximation of the limiting distribution iterating the limiting operator T̃ .

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

estimated density of the translated limiting distribution
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The plot was produced by iterating the translated limiting operator T̃ 10 times
starting with δγ, the Dirac measure in γ. We produced 15 000 samples of T̃ 10(δγ)
and applied a standard smoothing-routine of S-Plus on the histogram of the data.

1.5 Moments, tail, and large deviation

The techniques developed by Rösler (1991, 1992) to obtain results on the exis-
tence and convergence of Laplace transforms for the scaled running time of the
quicksort algorithm can be applied to the recursions of the partial match query
type studied in the previous sections.

Theorem 1.5.1 (Laplace transforms) The limit X of the normalized number
of nodes traversed during a partial match query in a random K-d tree, random
K-d-t tree or random relaxed K-d tree with 1 ≤ s ≤ K − 1 components specified
or in a random quadtree with 1 ≤ s ≤ d − 1 components specified has a finite
Laplace transform in some neighborhood of 0,

E exp(λX) < ∞ for all λ ∈ (−λ0, λ0). (1.141)

Assume

0 <
s

K
≤ ln(4/3)

ln(5/3)
= 0.563 . . . for the K-d tree, (1.142)

0 <
s

K
≤ ln

(
4+2t
3+2t

)t+1

ln
(

5+2t
3+2t

)t+1
for the K-d-t tree, (1.143)

0 <
s

K
≤ 0.625 for the random relaxed K-d tree, (1.144)

0 <
s

d
≤ ln(4/3)

ln(5/3)
= 0.563 . . . for the quadtree. (1.145)

Then existence and convergence of the Laplace transform hold on the whole real
line:

E exp(λXn) → E exp(λX) for all λ ∈ R. (1.146)

Proof: The proof is given here for the quadtree. The other cases can be
deduced analogously. Observe that the recursions for Xn and X given in (1.110)
and (1.112) can be written in the form

Xn
D
=

∑
j1,...,jd=0,1

1j1,...,js(U, Y )

(
I

(n)
j

n

)α−1

X
(j)

I
(n)
j

+ Cn(U, Y, I(n)) (1.147)
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and

X
D
=

∑
j1,...,jd=0,1

1j1,...,js(U, Y )Uα−1
j1,...,jd

X(j) + C(U, Y ) (1.148)

with

Cn(U, Y, I(n)) =
∑

j1,...,jd=0,1

1j1,...,js(U, Y )

(
I

(n)
j

n

)α−1

γs,d − γs,d + o(1) (1.149)

and

C(U, Y ) =
∑

j1,...,jd=0,1

1j1,...,js(U, Y )Uα−1
j1,...,jd

γs,d − γs,d. (1.150)

The distributions and (in-)dependencies are as in (1.110) and (1.112). The re-
cursion (1.148) satsfies the conditions of Theorem 6 in Rösler (1992) with

Tj = 1j1,...,js(U, Y )

(
I

(n)
j

n

)α−1

. (1.151)

This implies the existence of a neighborhood (−λ0, λ0) where X has finite Laplace
transform.

For the second assertion note that

ECn(U, Y, I(n)) = 0 for all n ∈ N (1.152)

since the Xn and X
(j)

I
(n)
j

in (1.147) are centered. Define

Vn :=
∑

j1,...,jd=0,1

1j1,...,js(U, Y )

(
I

(n)
j

n

)2α−2

− 1. (1.153)

It is
∑2d−1

j=0 I
(n)
j = n− 1. The condition (1.145) and the indicial equation (1.107)

imply α ≥ 3/2. Thus

Vn < 0 for all n ∈ N. (1.154)

The convergence of the coefficients in (1.102) implies

EVn −→ E
∑

j1,...,jd=0,1

1j1,...,js(U, Y )U2α−2
j1,...,jd

− 1 = ξ − 1 < 0 (1.155)

with ξ given in (1.115). This yields

sup
n∈N

EVn < 0. (1.156)
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From the representation (1.149) of Cn(U, Y, I(n)) it is obvious that

sup
n∈N

‖Cn‖∞ < ∞. (1.157)

The properties (1.152), (1.154), (1.156) and (1.157) are sufficient to obtain

E exp(λXn) −→ E exp(λX), λ ∈ R. (1.158)

as in Lemma 4.1 and Theorem 4.2 in Rösler (1991).

In particular Theorem 1.5.1 implies exponential tails and the existence of all
moments of the limiting distributions. Under condition (1.145) (resp. (1.142),
(1.143), (1.144)) additionally convergence of all moments follows and an estimate
for large deviations of the (unscaled) cost Cn can be established: For all λ > 0
there exists a cλ > 0 so that for any sequence (an) of positive, real numbers
holds:

P(Cn ≥ an) ≤ cλ exp
(
−λ

an

nα−1

)
. (1.159)

The existence of densities of the limiting distributions with respect to the
Lebesgue measure can be deduced following the scheme of Theorem 2.1 in Tan
and Hadjicostas (1995) for the limiting distribution of the running time of the
Quicksort algorithm. The translated limit distributions (given by the operators
(1.38), (1.95), (1.121) and analoguosly for the K-d-t tree) are supported by
[0,∞). The densities are positive almost everywhere on [0,∞) (cf. Theorem 2.4
in Tan and Hadjicostas (1995)).





Chapter 2

Internal path length

Trees are fundamental data structures for the purpose of sorting and searching
in a file. There are several characteristics for measuring the performance of a
certain tree. The depth of a node in a tree is the number of nodes from the root
down to this node. It indicates the effort to insert this node into the tree. The
height of a tree is the maximal depth of its nodes, which measures the worst case
performance for inserting a node into the tree. The internal path length is the
sum of all depths of the internal nodes in the tree. The internal path length,
therefore, is a indicator for the total cost for building up the tree from the data.

In this chapter the internal path length of several trees, which are based
on key comparisons is under consideration. The data are taken independently
and identically distributed from some distribution to build up the tree. We are
interested in limit laws for the normalized internal path length.

Some common trees are the random binary search tree, the random m-ary
search tree, the random quadtree and the random median-of-(2k + 1) tree. In
order to derive a uniform limit theorem for the internal path length of a more
general type of tree which includes in particular these trees we consider the
random split tree model introduced in Devroye (1998). The random split tree is
a general model of a tree which contains all the trees mentioned above as well as
many other variants of trees. A related model of a general class of random trees
is discussed in Aldous (1996).

In the first section of this chapter the notion of the random split tree is
recalled. Then the limit law for a large class of split trees is given. In the final
section this limit theorem is specialized to the random quadtree and the random
m-ary search tree, for which the limit law of the internal path length has been
unknown so far.

35
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2.1 The random split tree

We briefly recall how the split tree works: Given are a fixed branch factor b, the
vertex capacity s and for the definition of the distribution process two additional
integers s0 and s1 with

0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s + 1− s0. (2.1)

Furthermore a random splitting vector V = (V1, . . . , Vb) of (random) probabili-
ties,

∑
Vk = 1, Vk ≥ 0, is given. Now, the corresponding random split tree is

constructed in the following way. At each node of an empty skeleton tree with
branch factor b (this is an infinite rooted tree with b subtrees at each node) an
independent copy of V is attached. Each node holds at most s items. Initially,
there are no items in the tree. Items are added to the tree rooted at u as follows.
Let (V1, . . . , Vb) be the splitting vector at node u. If u is not a leaf choose subtree
i at random according to the probabilities (V1, . . . , Vb) and add this item to the
ith subtree. If u is a leaf with less than s (vertex capacity) items, only add this
additional item to the leaf. If u is a leaf already holding s items we have to
distribute the s + 1 items: Place s0 randomly selected items at u, then send s1

randomly selected items to each of the subtrees. The remaining s + 1− s0 − bs1

items are sent down to the subtrees independently at random according to the
splitting probabilities (V1, . . . , Vb). This process may have to be repeated several
times if s0 = 0.

The random binary search tree built up from independent, uniformly on [0, 1]
distributed data for example corresponds to the random split tree with vertex
capacity s = 1, branch factor b = 2 and splitting vector V = (U, 1−U), where U
is uniformly distributed on [0, 1]. Further s0 = 1 and s1 = 0. The parameters for
fitting the other common trees into the model of a random split tree are given
in Devroye (1998).

Devroye gives a universal law of large numbers and a universal limit law for
the depth Dn of the nth inserted item as well as a general law of large numbers
for the height Hn of the split tree with n items. Without loss of generality it can
be assumed that the splitting vector V = (V1, . . . , Vb) has identically distributed
components (see Devroye (1998)). Then a r.v. V with V ∼ V1 is called a splitter.
The asymptotic behavior of the depth Dn only depends on

µ := bE [V ln(1/V )] and (2.2)

σ2 := bE [V ln2 V ]− µ2. (2.3)

The asymptotic of the height is related additionally to the moments of the split-
ter. Observe that for the analysis of the depth and the law of large numbers of
the height there is no knowledge of the joint distribution of the splitting vector
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V = (V1, . . . , Vb) needed. Only the marginal distribution of the splitter is used
for these asymptotics. We will see, that the limit law for the internal path length
depends on the joint distribution of (V1, . . . , Vb).

2.2 Internal path length in split trees

For the distributional analysis of the internal path length in a random split tree
the method introduced by Rösler (1991) for the analysis of the running time of
the quicksort algorithm is extended. As it is well known the running time of
quicksort is distributed as the internal path length of the random binary search
tree. It seems difficult to extend the martingal method, which was used in
Régnier (1989) for the analysis of quicksort.

In the following we assume that there are no empty internal nodes in the split
tree, i.e. s0 ≥ 1. Furthermore assume that the splitting vector V = (V1, . . . , Vb)
has identically distributed components which are continuous with respect to the
Lebesgue measure. Now the splitting vector at the root of the tree is denoted by
V = (V1, . . . , Vb). Denote by I(n) the vector of the cardinalities of the subtrees of
the root of the random split tree with n keys inserted. For n ≥ s + 1 according
to the distribution process of the items we have

PI(n) | V=(v1,...,vb) = (δs1 ⊗ . . .⊗ δs1) ∗M(n− s0 − bs1, v1, . . . , vb). (2.4)

This means that given V the cardinalities are distributed as the fixed vector
(s1, . . . , s1) plus a multinomial r.v. with the indicated parameters. In particular
this implies a weak law of large numbers for I(n):

I(n)

n

P−→ V = (V1, . . . , Vb). (2.5)

Let Yn denote the internal path length of the random split tree with n items
inserted, i.e. Yn is the sum of the depths of the items in the tree. The depth of
the root is defined to be one; Y0 := 0. Since the subtrees of the random split
tree are given their cardinalities again distributed as random split trees with the
same parameters and independent of each other the following recursion for the
internal path length holds in distribution

Yn
D
=

b∑

k=1

Y
(k)

I
(n)
k

+ n. (2.6)

Here (Y
(k)
i ) are independent copies of (Yi) and {(Y (k)

i ) : k = 1, . . . , b}, I(n) are
independent. For the scaling we assume that the mean of Yn admits an expansion
of the form

EYn = µ−1n ln n + dn + o(n) (2.7)
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with µ > 0 given in (2.2) and d ∈ R. In the next section examples of trees of this
type and a general approach to a derivation of such an expansion are discussed.
It is proved later that for these split trees the variance of Yn is asymptotically of
the form ∼ vn2. Therefore the right normalization of Yn is given by

Xn :=
Yn − EYn

n
. (2.8)

A straightforward calculation using (2.6) leads to the modified recursion

Xn
D
=

b∑

k=1

I
(n)
k

n
X

(k)

I
(n)
k

+ Cn(I(n)) (2.9)

where (X
(k)
i ) are independent copies of Xi, further {(X(k)

i ), k = 1, . . . , b}, I(n)

are independent and

Cn(i) := 1 +
1

n

(
b∑

k=1

EYik − EYn

)
(2.10)

for i = (i1, . . . , ib) with
∑

ik = n− s0. In order to obtain a limiting form of the
recursion (2.9) we introduce the simplex

Tb :=

{
x ∈ [0, 1]b :

b∑

k=1

xk = 1

}
(2.11)

and the entropy functional

C : Tb → R, C(x) := 1 + µ−1

b∑

k=1

xk ln xk (2.12)

where x ln x is defined to be 0 for x = 0. Let

Gn :=

{
(i1, . . . , ib) ∈ Nb :

b∑

k=1

ik = n− s0

}
(2.13)

denote the domain of Cn, then as in Rösler (1991) C approximates Cn in the
following sense:

Lemma 2.2.1 Let (z(n)) be a sequence, z(n) ∈ Gn such that z(n)/n → z ∈ (0, 1]b,
then

lim
n→∞

Cn(z(n)) = C(z). (2.14)

Furthermore

sup
n∈N

‖Cn‖∞ < ∞. (2.15)
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Proof: Let (z(n)) be a sequence, (z(n)) ∈ Gn such that z(n)/n → z ∈ (0, 1]b.
Using the expansion (2.7) of the expectation of Yn,

EYn = µ−1n ln n + dn + Rn with Rn/n = o(1),

we obtain

Cn(z(n)) = 1+
1

n

(
b∑

k=1

EY
z
(n)
k
− EYn

)
(2.16)

= 1+
1

n

(
b∑

k=1

(
µ−1z

(n)
k ln z

(n)
k + dz

(n)
k + R

z
(n)
k

)
−µ−1n ln n−dn−Rn

)
.

Since
∑b

k=1 z
(n)
k = n− s0 by definition of Gn,

b∑

k=1

µ−1z
(n)
k ln z

(n)
k − µ−1n ln n =

b∑

k=1

µ−1z
(n)
k ln

z
(n)
k

n
− µ−1s0 ln n. (2.17)

With (2.16) and (2.17) we derive

Cn(z(n)) = 1 +
1

n

( b∑

k=1

(
µ−1z

(n)
k ln

z
(n)
k

n
+ R

z
(n)
k

)
(2.18)

− µ−1s0 ln n− s0d−Rn

)

= C(z(n)/n) +
1

n

b∑

k=1

R
z
(n)
k
− 1

n

(
µ−1s0 ln n− s0d−Rn

)
.

Now observe that

2α := min
1≤k≤b

zk > 0 (2.19)

since z ∈ (0, 1]b. This implies z
(n)
k ≥ αn for 1 ≤ k ≤ b and n sufficiently large. Let

Rn := supi≥n |Ri|. Then (Rn)n∈N is decreasing and Rn/n → 0. For n sufficiently
large it follows (denoting by bxc the integer part of x for x ≥ 0)

∣∣∣∣∣
1

n

b∑

k=1

R
z
(n)
k

∣∣∣∣∣ ≤ 1

n

b∑

k=1

R
z
(n)
k

≤ 1

n

b∑

k=1

Rbαnc

≤ bα
1

bαncRbαnc → 0 for n →∞. (2.20)



40 CHAPTER 2. INTERNAL PATH LENGTH

The third summand of (2.18) also tends to zero. So (2.18) implies

Cn(z(n)) = C(z(n)/n) + o(1).

Therefore, continuity of C and the triangle inequality imply

∣∣Cn(z(n))− C(z)
∣∣ ≤

∣∣Cn(z(n))− C(z(n)/n)
∣∣ +

∣∣C(z(n)/n)− C(z)
∣∣ −→ 0.

In order to get an estimate for Cn(z(n)) uniformly in z(n) ∈ Gn let

L := sup
n∈N

|Rn/n| < ∞.

Then (2.18) implies

|Cn(z(n))| ≤ |C(z(n)/n)|+ bL + o(1)

≤ ‖C‖∞ + bL + o(1). (2.21)

The second claim follows.

Lemma 2.2.1 and the convergence of the coefficients in (2.5) suggest that a
limit X of (Xn) is a solution of the limiting equation

X
D
=

b∑

k=1

VkX
(k) + C(V) (2.22)

where X(k) are i.i.d. copies of X further {X(k), k = 1, . . . b},V are independent
and V is a splitting vector. Define the random affine operator

T : M1(R1,B1) → M1(R1,B1), T (µ)
D
=

b∑

k=1

VkZ
(k) + C(V) (2.23)

where (Z(k)),V are independent, Z(k) ∼ µ and V is a splitting vector.

Lemma 2.2.2 T : M0,2 → M0,2 is a contraction w.r.t. `2:

`2(T (µ), T (ν)) ≤ ‖V‖2 `2(µ, ν) for all µ, ν ∈ M0,2. (2.24)

with

‖V‖2 =

(
b∑

k=1

V 2
k

)1/2

< 1. (2.25)
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Proof: Obviously Var (T (µ)) < ∞ and using (2.2)

ET (µ) = EC(V) = 1 + µ−1bE [V1 ln V1] = 0. (2.26)

so T is a well defined mapping T : M0,2 → M0,2.

To prove contractivity let µ, ν ∈ M0,2 and let (W (k), Z(k)),V be indepen-
dent, V a splitting vector. Let (W (k), Z(k)) be optimal `2–couplings of (µ, ν), i.e.
W (k) ∼ µ, Z(k) ∼ ν and `2

2(µ, ν) = E (W (k)−Z(k))2. Then using the independence
properties and EW (k) = EZ(k) = 0

`2
2(T (µ), T (ν)) = `2

2

(
b∑

k=1

VkW
(k) + C(V ),

b∑

k=1

VkZ
(k) + C(V )

)

≤ E

(
b∑

k=1

Vk(W
(k) − Z(k))

)2

=
b∑

k=1

E
[
V 2

k (W (k) − Z(k))2
]

= b EV 2
1 `2

2(µ, ν)

= ‖V‖2
2 `2

2(µ, ν). (2.27)

It is
∑b

k=1 Vk = 1 and P(Vk = 1) = 0 since we assumed the existence of a density

of Vk. This implies ‖V‖2
2 = E

∑b
k=1 V 2

k < E
∑b

k=1 Vk = 1.

By Banach’s fixed point theorem T has a unique fixed point X in M0,2 .

Theorem 2.2.3 (Limit theorem for the internal path length in random split
trees) Let Yn denote the internal path length of a random split tree with branch
factor b ≥ 1, vertex capacity s ≥ 1, splitting vector V = (V1, . . . , Vb) and dis-
tribution parameters s0 ≥ 1 and s1 ≥ 0. Let Vi be identically distributed and
continuous with respect to the Lebesgue measure. Assume

EYn = µ−1n ln n + dn + o(n) (2.28)

with µ = bE [V1 ln(1/V1)] and define

Xn :=
Yn − EYn

n
. (2.29)

Then the following holds:
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(a) `2(Xn, X) → 0, (2.30)

where X is the fixed point of T given in (2.23) in M0,2,

(b) Var(Yn) ∼ Var(X) n2, (2.31)

(c) exponential moments exist and converge:

E exp(λXn) → E exp(λX) λ ∈ R, (2.32)

(d) P(|Yn − EYn| ≥ εEYn) = O(n−k) for all k ∈ N. (2.33)

Proof: Ad (a): Let X
(k)
n ∼ Xn, X(k) ∼ X, 1 ≤ k ≤ b such that (X

(k)
n , X(k))

are optimal couplings of Xn, X, i.e. `2
2(Xn, X) = E (X

(k)
n − X(k))2. Further-

more let I(n) be as in (2.4) and V a splitting vector. Finally assume that

((X
(1)
n )n∈N, X(1)), . . . , ((X

(b)
n )n∈N, X(b)), (I(n)/n,V) are independent. Then using

the independence properties and EX(k) = EX
(k)
n = 0 we obtain

`2
2(Xn, X) = `2

2

(
b∑

k=1

I
(n)
k

n
X

(k)

I
(n)
k

+ Cn(I(n)),
b∑

k=1

VkX
(k) + C(V)

)

≤ E

(
b∑

k=1

(
I

(n)
k

n
X

(k)

I
(n)
k

− VkX
(k)

)
+ Cn(I(n))− C(V)

)2

= E




b∑

k=1

(
I

(n)
k

n
X

(k)

I
(n)
k

− VkX
(k)

)2

+
(
Cn(I(n))− C(V)

)2




=
b∑

k=1

E

(
I

(n)
k

n
X

(k)

I
(n)
k

− VkX
(k)

)2

+ E
(
Cn(I(n))− C(V)

)2
. (2.34)

By (2.5) respectively dominated convergence and Lemma 2.2.1 as n →∞

E (I
(n)
k /n− Vk)

2 → 0 and (2.35)

E (Cn(I(n))− C(V))2 → 0. (2.36)

For the first term of (2.34) consider

E

(
I

(n)
k

n
X

(k)

I
(n)
k

− VkX
(k)

)2

= E

(
I

(n)
k

n

(
X

(k)

I
(n)
k

−X(k)

)
+

(
I

(n)
k

n
− Vk

)
X(k)

)2
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= E
(

I
(n)
k

n

(
X

(k)

I
(n)
k

−X(k)

))2

+ E
( (

I
(n)
k

n
− Vk

)
X(k)

)2

+ 2 E

[
I

(n)
k

n

(
X

(k)

I
(n)
k

−X(k)

) (
I

(n)
k

n
− Vk

)
X(k)

]
. (2.37)

By independence and (2.35) the second term in (2.37) converges to zero. With
the Cauchy-Schwarz-inequality and (2.35) the third term in its absolute value is
estimated from above by

2 E




(
I

(n)
k

n

)2 (
I

(n)
k

n
− Vk

)2 (
X(k)

)2




1/2 (
E

(
X

(k)

I
(n)
k

−X(k)

)2
)1/2

≤ o(1)E
(

X
(k)

I
(n)
k

−X(k)

)2

+ o(1). (2.38)

The last inequality holds since both sides are o(1) if the expectation on the right
hand side is less than 1. With (2.34)–(2.38) and denoting an := `2

2(Xn, X) we
derive

an ≤ bE
( (

I
(n)
k

n
+ o(1)

) (
X

(k)

I
(n)
k

−X(k)

))2

+ bn

= b

n−s0∑
i=0

P({(I(n)
k /n) = (i/n)})

× ((i/n)2 + o(1)) E (X
(k)
i −X(k))2 + bn (2.39)

where bn → 0 for n →∞. With (2.35) we conclude

an ≤ b

n−s0∑
i=0

P({(I(n)
k /n) = (i/n)}) ((i/n)2 + o(1)) sup

0≤i≤n−s0

ai + bn

= (‖V‖2
2 + o(1)) sup

0≤i≤n−s0

ai + bn (2.40)

which implies using s0 ≥ 1 that (an) is bounded. This implies as in Rösler (1991)
that for a given ε > 0 there exists a n0 such that for n ≥ n0

an ≤ a + ε with a := lim sup
n→∞

an (2.41)

and the prefactor in (2.40) is uniformly less than a γ < 1. Therefore

an ≤ b

n0−1∑
i=0

P

(
I

(n)
k

n
=

i

n

)((
i

n

)2

+ o(1)

)
ai
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+ b

n−s0∑
i=n0

P

(
I

(n)
k

n
=

i

n

) ((
i

n

)2

+ o(1)

)
(a + ε) + bn

≤ γ(a + ε) + o(1). (2.42)

Then 0 ≤ a = lim sup an ≤ γ(a + ε) which implies a = 0.

Ad (b): The `2-convergence in (a) implies convergence of the second moments.
This implies

Var(Yn) = Var(nXn) = Var(Xn) n2 = (Var(X) + o(1)) n2

∼ Var(X) n2. (2.43)

Ad (c): Proceed as in Rösler (1991). Lemma 4.1 in Rösler (1991) for the special
case of the random binary search tree can be extended to the general split tree:

∀L > 0 ∃KL > 0 ∀n ∈ N ∀λ ∈ [−L,L] : E exp(λXn) ≤ exp(λ2KL). (2.44)

In place of the random variable Un in Röslers proof use

Wn := ‖I(n)/n‖2 − 1. (2.45)

Then

(1) − 1 ≤ Wn < 0 for all n ∈ N
(2) sup

n∈N
EWn < 0

(3) sup
n∈N

‖Cn‖∞ < ∞ by Lemma 2.2.1.

For the proof of (2) note that EWn < 0 for all n ∈ N and Wn
D→ ‖V‖2 − 1

which implies by boundedness of Wn, EWn → E (‖V‖2 − 1) < 0. From (1)–(3)
one obtains (2.44) as in Rösler (1991). The exponential bound in (2.44) implies
uniform integrability of exp(λXn) which by part (a) yields (c).

Ad (d): Using the expansion (2.28) one deduces as in Corollary 4.3 in Rösler
(1991): Let k ∈ N and ε > 0 given. With λ := kµ/ε in (c) we derive

P(|Yn − EYn| ≥ εEYn) = P(exp(λ|Xn|) ≥ exp((ελEXn)/n))

≤ E exp(λ|Xn|)
exp(λε(µ−1 ln n + d + o(1)))

≤ (E exp(λ|X| − λεd) + o(1)) n−λεµ−1

= O(n−k), (2.46)

where Markov’s inequality has been used.
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2.3 Applications to special trees

The internal path length of some special cases of the random split tree have
already been analyzed. For the random binary search tree the results of Theorem
2.2.3 have been given in the original paper of Rösler (1991). The random median–
of–(2k + 1) search tree has been treated in Rösler (1999). This tree corresponds
to the random split tree with branch factor b = 2, vertex capacity s0 = 1,
distribution parameters s1 = k, s = 2k and splitting vector V = (V, 1 − V ),
where V is the median of 2k + 1 independent, uniformly on [0, 1] distributed r.v.

Another example which fits not exactly in the model of a random split tree
but is of similar type is the random recursive tree. The recursion for the path
length Xn of the random recursive tree is of the slightly modified form

Xn
D
= X

(1)
K + X

(2)
n−K + K.

(X
(k)
i ) are i.i.d. copies of Xi, (X

(1)
i ), (X

(2)
i ), K are independent and K is uniformly

distributed on {1, . . . , n − 1}. For this tree the limit law for Xn was proved by
a similar method in Dobrow and Fill (1999). In this paper the authors also
derive explicitly the higher moments of the limiting distribution in terms of the
ζ-function.

Also quadtrees (discussed for its own in Neininger and Rüschendorf (1999))
and m-ary search trees are in the range of Theorem 2.2.3.

Quadtrees

The random d-dimensional quadtree (see section 1.4) is the random split tree
with branch factor b = 2d, vertex capacity s0 = 1, distribution parameters s =
1, s1 = 0 and splitting vector V = 〈U〉. Here U is uniformly on [0, 1]d distributed
and 〈U〉 defined by (1.100). Therefore the splitter V is a product of d independent
and uniformly on [0, 1] distributed r.v. This implies

µ = bE [V ln(1/V )] =
d

2
. (2.47)

The mean of the internal path length Yn of a random d-dimensional quadtree
has been found in Flajolet, Labelle, Laforest, and Salvy (1995):

EYn =
2

d
n ln n + cdn + o(1). (2.48)

(The first order asymptotic has been given before independently by Flajolet,
Gonnet, Puech, and Robson (1993) and Devroye and Laforest (1990).) The con-
ditions of Theorem 2.2.3 are satisfied. The scaled internal path length converges
in `2 to the unique fixed point of

X
D
=

2d−1∑

k=0

〈U〉kX(k) + C(〈U〉) (2.49)
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in M0,2 where X(k), U are independent, X(k) ∼ X, U uniformly distributed on
[0, 1]d and the entropy functional given by

C(x) = 1 +
2

d

2d−1∑

k=0

xk ln xk. (2.50)

Part (b) of Theorem 2.2.3 gives the first order asymptotic of the variance of the
internal path length

Corollary 2.3.1 (Variance for the internal path length in quadtrees) The vari-
ance of the internal path length Yn in a random d-dimensional quadtree satisfies

Var(Yn) ∼ vdn
2 (2.51)

with

vd =
21− 2π2

9d(1− (2/3)d)
. (2.52)

Proof: Let X denote the limit of the scaled path length. (2.49) and the
independence properties imply

EX2 =

(
1−

(
2

3

)d
)−1

EC2(〈U〉). (2.53)

By calculation as in the proof of Lemma 2.2.2

EC2(〈U〉) = −1 +
4

d2
E




2d−1∑

k=0

〈U〉k ln〈U〉k




2

(2.54)

= −1 +
4

d2

2d−1∑
i,j=0

E [〈U〉i〈U〉j ln〈U〉i ln〈U〉j]. (2.55)

The distribution of the factors 〈U〉i〈U〉j ln〈U〉i ln〈U〉j only depends on the num-
ber of digits in which the dual representations of i and j differ (see (1.96), (1.97)).
Therefore

E




2d−1∑

k=0

〈U〉k ln〈U〉k




2

=
d∑

h=0

2d

(
d

h

)
lh. (2.56)

lh can be calculated by first applying the functional equation of the logarithm.
This yields d2 terms of the form

∫

[0,1]d

d−h∏
i=1

u2
i

d∏

i=d−h+1

(ui(1− ui)) ln ũk ln ũl dλd(u) (2.57)
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with ũk = uk for k ≤ d− h and ũk = 1− uk for k > d− h. Then distinguish the
cases 1 ≤ k, l ≤ d − h and d − h + 1 ≤ k, l ≤ d for k = l and k 6= l and finally
1 ≤ k ≤ d − h < l ≤ d. The arising integrals can be calculated explicitly. This
implies the representation

vd =

(
1−

(
2

3

)d
)−1 [

−1 +
4

d2

(
2

3

)d d∑

h=0

(
d

h

)(
1

2

)h

sh

]
(2.58)

where

sh =

(
d

3
− h

2

)2

+
d

9
+

(
5

4
− π2

6

)
h. (2.59)

Now a simplification with the help of Maple1 leads to the stated variance.

m-ary search trees

The random m-ary search tree (see Mahmoud (1992)) is the random split tree
with branch factor b = m, vertex capacity s0 = m − 1, distribution parameters
s = m − 1, s1 = 0 and split vector V = (V1, . . . , Vm), where V1, . . . , Vm are the
spacings of m − 1 i.i.d. random variables uniformly distributed on [0, 1]. For
U1, . . . , Um−1 i.i.d. and uniformly distributed on [0, 1] denote by U(1), . . . , U(m−1)

the order statistics of U1, . . . , Um−1. Then

V D
= (U(1), U(2) − U(1), . . . , U(m−2) − U(m−1), 1− U(m−1)). (2.60)

The splitter V is given as the minimum of m−1 independent, uniformly on [0, 1]
distributed r.v. This implies

µ = bE [V ln(1/V )] = Hm − 1, (2.61)

where Hm denotes the mth harmonic number, Hm =
∑m

i=1 1/i. The mean of the
internal path length Yn for the random m-ary search tree has been analyzed in
Mahmoud (1986):

EYn =
1

Hm − 1
Hn(n + 1) + cmn +O(nβ) (2.62)

with β < 1. Substituting Hn = ln n + γ + O(1/n) in (2.62) with γ being Euler’s
constant EYn is of the form (2.28) with leading constant µ−1 = 1/(Hm − 1).

1This was done by P. Flajolet.
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Thus the conditions of Theorem 2.2.3 are satisfied. The normalized path length
converges in `2 to the unique fixed point of

X
D
=

m∑

k=1

VkX
(k) + C(V), (2.63)

where X(k),V are independent, X(k) ∼ X and V = (V1, . . . , Vm) is the vector of
spacings of m− 1 independent, uniformly on [0, 1] distributed r.v. The entropy
functional is given here by

C(x) = 1 +
1

Hm − 1

m∑

k=1

xk ln xk. (2.64)

In principle higher moments can be calculated from the fixed point equation
(2.63). The first order asymptotic for the second order moment of the path
length of m-ary search trees has already been achieved by generating function
methods (cf. Mahmoud (1992, p. 142)).

Remarks: From the point of view of Theorem 2.2.3 it is a challenging task
to identify those splitting vectors V = (V1, . . . , Vm), which induce an expansion
(2.28) for the mean of the internal path length. For the case of the random
quadtree and the m-ary search tree these expansions were derived by generating
function analysis. A new and general approach to this problem was given in
Rösler (1999) (see also Bruhn (1996)) using arguments from renewal theory. In
particular Rösler derived the expansion for the median–of–(2k + 1) search tree
via this new method. These techniques might be appropriate to characterize the
splitting vectors satisfying the conditions of Theorem 2.2.3.

The analysis given in this chapter does not cover the cases of digital structures
as tries or digital search trees, since Theorem 2.2.3 is restricted to continuous
splitting vectors. In the case of digital structures this analysis leads to a degener-
ation of the limiting equation in the sense that the entropy functional C cancels
out. Then the Dirac measure in 0 turns out to be the limit of the scaled path
length. This indicates that the scaling of the internal path length by n−1 is of the
wrong order of magnitude. In fact for the case of the digital search tree in the
asymmetric Bernoulli model Jacquet and Szpankowski (1995) showed that the
variance of the internal path length is of the order n ln n and that the (correctly)
normalized path length tends to the standard normal distribution.

Finally we remark that the estimate for large deviations in part (d) of Theo-
rem 2.2.3 has been improved by McDiarmid and Hayward (1996) for the case of
the binary search tree and the median–of–(2k + 1) tree. A more general result
in this direction for the binary search tree was given in Knessl and Szpankowski
(1999).



Chapter 3

Multiple Quickselect

The Find algorithm (also called Quickselect or one-sided Quicksort) was intro-
duced in Hoare (1961, 1962) for finding order statistics in a given list. Find is
based on the same design principle as the related quicksort algorithm. The prob-
lem is to select the jth smallest element of an array containing n data. First,
choose by some (randomized) rule a certain element of the array, the pivot, and
bring it into its correct position. This means rearrange the array so that left of
the pivot being only smaller, right to it being only greater elements. Now, if the
position of the pivot is j we are done and return the pivot. If the pivot’s order
is greater than j, then the jth element must be in the part of the array with
the smaller elements, otherwise in the part with the greater elements. Apply
the procedure recursively to that segment which contains the desired statistic to
continue the selection procedure and abandon the other subarray.

Multiple Quickselect is a variant of Find modified to search for more than one
order statistic at a time. Multiple Quickselect works as Find bringing first the
pivot to its right position. Since two or more statistics are sought, one or both of
the generated subarrays might contain statistics to be reported. Thus multiple
Quickselect may be applied recursively to one or both subarrays to search for
the desired statistics smaller respectively greater than the pivot. For an exact
description of the algorithm see Lent and Mahmoud (1996).

The running time of multiple Quickselect is measured by the number of key
comparisons done during the execution of the algorithm. For the probabilistic
analysis of the running time assume the uniform model, i.e. assume all permuta-
tions of the ranks of the data to be equally likely. Denote by p ≥ 1 the number
of order statistics sought. There are several reasonable models for these statis-
tics. So far the orders of the statistics searched for have been assumed to be
fixed, uniformly distributed over their range, increasing as a fixed fraction of the
number of keys n, and also the number p of statistics itself has been considered
to be increasing with n as a fixed fraction of n or to be of the form n − l with

a fixed l ≥ 1. Let C
(m1,...,mp)
n denote the number of key comparisons of multiple

49



50 CHAPTER 3. MULTIPLE QUICKSELECT

Quickselect in the uniform model seeking for fixed order statistics m1, . . . , mp.
Denote by Cp(n) the number of key comparisons of multiple Quickselect in the
uniform model if the statistics are uniformly distributed over

{(m1, . . . , mp) ∈ {1, . . . , n}p |m1 < m2 < . . . < mp}. (3.1)

In the case p = 1, which is Find, Mahmoud, Moddares, and Smythe (1995)
showed

EC1(n) = 3n− 8Hn + 13− 8Hn/n = 3n + o(n), (3.2)

Var(C1(n)) ∼ n2 for n →∞, (3.3)

and weak convergence for the normalized version of C1(n). For the r.v. C
(m1,...,mp)
n

with fixed orders m1, . . . ,mp and p = 1 Knuth (1972) gave an exact formula

for EC
(m)
n , Kirschenhofer and Prodinger (1998) found an explicit formula for

Var C
(m)
n . Weak convergence for the normalized versions of C

(m)
n was proved in

Mahmoud et al. (1995). In the case p = 1 when m is a fixed fraction of n, i.e.
m ∼ %n for a 0 < % < 1 the formula

EC(m)
n = e%n + o(n) with e% = 2− 2(% ln % + (1− %) ln(1− %)) (3.4)

can be deduced directly from Knuth’s formula. Var C
(m)
n in this case was de-

rived asymptotically in Paulsen (1997) and Kirschenhofer and Prodinger (1998).
Paulsen also considered higher moments. Weak convergence for the scaled ver-
sions follows from the work of Grübel and Rösler (1996), where a limit law for

the whole Find process (C
([%n+1])
n )0≤%≤1 in the space D([0, 1]) of càdlàg functions

on [0, 1] endowed with the Skorokhod topology is given (see also Grübel (1998)).
In the case p ≥ 1 Lent and Mahmoud (1996) gave the asymptotic

ECp(n) = (2Hp + 1)n− 8p ln n +O(1). (3.5)

An explicit (non asymptotic) formula for ECp(n) was given in Prodinger (1995),

where also the exact expansion for EC
(m1,...,mp)
n is derived. The variance of Cp(n)

for p ≥ 2 was calculated exactly in Panholzer and Prodinger (1998). In this
work also cases where p is a fraction of n or p = n − l for a fixed l ≥ 1 are
considered as well as median–of–three variants of multiple quickselect. For the
median–of–three variant the pivot is drawn as the median of three independent
samples uniformly distributed over the keys. In the case p = 1 of Find for the
median–of–three variant EC

(m)
n and ECp(n) have been given asymptotically in

Kirschenhofer, Mart́ınez, and Prodinger (1997), (see also Anderson and Brown
(1992)). The model where m ∼ %n is a fraction of n was treated for the median–
of–(2k + 1) version of Find in Grübel (1999). The problem of finding an optimal
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k for a median–of–(2k + 1) variant for Quicksort or Find has been investigated
in Mart́ınez and Roura (1998).

Also the passes of multiple Quickselect have been analyzed. These are the
number of recursive calls of the algorithm during its execution. Denote by

P
(m1,...,mp)
n and P p(n) the number of passes in the uniform model with fixed or-

der statistics m1 . . . ,mp respectively uniformly distributed statistics. In the Find

case p = 1, EP
(m)
n has already been given exactly in Arora and Dent (1969). A

formula for Var P
(m)
n was derived in Kirschenhofer and Prodinger (1998). First

moments for the median–of–three variant were treated in Kirschenhofer et al.
(1997). For p ≥ 1 Kirschenhofer and Prodinger (1998) calculated EP

(m1,...,mp)
n

and EP p(n). Second moments for P p(n) and models with p being a fraction of
n or of the form p = n − l for fixed l were treated in Panholzer and Prodinger
(1998).

In the first section of this chapter a limit law for Cp(n) in the median–of–three
variant will be derived based on the contraction method. In the second section
this limit law is specialized to the case p = 1, which is the median–of–three
version of Find. Further results on the asymptotics of all moments, estimates
for large deviations and results concerning the Laplace and Fourier transform
are given for the median–of–three Find.

Remark: Originally I treated a limit law for Cp(n) for the standard multiple
Quickselect without median–of–three selection of the pivot element by means of
the contraction method. This was found independently by the same approach
in Mahmoud and Smythe (1998). Since the same method also works for the
median–of–three selection this variant is treated here in order to keep originality.

3.1 Median–of–three multiple Quickselect

Denote by Cp(n) the number of key comparisons of multiple Quickselect applied
to an array with n data. The orders of the data are assumed to be randomly
permuted and the statistics sought are assumed to be uniformly distributed over
the set in (3.1). The pivot is drawn as the median of three independent samples
uniformly distributed over the data. Assume that the uniformity assumptions
still hold in the subarrays after the pivot is inserted to its final position. This
can be achieved using an appropriate procedure for the rearrangement of the
array. Let Zn denote the position of the pivot after the first partitioning step.
Zn is distributed as the median of three independent and uniformly on {1, . . . , n}
distributed r.v. Let Mp,n = (Mp,n

1 , . . . , Mp,n
p ) denote the statistics sought, i.e.

Mp,n is uniformly distributed over the set in (3.1). For the insertion of the
pivot element we need n − 1 key comparisons. In the case Zn = Mp,n

i for some
i ∈ {1, . . . , p} we have to select recursively (i − 1) statistics in Zn − 1 keys and
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independently (p − i) statistics in n − Zn keys. In the case Mp,n
i < Zn < Mp,n

i+1

for a i ∈ {1, . . . , p − 1} we have to select i statistics in Zn − 1 keys and (p − i)
statistics in n− Zn keys. The cases Zn < Mp,n

1 and Zn > Mp,n
p lead to only one

recursive call of the algorithm. This leads to the following recursive distributional
equation for Cp(n):

Cp(n)
D
= 1{Zn>Mp,n

p }C
∗
p(Zn − 1) + 1{Zn<Mp,n

1 }C
∗∗
p (n− Zn)

+

p−1∑
i=1

1{Mp,n
i <Zn<Mp,n

i+1}(C
∗
i (Zn − 1) + C

∗∗
p−i(n− Zn))

+

p∑
i=1

1{Zn=Mp,n
i }(C

∗
i−1(Zn − 1) + C

∗∗
p−i(n− Zn))

+ n− 1, (3.6)

with Mp,n, Zn, C
∗
i (j), C

∗∗
i (j), 1 ≤ i ≤ p, 1 ≤ j ≤ n − 1 being independent,

C
∗
i (j) ∼ C

∗∗
i (j) ∼ Ci(j) and Mp,n, Zn distributed as described before. We do

not count the comparisons for finding the median. The first moment of Cp(n) is
given in Panholzer and Prodinger (1998) (see also Panholzer (1997)):

ECp(n) = cpn +O(ln n) (3.7)

with

cp =
12

7
Hp +

r(p)

49(p + 1)(p + 2) · . . . · (p + 7)
(3.8)

and

r(p) = 37p7 + 1036p6 + 11914p5 + 72520p4

+ 250453p3 + 485884p2 + 483516p + 246960. (3.9)

For the scaling we assume

Var(Cp(n)) ∼ wpn
2 (3.10)

with some constant wp > 0. This will be verified later. The normalized version

Y (p)
n :=

Cp(n)− ECp(n)

n
(3.11)

by a straightforward calculation satisfies



3.1. MEDIAN–OF–THREE MULTIPLE QUICKSELECT 53

Y (p)
n

D
= 1{Zn>Mp,n

p }
Zn − 1

n

(
Y

(p)
Zn−1 + cp

)

+ 1{Zn<Mp,n
1 }

n− Zn

n

(
Y

(p)

n−Zn
+ cp

)

+

p−1∑
i=1

1{Mp,n
i <Zn<Mp,n

i+1}

(
Zn − 1

n

(
Y

(i)
Zn−1 + ci

)

+
n− Zn

n

(
Y

(p−i)

n−Zn
+ cp−i

) )

+

p∑
i=1

1{Zn=Mp,n
i }

(
Zn − 1

n

(
Y

(i−1)
Zn−1 + ci−1

)

+
n− Zn

n

(
Y

(p−i)

n−Zn
+ cp−i

) )

− cp +
n− 1

n
+ R(p)

n , (3.12)

with independencies and distributions analogously to (3.6). The R
(p)
n depend on

randomness and converge uniformly to zero. Since Zn is the median of three
independent, uniformly on {1, . . . , n} distributed r.v. and Mp,n is uniformly
distributed over the set in (3.1), independent of Zn, we derive for the scaled
versions

1

n
(Zn,M

p,n)
P−→ (T, U(1), . . . , U(p)) (3.13)

where T, U(1), . . . , U(p) are independent, U1, . . . , Up are uniformly on [0, 1] distrib-
uted and T is distributed as the median of three independent, uniformly on [0, 1]
distributed r.v., i.e. beta(2, 2) distributed.

Lemma 3.1.1 Let T, U1, . . . , Up be independent, U1, . . . , Up uniformly on [0, 1]
distributed and T ∼ beta(2, 2), then

E
[ (

1{T>U(p)}T + 1{T<U(1)}(1− T )
)

cp

+

p−1∑
i=1

1{U(i)<T<U(i+1)} (Tci + (1− T )cp−i)

]

= cp − 1. (3.14)
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Proof: The r.v. Y
(i)
j , Y

(i)

j in the modified recursion (3.12) are centered and
independent of everything else. This implies

E
[(

1{Zn>Mp,n
p }

Zn − 1

n
+ 1{Zn<Mp,n

1 }
n− Zn

n

)
cp

+

p−1∑
i=1

1{Mp,n
i <Zn<Mp,n

i+1}

(
Zn − 1

n
ci +

n− Zn

n
cp−i

)

+

p∑
i=1

1{Zn=Mp,n
i }

(
Zn − 1

n
ci−1 +

n− Zn

n
cp−i

)

− cp +
n− 1

n
+ R(p)

n

]

= 0. (3.15)

All the quantities are bounded. By (3.13) we can pass to the limit. This leads
to the assertion.

Now assume that for indices i < p convergence in distribution for Y
(i)
n to a Y (i)

is already shown. Then (3.12) and the convergence in (3.13) suggest that a limit

Y (p) of Y
(p)
n should satisfy the limiting equation

Y (p) D
= 1{T>U(p)}T

(
Y (p) + cp

)
+ 1{T<U(1)}(1−T )

(
Y

(p)
+ cp

)

+

p−1∑
i=1

1{U(i)<T<U(i+1)}

(
T

(
Y (i) + ci

)
+(1−T )

(
Y

(p−i)
+ cp−i

))

− cp + 1, (3.16)

where T, U1, . . . , Up, Y (1), Y
(1)

, . . . , Y (p), Y
(p)

are independent U1, . . . , Up

uniformly distributed on [0, 1], T ∼ beta(2, 2) and Y (i), Y
(i)

are distributed as

the weak limits of (Y
(i)
n ) and Y (p) ∼ Y

(p)
.

Now we define successively operators

S1, . . . , Sr : M1(R,B) → M1(R,B) (3.17)

which are contractions on (M0,2, `2) where the fixed points of Sj in M0,2 for j < r
are used for the definition of Sr. For r = 1 define S1 : M1(R,B) → M1(R,B) by

S1(µ) :
D
= 1{T>U}T (Z + c1) + 1{T<U}(1−T )(Z + c1)− c1 + 1, (3.18)
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with T, U, Z, Z being independent, U uniformly on [0, 1] distributed, T ∼
beta(2, 2) and Z ∼ Z ∼ µ. The contraction property of S1 on (M0,2, `2) can
be deduced as in Lemma 3.1.2 below. Now assume operators Sj : M1(R,B) →
M1(R,B) with the contraction property on (M0,2, `2) are already defined for
j < r. Then define Sr : M1(R,B) → M1(R,B) by

Sr(µ) :
D
= 1{T>U(r)}T (Z + cr) + 1{T<U(1)}(1−T )(Z + cr)

+
r−1∑
i=1

1{U(i)<T<U(i+1)}

(
T

(
Y (i) + ci

)
+(1−T )

(
Y

(r−i)
+ cp−i

) )

− cr + 1 (3.19)

where T, U1, . . . , Ur, Z, Z, Y (1), Y
(1)

, . . . , Y (r−1), Y
(r−1)

are independent,
U1, . . . , Ur are uniformly distributed on [0, 1], T ∼ beta(2, 2), Z ∼ Z ∼ µ and

Y (i), Y
(i)

being versions of the fixed point of Si in M0,2 for i = 1, . . . , r − 1.

Lemma 3.1.2 Sr : M0,2 → M0,2 is a contraction w.r.t. `2:

`2(Sr(µ), Sr(ν)) ≤
√

3/5 `2(µ, ν) for all µ, ν ∈ M0,2. (3.20)

Proof: Obviously Var(Sr(µ)) < ∞ and ESr(µ) = 0 from Lemma 3.1.1 for all
µ ∈ M0,2. So Sr : M0,2 → M0,2 is well defined. Let µ, ν ∈ M0,2 and choose

independent T, U1, . . . , Ur, (V,W ), (V , W ), Y (1), Y
(1)

, . . . , Y (r−1), Y
(r−1)

, where

T, U1, . . . , Ur are as before, Y (i), Y
(i)

fixed points of Si for i = 1, . . . , r − 1 and
V ∼ V ∼ µ, W ∼ W ∼ ν optimal `2-couplings of µ, ν, then

Sr(µ)
D
= 1{T>U(r)}T (V + cr) + 1{T<U(1)}(1−T )(V + cr)

+
r−1∑
i=1

1{U(i)<T<U(i+1)}

(
T

(
Y (i) + ci

)
+(1−T )

(
Y

(r−i)
+ cp−i

) )

− cr + 1, (3.21)

Sr(ν)
D
= 1{T>U(r)}T (W + cr) + 1{T<U(1)}(1−T )(W + cr)

+
r−1∑
i=1

1{U(i)<T<U(i+1)}

(
T

(
Y (i) + ci

)
+(1−T )

(
Y

(r−i)
+ cp−i

) )

− cr + 1. (3.22)
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With independence and the centered mean properties we derive

`2
2(Sr(µ), Sr(ν)) ≤ E

(
1{T>U(r)}T (V −W ) + 1{T<U(1)}(1−T )(V −W )

)2

= E
[
1{T>U(r)}T

2(V −W )2 + 1{T<U(1)}(1−T )2(V −W )2
]

≤ E [T 2 + (1− T )2]`2
2(µ, ν)

=
3

5
`2
2(µ, ν). (3.23)

This Lipschitz constant can be improved considering also the indicators in
(3.23).

Theorem 3.1.3 (Limit theorem for the running time of multiple Quickselect
with median–of–three partitioning) The normalized number of key comparisons

Y
(p)
n of multiple Quickselect with uniformly distributed statistics sought and

median–of–three partitioning converges in the `2 metric to the unique fixed point
Y (p) in M0,2 of the limiting operator Sp given in (3.19),

`2(Y
(p)
n , Y (p)) → 0 for n →∞. (3.24)

Proof: The theorem is proved by induction on the number p of statistics
sought. In the Find case p = 1 Mahmoud, Modarres and Smythe (1995) showed

`2(Y
(1)
n , Y (1)) → 0 for the Find algorithm where the pivot is chosen uniformly

over the array of data. This proof directly extends to the case of median–of–three
partitioning. So the assertion is true for p = 1. For the induction step p− 1 → p
assume

`2(Y
(i)
n , Y (i)) → 0 for n →∞ and i = 1, . . . , p− 1. (3.25)

Write (3.12) as

Y (p)
n

D
= An + Bn +

p−1∑
i=1

C(i)
n +

p∑
i=1

D(i)
n + En (3.26)

with

An := 1{Zn>Mp,n
p }

Zn − 1

n

(
Y

(p)
Zn−1 + cp

)
, (3.27)

Bn := 1{Zn<Mp,n
1 }

n− Zn

n

(
Y

(p)

n−Zn
+ cp

)
, (3.28)
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C(i)
n := 1{Mp,n

i <Zn<Mp,n
i+1}

(
Zn − 1

n

(
Y

(i)
Zn−1 + ci

)

+
n− Zn

n

(
Y

(p−i)

n−Zn
+ cp−i

) )
, (3.29)

D(i)
n := 1{Zn=Mp,n

i }

(
Zn − 1

n

(
Y

(i−1)
Zn−1 + ci−1

)

+
n− Zn

n

(
Y

(p−i)

n−Zn
+ cp−i

))
, (3.30)

En := cp +
n− 1

n
+ R(p)

n . (3.31)

The independencies and distributions are as in (3.12). For the fixed point Y (p)

of Sp in M0,2 we have the representation

Y (p) D
= A + B +

p−1∑
i=1

C(i) + E (3.32)

with

A := 1{T>U(p)}T
(
Y (p) + cp

)
, (3.33)

B := 1{T<U(1)}(1−T )
(
Y

(p)
+ cp

)
, (3.34)

C(i) := 1{U(i)<T<U(i+1)}

(
T

(
Y (i) + ci

)
+(1−T )

(
Y

(p−i)
+ cp−i

))
, (3.35)

E := −cp + 1. (3.36)

where Y (1), Y
(1)

, . . . , Y (p), Y
(p)

are as in (3.16). Furthermore assume

(Y (i), Y
(i)
n ), (Y

(i)
, Y

(i)

n ) to be optimal `2-couplings for all n ∈ N and 1 ≤ i ≤ p.
Then it follows

`2
2(Y

(p)
n , Y (p))

= `2
2

(
An + Bn +

p−1∑
i=1

C(i)
n +

p∑
i=1

D(i)
n + En, A + B +

p−1∑
i=1

C(i) + D

)

≤ E

(
(An − A) + (Bn −B) +

∑
(C(i)

n − C(i)) +

p∑
i=1

D(i)
n + (En − E)

)2

= E
[
(An − A)2 + (Bn −B)2 +

∑
(C(i)

n − C(i))2
]

+ o(1). (3.37)
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The mixed terms are zero or o(1) by independence, the zero mean properties,
bounded norms resulting from the induction hypothesis and (3.13). Furthermore,

E [
∑

(D
(i)
n )2] and E (En − E)2 are converging to zero. It is

E (An − A)2

= E
(
1{Zn>Mp,n

p }
Zn − 1

n

(
Y

(p)
Zn−1 + cp

)
− 1{T>U(p)}T

(
Y (p) + cp

) )2

= E
(
1{Zn>Mp,n

p }
Zn − 1

n

(
Y

(p)
Zn−1 − Y (p)

)

+

(
1{Zn>Mp,n

p }
Zn − 1

n
− 1{T>U(p)}T

) (
Y (p) + cp

) )2

= E
[
1{Zn>Mp,n

p }

(
Zn − 1

n

)2 (
Y

(p)
Zn−1 − Y (p)

)2

+

(
1{Zn>Mp,n

p }
Zn − 1

n
− 1{T>U(p)}T

)2 (
Y (p) + cp

)2

+ 2

(
1{Zn>Mp,n

p }
Zn − 1

n

(
Y

(p)
Zn−1 − Y (p)

) )

×
(
1{Zn>Mp,n

p }
Zn − 1

n
− 1{T>U(p)}T

) (
Y (p) + cp

) ]
. (3.38)

From (3.13) it follows

E
(
1{Zn>Mp,n

p }
Zn − 1

n
− 1{T>U(p)}T

)2

→ 0 for n →∞. (3.39)

Therefore the second summand in (3.38) converges to zero. With the Cauchy-
Schwarz inequality and (3.39) the third summand in its absolute value is esti-
mated from above by

2 E

[(
1{Zn>Mp,n

p }
Zn − 1

n
− 1{T>U(p)}T

)2 (
Y (p) + cp

)2

]1/2

× E
[(

Y
(p)
Zn−1

− Y (p)
)2

]1/2

= o(1)E
[(

Y
(p)
Zn−1 − Y (p)

)2
]1/2

≤ o(1)E
(
Y

(p)
Zn−1 − Y (p)

)2

+ o(1). (3.40)
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The last inequality holds since both sides are o(1) if the expectation is less than
1. This implies

E (An − A)2

= E
[ (

1{Zn>Mp,n
p }

(
Zn − 1

n

)2

+ o(1)

)(
Y

(p)
Zn−1 − Y (p)

)2
]

+ o(1)

= E
[ n∑

j=1

1{Zn=j}1{j>Mp,n
p }

((
j − 1

n

)2

+ o(1)

)(
Y

(p)
j−1 − Y (p)

)2
]

+ o(1)

≤
n−1∑
j=1

P(Zn = j + 1)

((
j

n

)2

+ o(1)

)
`2
2(Y

(p)
j−1, Y

(p)) + o(1) (3.41)

Analogously we derive

E (Bn −B)2

≤
n−1∑
j=1

P(Zn = j + 1)

(
j2

n2
+ o(1)

)
`2
2(Y

(p)
j , Y (p)) + o(1), (3.42)

E (C(i)
n − C(i))2

≤ 2
n−1∑
j=1

P(Zn = j + 1)

(
j2

n2
+ o(1)

)
`2
2(Y

(i)
j , Y (i)) + o(1). (3.43)

Denote by

sj :=

p−1∑
i=1

`2
2(Y

(i)
j , Y (i)) für j ∈ N. (3.44)

By the induction hypothesis the sequence (sj) converges to zero. Altogether we
derive

`2
2(Y

(p)
n , Y (p)) ≤ 2

n−1∑
j=1

P(Zn = j + 1)

(
j2

n2
+ o(1)

)
`2
2(Y

(p)
j , Y (p))

+ 2
n−1∑
j=1

P(Zn = j + 1)

(
j2

n2
+ o(1)

)
sj + o(1). (3.45)

It is
n−1∑
j=1

P(Zn = j + 1)

(
j2

n2
+ o(1)

)
sj ≤

n−1∑
j=1

P(Zn = j + 1)sj (3.46)
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for n sufficiently large. This sum is converging so zero for n → ∞: Let ε > 0.
It exists a n0 ∈ N with sj ≤ ε/2 for all n ≥ n0. Obviously P({Zn ≤ n0}) → 0
for n → ∞. Choose n1 ∈ N with P({Zn ≤ n0}) < ε/(2 max{s1, . . . , sn0}) for all
n ≤ n1. Then for n ≥ max{n0, n1} it follows

n−1∑
j=1

P(Zn = j + 1)sj

≤
n0−1∑
j=1

P(Zn = j + 1)sj +
n−1∑
j=n0

P(Zn = j + 1)sj

≤ max{s1, . . . , sn0}P(Zn ≤ n0) +
ε

2
P(Zn ≥ n0 + 1)

< ε. (3.47)

This implies the recursion

`2
2(Y

(p)
n , Y (p))

≤ 2
n−1∑
j=1

P(Zn = j + 1)

(
j2

n2
+ o(1)

)
`2
2(Y

(p)
j , Y (p)) + o(1). (3.48)

We can now conclude as in Theorem 1.1.2 or Theorem 2.2.3. This yields

`2
2(Y

(p)
n , Y (p)) → 0 for n →∞. (3.49)

In particular Theorem 3.1.3 leads to the first order asymptotic of the variance of
Cp(n):

Var(Cp(n)) ∼ wpn
2 (3.50)

with some wp > 0. For the case of multiple Quickselect without median–of–
three partitioning the leading constant in the corresponding expansion has been
calculated explicitly in Mahmoud and Smythe (1998, Theorem 2), where also
further properties of the corresponding limit distribution are stated.

3.2 Median–of–three Find

Consider the special case p = 1 of Find with median–of–three partitioning. The
fixed point equation for the limit of the scaled version of C1(n) is given by (3.18)

Y (1) D
= 1{T>U}T (Y (1) + c1) + 1{T<U}(1−T )(Y

(1)
+ c1)− c1 + 1. (3.51)
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The constant c1 = 5/2 given by (3.8) has been calculated first in Kirschenhofer,
Mart́ınez, and Prodinger (1997). Equation (3.51) can be simplified to (cf. the
remarks after (1.120))

Y (1) D
= X

(
Y (1) +

5

2

)
− 3

2
, (3.52)

where X, Y (1) are independent and X has the Lebesgue-density

dPX

dλ1
(t) = 12t2(1− t) for t ∈ [0, 1]. (3.53)

Thus Y := Y (1) + 5/2 is the unique solution of

Y
D
= XY + 1 (3.54)

in M5/2,2, again X,Y being independent and X with density (3.53). In particular

C1(n)

n

D−→ Y for n →∞. (3.55)

The higher order moments of Y can be calculated directly using (3.54):

EY k =
k∑

j=0

(
k

j

)
EXj EY j. (3.56)

It is

EXj =
12

(j + 3)(j + 4)
for j ≥ 0. (3.57)

With mk := EY k for k ≥ 0 it follows m0 = 1,m1 = 5/2 and using (3.56)

mk =

(
12 +

144

k2 + 7k

) k−1∑
j=0

(
k

j

)
mj

(j + 3)(j + 4)
for k ≥ 2. (3.58)

Existence and convergence of the Laplace transform of C1(n)/n can be deduced
similarly to Theorem 1.5.1 based on Lemma 4.1 and Theorem 4.2 in Rösler
(1992). This implies convergence of all moments of C1(n)/n to the corresponding
moments of Y, especially

E (C1(n))k ∼ mkn
k for n →∞ (3.59)

with (mk) given by (3.58). Furthermore analogously to (1.159) an estimate for
large deviations can be established: For all λ > 0 there exists a cλ > 0 so that
for any sequence (an) of positive, real numbers holds:

P(Cn ≥ an) ≤ cλ exp
(
−λ

an

n

)
. (3.60)
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The Fourier transform of Y is of the form

E exp(itY ) = eitφ(t), (3.61)

where φ : R → C is smooth and given by the linear homogeneous differential
equation of second order

t2φ′′(t) + 8tφ′(t)− 12(eit − 1)φ(t) = 0 (3.62)

with the initial conditions φ(0) = 1 and φ′(0) = 3i/2. This can be computed
following the line of Lemma 2 in Mahmoud, Moddares, and Smythe (1995),
taking an additional second derivative.



Chapter 4

Interval splitting

Studies on the topic of interval splitting may be regarded as developing from a
problem suggested to Kakutani by the physicist Araki (Kakutani (1975)). Let
(Xn) denote a sequence of r.v. where X1 is uniformly distributed on [0, 1] and for
n ≥ 2 the conditional distribution of Xn given X1, . . . , Xn−1 is uniform on the
largest of the n subintervals into which [0, 1] is subdivided by X1, . . . , Xn−1. This
model is called the Kakutani–model (or K–model) in comparison to the uniform
model (or U–model) where a sequence of independent, uniformly on [0, 1] distrib-
uted r.v. is considered. Kakutani (1975) proved that the empirical distribution
of a related, more deterministic, sequence tends to the uniform distribution on
[0, 1] and conjectured that this should also hold almost surely for the K–model.
For the early history of this problem and an alternative proof of Kakutani’s result
see Adler and Flatto (1977).

Kakutani’s conjecture that the Glivenko-Cantelli result also holds for the K–
model has been proved by van Zwet (1978) and independently by Slud (1978).
Slud’s method also extends to the generalization in which the dividing measure
of the longest interval is arbitrary and not necessarily uniform. In addition, rates
of convergence are considered by Slud.

Pyke (1980) based on the ideas of van Zwet investigated the convergence of
the normalized spacings in the K–model in comparison to earlier results for the
U–model.

In the uniform model let Ik(n) denote the kth largest of the n intervals gen-
erated by X1, . . . , Xn−1 in [0, 1]. Bruss, Jammalamadaka, and Zhou (1990) first
examined the problem of which sequences (Ikn(n)) get covered infinitely often
in the sense that the event {Xn ∈ Ikn(n) infinitely often} has probability 1.
Alsmeyer (1991) proved a zero-one law for this event and gave a condition on
(kn) to distinguish between the two cases. Mountford and Port (1993) rederived
Alsmeyer’s condition, investigated conditions for weak and strong laws of large
numbers for the length of (Ikn(n)) and gave a central limit theorem for scaled
versions of Nn := card{1 ≤ i ≤ n : Xi ∈ Iki

(i)} in the case when Nn ↑ ∞.
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4.1 Random nested intervals

The investigation of interval splitting schemes of another type started with the
papers of Chen, Goodman, and Zame (1984) and Chen, Lin, and Zame (1981).
A uniformly on [0, 1] distributed r.v. U0 partitions [A0, B0] := [0, 1] into two
subintervals. Choose with probability 0 ≤ p ≤ 1 the longer of these subintervals,
otherwise the shorter one and denote it by [A1, B1]. Then choose U1 uniformly
on [A1, B1] and iterate the procedure to define [A2, B2]. Further iteration gives
a sequence of random nested intervals ([An, Bn]) which shrinks to a limit point
Yp almost surely. Now the problem is to determine the distribution of Yp. In the
papers mentioned it is proved that Yp has a beta(2,2) distribution if p = 1, i.e.
choosing always the longer of the two intervals. In the case p = 1/2 the distri-
bution of Yp is the arcsine distribution which is the beta(1/2,1/2) distribution.
Devroye, Letac, and Seshadri (1986) rediscovered these results and showed that
Yp has some beta distribution if and only if p ∈ {1/2, 1}.

Kennedy (1988) considered a related splitting scheme. Again start with the
interval [A0, B0] := [0, 1]. Let [An, Bn] be already defined. Then let Cn, Dn be the
minimum and maximum of k independent, uniformly on [An, Bn] distributed r.v.
and choose [An+1, Bn+1] to be [Cn, Bn], [An, Dn] or [Cn, Dn] with probabilities
p, q, r respectively, p + q + r = 1. This interval splitting scheme was motivated
by the analysis of a randomized algorithm to locate local maxima of an arbitrary
function. Kennedy showed that his splitting scheme shrinks to a point with
beta(k(p + r), k(q + r)) distribution.

All these identifications of the limits of splitting schemes as well known dis-
tributions are based on certain invariance properties of the limits combined with
the study of the moments. A general moment method for the characterization
of distributions of a related type was discussed in Volodin, Kotz, and Johnson
(1993). Applications of this moment method to the interval splitting schemes
described above have been given in Johnson and Kotz (1990, 1995).

In the special case k = 2, r = 1 of Kennedy’s scheme there is always the inter-
val between two samples on [An, Bn] chosen to be [An+1, Bn+1]. A generalization
of this case has already been treated before by van Assche (1986). In this work
the two samples are drawn from some joint distribution, where no restrictions
on independence or uniformity of the samples are made. Van Assche states the
problem in terms of products of two-dimensional random stochastic matrices. A
stopping time which counts the number of steps until the length of the interval
is less that a t > 0 is introduced in order to give a rate of convergence. This
stopping time also measures the rate of convergence of the products of the related
random stochastic matrices.

Another generalization of the case k = 2, r = 1 to higher dimensions has
been treated recently by Letac and Scarsini (1998). In this work a tetrahedron
T0 in Rd which is given as the convex hull of (d + 1) affinely independent points
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α1, . . . , αd+1 ∈ Rd is considered. Then choose (d + 1) points independently and
uniformly in T0. The convex hull of these points defines a new tetrahedron T1

contained in T0. Iteration of this procedure gives a nested sequence of tetrahedra
(Tn) which almost surely shrinks to a point Y . It is proved that the barycentric
coordinates of Y with respect to α1, . . . , αd+1 are Dirichlet distributed with para-
meter (d+1, . . . , d+1). Also this theorem is an application of results on products
of random stochastic matrices given in Chamayou and Letac (1991, 1994). Letac
and Scarsini also consider a rate of convergence in terms of the speed of shrinking
of the tetrahedra.

Here, a new point of view of interval splitting schemes is presented. We
derive rates of convergence in terms of related distributions which approximate
the distribution of the point to which the splitting scheme shrinks.

4.2 Rate of convergence

We consider a splitting scheme which is a generalization of Kennedy’s case k =
2, r = 1, and a special case of van Assche (1986). For a, b ∈ R define the affine
map Aa,b by

Aa,b : R → R

x 7→ a + (b− a)x. (4.1)

Let µ ∈ M1([0, 1],B1) be a probability measure on [0, 1]. We say that an r.v. is
chosen on [a, b] according to µ if its distribution is Aa,b(µ). In this section [a, b]
denotes the line segment with the end points a and b; we do not require a ≤ b
in this notations as for intervals. Let [A0, B0] := [0, 1]. Assume that [An, Bn] is

already defined. Then choose W
(n)
1 ,W

(n)
2 independently on [An, Bn] according to

µ. Define [An+1, Bn+1] := [W
(n)
1 ,W

(n)
2 ]. If µ is the uniform distribution on [0, 1]

this is Kennedy’s scheme. In the following we will only assume Eµ = 1/2. For

the definition of the W
(n)
i we have used implicitly the Markov kernel

K : [0, 1]2 × B1 → [0, 1]

((a, b), B) 7→ Aa,b(µ)(B). (4.2)

Obviously K((a, b), · ) is a probability measure for fixed (a, b) ∈ [0, 1]2. That
K( · , B) is measurable for B ∈ B1 can be proved directly if B is an interval and
extended to B1 using a Dynkin argument. In this notation the distribution of
the W

(n)
i used for the definition of [An+1, Bn+1] has the following mixed structure

(denoting with π2 the projection onto the second component):

π2(K ⊗ P(An,Bn)). (4.3)
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In the case where µ is the uniform distribution on [0, 1] leads to random variables
“uniformly distributed between two random variables”, which were analyzed on
its own by van Assche (1987). We have the following distributional relation

P(An+1,Bn+1) | (An,Bn)=(a,b) = Aa,b(µ)⊗ Aa,b(µ). (4.4)

We can also give a pointwise recursion for (An, Bn). Let {U (n), V (n) : n ∈ N0}
denote an independent family of r.v. with distribution µ. Then

(
An+1

Bn+1

)
=

(
1− U (n) U (n)

1− V (n) V (n)

)(
An

Bn

)

= Tn · . . . · T0

(
0
1

)
(4.5)

with independent, random stochastic matrices

Ti :=

(
1− U (i) U (i)

1− V (i) V (i)

)
for i ≥ 0. (4.6)

That the intervals ([An, Bn]) shrink to a point Y a.s. can be shown by stan-
dard arguments: It is

E |Bn+1 − An+1|

=

∫ ∫
|x− y| Aa,b(µ)⊗ Aa,b(µ)(d(x, y)) P(An,Bn)(d(a, b))

=

∫ ∫
|Aa,b(x)− Aa,b(y)| µ⊗ µ(d(x, y)) P(An,Bn)(d(a, b))

=

∫ ∫
|b− a| |x− y| µ⊗ µ(d(x, y)) P(An,Bn)(d(a, b))

= E |Bn − An|
∫
|x− y| µ⊗ µ(d(x, y)) (4.7)

= ξ E |Bn − An|.
The integrand in (4.7) is ≤ 1 and < 1 with probability at least 1/2. Thus ξ < 1.
By induction we deduce

E |Bn − An| = ξn. (4.8)

Using Markov’s inequality it follows

∞∑
n=1

P(|Bn − An| > ε) ≤
∞∑

n=1

E |Bn − An|
ε

< ∞. (4.9)



4.2. RATE OF CONVERGENCE 67

The Borel-Cantelli Lemma implies P(lim supn→∞{|Bn − An| > ε}) = 0. This
holds for every ε > 0. Thus |Bn − An| → 0 almost surely. Since the segments
[An, Bn] are nested it follows limn→∞ Bn = limn→∞ An =: Y a.s.

Now, we investigate a rate of convergence for the splitting scheme of the
following type: Choose W (n) on [An, Bn] according to µ. Then

W (n) D
= π2(K ⊗ P(An,Bn)) (4.10)

and min{An, Bn} ≤ W (n) ≤ max{An, Bn}. The almost sure convergence of
An, Bn implies W (n) → Y a.s., in particular W (n) → Y in distribution. Therefore
L(W (n)), which is the unconditioned distribution of the points chosen in the nth
step to define (An+1, Bn+1), stabilizes to the limit point of the interval splitting
scheme. This is also reasonable if we think of choosing the “next” points in the
infinityth step: We have to choose between limn→∞ An = Y and limn→∞ Bn = Y ,
i.e. we choose Y . From this point of view it is natural to measure the rate of
convergence of the splitting scheme in terms of a distance between W (n) and Y .

We start with a distributional recursion for W (n). Observe that the vectors
(An, Bn) satisfy a two-dimensional recursion. A priori it is not obvious that the
one-dimensional mixture W (n) contains a sufficient amount of information about
the state of the splitting scheme so that a distributional relation only in terms
of W (n) can be established.

Lemma 4.2.1 (W (n)) given by (4.10) satisfies the recursion

W (n+1) D
= U + (V − U)W (n) for all n ≥ 0, (4.11)

where U, V,W (n) are independent and U, V ∼ µ.

Proof: We expand the distributions of both sides of (4.11). Let B ∈ B1.

Right side of (4.11): It is

P(U + (V − U)W (n) ∈ B)

=

∫ ∫
1B

(
u + (v − u)w

)
PW (n)

(dw) P(U,V )(d(u, v))

=

∫ ∫ ∫
1B

(
u + (v − u)w

)
Aa,b(µ)(dw)

PTn−1·...·T0(0,1)t

(d(a, b)) µ⊗ µ(d(u, v))

=

∫ ∫ ∫
1B

(
u + (v − u)(a + (b− a)w)

)
µ(dw)

PTn−1·...·T0(0,1)t

(d(a, b)) µ⊗ µ(d(u, v)). (4.12)
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Left side of (4.11): It is

P(W (n+1) ∈ B)

=

∫ ∫
1B(w) Aa,b(µ)(dw) PTn·...·T0(0,1)t

(d(a, b))

=

∫ ∫ ∫
1B(w) Aa,b(µ)(dw) PTn·...·T1(u,v)t

(d(a, b)) P(U,V )(d(u, v))

=

∫ ∫ ∫
1B(w) Aa,b(µ)(dw)

PTn·...·T1A′u,v(0,1)t

(d(a, b)) µ⊗ µ(d(u, v)) (4.13)

with

A′
u,v : R2 → R2

(
a
b

)
7→ (v − u)

(
a
b

)
+

(
u
u

)
. (4.14)

Since the Ti are stochastic matrices we have

Tn · . . . · T1

(
u
u

)
=

(
u
u

)
. (4.15)

This implies

Tn · . . . · T1A
′
u,v = A′

u,vTn · . . . · T1. (4.16)

Together with (4.13) this yields

P(W (n+1) ∈ B)

=

∫ ∫ ∫
1B(w) Aa,b(µ)(dw)

PA′u,vTn·...·T1(0,1)t

(d(a, b)) µ⊗ µ(d(u, v))

=

∫ ∫ ∫
1B(w) AA′u,v(a,b)(µ)(dw)

PTn·...·T1(0,1)t

(d(a, b)) µ⊗ µ(d(u, v))

=

∫ ∫ ∫
1B(w) A(v−u)a+u,(v−u)b+u(µ)(dw)

PTn·...·T1(0,1)t

(d(a, b)) µ⊗ µ(d(u, v))
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=

∫ ∫ ∫
1B

(
(v − u)a + u− (v − u)(b− a)w

)
µ(dw)

PTn·...·T1(0,1)t

(d(a, b)) µ⊗ µ(d(u, v)) (4.17)

The integrands in (4.17) and (4.12) are identical and Tn · . . . · T1 ∼ Tn−1 · . . . · T0.
This implies the assertion.

Now, we use equation (4.11) to define the corresponding operator

S : M1(R1,B1) → M1(R1,B1)

ν 7→ L(U + (V − U)Z), (4.18)

where U, V, Z are independent, Z ∼ ν and U, V ∼ µ.

Lemma 4.2.2 S : M1/2,p → M1/2,p is a contraction w.r.t. `p for all p ≥ 1:

`p(S(λ), S(ν)) ≤ ‖U − V ‖p `p(λ, ν) for all λ, ν ∈ M1/2,p, (4.19)

where U, V are independent with U, V ∼ µ.

Proof: Since U, V have pth moments and by independence E ‖S(ν)‖p < ∞ for
ν ∈ M1/2,p and p ≥ 1. Furthermore

ES(ν) = EU − E (V − U)EZ = 1/2, (4.20)

since EU = Eµ = 1/2. So, S : M1/2,p → M1/2,p is well defined. Let λ, ν ∈
M1/2,p and Z1, Z2 be optimal `p-couplings of λ, ν. Then with U, V ∼ µ, so that
U, V, (Z1, Z2) are independent

`p
p(S(λ), S(ν)) ≤ E [(U − V )p(Z1 − Z2)

p]

= ‖U − V ‖p
p `p

p(λ, ν). (4.21)

It is U − V ≤ 1 and U − V < 1 with probability at least 1/2. This implies
‖U − V ‖p < 1.

By Banach’s fixed point theorem S has a unique fixed point in M1/2,p and Sn(ν)
converges in `p to this fixed point for every ν ∈ M1/2,p. Choose ν := µ ∈ M1/2,p.
It is W (0) ∼ µ and by iterated application of Lemma 4.2.1

W (n) = Sn(µ). (4.22)

Since W (n) → Y in distribution, where Y is the point to which the interval
splitting scheme shrinks we deduce that Y is the fixed point of S,

S(Y )
D
= Y. (4.23)
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Then using (4.19)

`p(W
(n), Y ) = `p(S(W (n−1)), S(Y ))

≤ ‖U − V ‖p `p(W
(n−1), Y )

≤ ‖U − V ‖n
p `p(µ, Y ), (4.24)

which gives the convergence rate of the splitting scheme:

Theorem 4.2.3 Let µ be a probability measure on [0, 1] with Eµ = 1/2, W (n)

defined by (4.10), and Y the fixed point in M1/2,p of S given by (4.18). Then

`p(W
(n), Y ) ≤ `p(µ, Y ) ‖U − V ‖n

p for all n ≥ 0, p ≥ 1, (4.25)

where U, V are independent with U, V ∼ µ.

For the special case of µ = U[0,1], U[0,1] denoting the uniform distribution on the
unit interval Y is known to be beta(2, 2) distributed. Then (4.25) can be stated
more explicitly:

Corollary 4.2.4 For µ = U[0,1] in Theorem 4.2.3 it holds

`p(W
(n), Y ) ≤ `p

(
U[0,1], beta(2, 2)

) (
2

(p + 1)(p + 2)

)n/p

(4.26)

for all n ≥ 0 and p ≥ 1.

A result of van Assche (1986) on products of random stochastic matrices as
arising in (4.5) implies that in the case µ = beta(α, α) for some α > 0 the limit
point Y of the splitting scheme is beta(2α, 2α) distributed.

Vice versa Theorem 4.2.3 applies to products of random stochastic matrices:
Consider the matrices

Ti :=

(
1− U (i) U (i)

1− V (i) V (i)

)
for i ≥ 0, (4.27)

where (U (i), V (i)) are independent with some common joint distribution ν. Then
denote the product which again is a stochastic matrix by

(
1− An+1 An+1

1−Bn+1 Bn+1

)
:= Tn · . . . · T0. (4.28)

It is well known that this product converges in distribution if and only if
L(U (i), V (i)) is not concentrated on {(1, 0), (0, 1)}; see Rosenblatt (1964) and
Sun (1975). The weak limit is of the form

(
1− Y Y
1− Y Y

)
. (4.29)
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The distribution function G of Y is characterized as the unique solution of the
integral equation

G(t) =

∫

x>y

G

(
t− y

x− y

)
dν(x, y) +

∫

x<y

(
1−G−

(
t− y

x− y

))
dν(x, y). (4.30)

Here G− denotes the leftsided limit of G. Now, assume the special case
where U (i), V (i) are independent, identically distributed with distribution µ, and
Eµ = 1/2. The An+1, Bn+1 in (4.28) coincide with the end points An+1, Bn+1

of the segments given by (4.5). Since An+1, Bn+1 ∼ W (n) with W (n) given by
(4.10) the rates of convergence of Theorem 4.2.3 can be applied to the products
Tn · . . . ·T0. The characterisation of the limit Y as the fixed point of the operator
S given in (4.18) in M1/2,p leads to the integral equation (4.30) for this case.

Corollary 4.2.5 Let (An, Bn) be given by the product of the matrices Ti as in
(4.27), (4.28) with L(U (i), V (i)) = µ⊗µ and Eµ = 1/2. Let Y be the fixed point
of S given in (4.18) in M1/2,p. Then

`p(An, Y ) = `p(Bn, Y ) ≤ `p(µ, Y ) ‖U − V ‖n
p (4.31)

for all n ≥ 0, p ≥ 1, where U, V are independent with U, V ∼ µ.





Chapter 5

Affine recursions

All the limiting distributions of the problems discussed so far, i.e. the limit of
the normalized cost of a partial match query in quadtrees or K-d trees, the limit
of the scaled path length of a random split tree, the limits of the normalized
running time of multiple Quickselect or Find and the distribution of the point
to which an interval splitting scheme shrinks, occur as the distributional fixed
point of a random affine operator of the form

X
D
=

K∑
r=1

ArX
(r) + b. (5.1)

Here X(r) ∼ X for r = 1, . . . , K and (A1, . . . , AK , b), X(1), . . . , X(K) are indepen-
dent. In particular the Ai are not necessarily independent and for the problems
treated in the previous chapters b can be written as a function of A1, . . . , AK

(cf. (1.148), (2.22), (3.19) and (4.18)). In this chapter sequences of distributions
which occur by an iteration of an analogous multidimensional operator applied
to some initial distribution are discussed.

Let L0 denote an r.v. in Rd. Let A(1), . . . , A(K) be random d × d matrices
and b a random translation in Rd. Then for n ≥ 1 define recursively

Ln :
D
=

K∑
r=1

A(r)Ln−1,(r) + b, (5.2)

where (A(1), . . . , A(K), b), Ln−1,(1), . . . , Ln−1,(K) are independent and Ln−1,(r) ∼
Ln−1 for r = 1, . . . , K.

The special case K = 1 in (5.2) of an iteration of a random affine map has
been studied intensively in the literature with many respects. Key references
are Kesten (1973), Brand (1986), Bougerol and Picard (1992), and Burton and
Rösler (1995). The case K ≥ 2 leads to branching type recursive sequences.
In the one dimensional case without the immigration term b and the A(r) being
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independent and nonnegative this recursion was studied by Mandelbrot (1974)
for the analysis of a model of turbulence of Yaglom and Kolmogorov. To this
case further contributions on nontrivial fixed points of a corresponding operator,
the existence of moments of these fixed points and convergence of (Ln) to the
fixed points were made in Kahane and Peyrière (1976) and Guivarc’h (1990).
The case b = 0, A(r) ≥ 0 for r = 1, . . . K with dependencies was considered in
Holley and Liggett (1981) and Durrett and Liggett (1983) for the purpose of an-
alyzing a problem in infinite particle systems. The case b = 0 with deterministic
coefficients (and K = ∞) was discussed in Rösler (1998). See this paper also for
references and an overview on the one-dimensional fixed point equations without
immigration term. The general form of the recursion (5.2) in dimension one was
treated in Cramer and Rüschendorf (1996). A two-dimensional version of (5.2)
with K = 2 and b = 0 has been considered in Cramer and Rüschendorf (1998).

Most of the investigations mentioned for the one-dimensional case considered
problems of stabilization of the sequence (Ln) itself. In this chapter we are
concerned with the convergence of scaled versions of (Ln). In the first two sections
we consider the L2-case and use contraction techniques as in Burton and Rösler
(1995) and Cramer and Rüschendorf (1998). In the last section we give an
approach for the case K = 1 based on the concept of Lyapunov exponents.

5.1 A limit theorem for the L2-case

Consider the distributional recursion (5.2)

Ln :
D
=

K∑
r=1

A(r)Ln−1,(r) + b, (5.3)

where (A(1), . . . , A(K), b), Ln−1,(1), . . . , Ln−1,(K) are independent, L0 is square inte-
grable, A(1), . . . , A(r) are random matrices with E ‖A(r)‖2 < ∞ for r = 1, . . . , K
and b is a random vector in Rd with E ‖b‖2 < ∞. Let

C :=
K∑

r=1

A(r). (5.4)

Then the expectation vector of Ln is given by

ELn = EC ELn−1 + E b (5.5)

= (EC)n EL0 +
n−1∑

k=0

(EC)k E b.
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We may assume Var(Ln
i ) > 0 for all 1 ≤ i ≤ d and n ∈ N. This condition is easy

to check and unsatisfied only in very special cases. For the normalization of the
process (Ln) define

Vn := diag(Var(Ln
1 )−1/2, . . . , Var(Ln

d)−1/2) for n ∈ N (5.6)

where diag denotes the diagonal matrix with the given numbers on the diagonal.
Consider the scaled quantities

L̃n := Vn(Ln − ELn) and (5.7)

A(r),{n} := VnA(r)V −1
n−1 for n ≥ 1. (5.8)

So we normalize Ln by the components not changing its covariance structure:

L̃n
i =

Ln
i − ELn

i

Var(Ln
i )1/2

for 1 ≤ i ≤ d, (5.9)

A
(r),{n}
ij =

(
Var(Ln−1

j )

Var(Ln
i )

)1/2

A
(r)
ij for 1 ≤ i, j ≤ d. (5.10)

This leads to the following modified recursion for (L̃n):

Lemma 5.1.1 In the given notation the scaled sequence (L̃n) satisfies the mod-
ified recursion

L̃n D
=

K∑
r=1

A(r),{n}L̃n−1,(r) + Vn(b− E b) + Vn(C − EC)ELn−1, (5.11)

where L̃n−1,(1), . . . , L̃n−1,(K) are independent copies of L̃n−1 and independent of
(A(1), . . . , A(K), b).

Proof: It is

K∑
r=1

A(r),{n}L̃n−1,(r)

=
K∑

r=1

VnA(r)V −1
n−1Vn−1(L

n−1,(r) − ELn−1,(r))

= Vn

[ K∑
r=1

A(r)Ln−1,(r) −
(

K∑
r=1

A(r)

)
ELn−1

]

D
= Vn[Ln − b− C ELn−1] (5.12)
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= Vn[Ln − ELn + ELn − b− C ELn−1]

= Vn(Ln − ELn) + Vn(EC ELn−1 + E b− b− C ELn−1) (5.13)

= L̃n − Vn(b− E b)− Vn(C − EC)ELn−1.

For (5.12) the original recursion (5.3) and for (5.13) the relation (5.5) have been
used.

In order to define a limiting form of the modified recursion (5.11) assume the
existence of the following limits (here lim an = ∞ denotes that the sequence (an)
is definite divergence)

lim
n→∞

Var(Ln
i ) ∈ (0,∞], (5.14)

lim
n→∞

(
Var(Ln−1

j )

Var(Ln
i )

)1/2

=: cij, (5.15)

lim
n→∞

ELn
i

(Var(Ln
i ))1/2

=: γi. (5.16)

These assumptions enable us to define limiting objects corresponding to A(r),{n}

and Vn:

A(r),∞ := lim
n→∞

VnA
(r)V −1

n−1 = lim
n→∞

A(r),{n}, r = 1, . . . , K, (5.17)

C∞ :=
K∑

r=1

A(r),∞, (5.18)

V∞ := diag(ϑ1, . . . , ϑd) := lim
n→∞

Vn. (5.19)

Now the limiting operator of the recursion (5.11) is given by

T : M1(Rd,Bd) → M1(Rd,Bd) (5.20)

µ 7→ L
(

K∑
r=1

A(r),∞Z(r) + V∞(b− E b) + (C∞ − EC∞)γ

)

where (A(1), . . . , A(K), b), Z(1), . . . , Z(K) are independent and Z(r) ∼ µ for r =
1, . . . , K. Observe that the last summand in (5.11) is Vn(C − EC)ELn−1 =
Vn(C − EC)V −1

n−1Vn−1 ELn−1. T satisfies the following Lipschitz condition:
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Lemma 5.1.2 T : (Md
0,2, `2) → (Md

0,2, `2) with T given by (5.20) is a Lipschitz
map:

`2(T (µ), T (ν)) ≤ ξ `2(µ, ν) for all µ, ν ∈ Md
0,2,

ξ =

∥∥∥∥∥
K∑

r=1

E
[(

A(r),∞)t
A(r),∞

]∥∥∥∥∥

1/2

op

. (5.21)

Proof: Obviously by the valid independencies and L2-assumptions on the co-
efficients it holds E ‖T (µ)‖2 < ∞. It is

E

[
K∑

r=1

A(r),∞Z(r) + V∞(b− E b) + (C∞ − EC∞)γ

]

=
K∑

r=1

EA(r),∞ EZ(r) + V∞ E (b− E b) + E (C∞ − EC∞)γ

= 0 (5.22)

since the Z(r) are centered, so T : Md
0,2 → Md

0,2 is well defined. Let µ, ν ∈ Md
0,2

and (U, V ), (U (1), V (1)), . . . , (U (K), V (K)) be optimal `2-couplings of µ, ν so that
(A(1), . . . , A(K), b), (U, V ), (U (1), V (1)), . . . , (U (K), V (K)) are independent. Then

`2
2(T (µ), T (ν))

≤ E
∥∥∥∥

K∑
r=1

A(r),∞(U (r) − V (r))

∥∥∥∥
2

= E
K∑

r=1

‖A(r),∞(U (r) − V (r))‖2

+
K∑

q,r=1
q 6=r

E
〈
A(q),∞(U (q) − V (q)), A(r),∞(U (r) − V (r))

〉
(5.23)

= E
K∑

r=1

〈
U (r) − V (r),

(
A(r),∞)t

A(r),∞(U (r) − V (r))
〉

=
K∑

r=1

E
〈
U (r) − V (r), E

[(
A(r),∞)t

A(r),∞
]
(U (r) − V (r))

〉
(5.24)

= E
〈

U − V,

( K∑
r=1

E
[(

A(r),∞)t
A(r),∞

])
(U − V )

〉
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≤ E

[
‖U − V ‖ ·

∥∥∥∥
( K∑

r=1

E
[(

A(r),∞)t
A(r),∞

] )
(U − V )

∥∥∥∥
]

(5.25)

≤ E

[∥∥∥∥
K∑

r=1

E
[(

A(r),∞)t
A(r),∞

] ∥∥∥∥
op

‖U − V ‖2

]
(5.26)

=

∥∥∥∥
K∑

r=1

E
[(

A(r),∞)t
A(r),∞

] ∥∥∥∥
op

`2
2(µ, ν).

The second summand in (5.23) is zero by independence and E (U (r)− V (r)) = 0,
the additional expectation in (5.24) is justified by independence.

Observe that the estimates (5.25) and (5.26) are sharp simultaneously:

S :=
K∑

r=1

E
[(

A(r),∞)t
A(r),∞

]
(5.27)

is a symmetric, nonnegative definite matrix. Therefore S is diagonalizable with
nonnegative eigenvalues. Let λ ≥ 0 denote the greatest of the eigenvalues of
S. Then ‖S‖op = λ. Let u be a corresponding eigenvector and define % :=
(1/2)δ{−u}+(1/2)δ{u}. Then equality in (5.25) and (5.26) holds for the measures
%, δ{0} ∈ Md

0,2: Let U be an r.v. with U ∼ % and V = 0. Then U, V are optimal
`2-couplings of % and δ{0} since V is deterministic. Furthermore

E
〈
U − V, S(U − V )

〉
= E

〈
U, SU

〉
= E

〈
U, λU

〉
(5.28)

= λE ‖U‖2 = λE ‖U − V ‖2

= ‖S‖op `2
2(%, δ{0}).

(5.28) is valid since U is a.s. an eigenvector of S to the eigenvalue λ. Therefore
(5.25) and (5.26) are sharp simultaneously.

Theorem 5.1.3 (Limit Theorem) Let (Ln) be the sequence defined by (5.3)
where the initial distribution, random matrices and the immigration term are
square integrable. Assume the conditions (5.14)–(5.16) and

ξ =

∥∥∥∥∥
K∑

r=1

E
[(

A(r),∞)t
A(r),∞

]∥∥∥∥∥

1/2

op

< 1. (5.29)

Then the scaled version (L̃n) given by (5.7) converges to the unique fixed point

L̃ in Md
0,2 of the limiting operator T given by (5.20):

`2(L̃
n, L̃) → 0. (5.30)
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Proof: First, we proof a reduction estimate of the form

`2
2(L̃

n, L̃) ≤ ξ2 `2
2(L̃

n−1, L̃) + bn, for all n ∈ N, (5.31)

with a sequence (bn) converging to zero. Let L̃n−1,(1), . . . , L̃n−1,(K) be dis-

tributional copies of L̃n−1, Z(1), . . . , Z(K) ∼ µ and (L̃n−1,(r), Z(r)) are op-
timal `2-couplings for r = 1, . . . , K. Furthermore let (A(1), . . . , A(K), b),

(L̃n−1,(1), Z(1)), . . . , (L̃n−1,(K), Z(K)) be independent. Denote the centered ver-
sions of b, C and C∞ by bc := b− E b, Cc := C − EC and Cc,∞ := C∞ − EC∞.
Using the modified recursion (5.11) and the fixed point relation we deduce

`2
2(L̃

n, L̃)

≤ E
∥∥∥∥

K∑
r=1

A(r),{n}L̃n−1,(r) + Vn(b− E b) + Vn(C − EC)ELn−1

−
( K∑

r=1

A(r),∞Z(r) + V∞(b− E b) + (C∞ − EC∞)γ

)∥∥∥∥
2

= E
∥∥∥∥

K∑
r=1

A(r),∞(L̃n−1,(r) − Z(r)) +
K∑

r=1

(A(r),{n} − A(r),∞)L̃n−1,(r)

+ (Vn − V∞)bc + VnCc ELn−1 − Cc,∞γ

∥∥∥∥
2

≤ E
∥∥∥∥

K∑
r=1

A(r),∞(L̃n−1,(r) − Z(r))

∥∥∥∥
2

+ E
∥∥∥∥

K∑
r=1

(A(r),{n} − A(r),∞)L̃n−1,(r)

∥∥∥∥
2

+ E ‖(Vn − V∞)bc‖2 + E ‖VnC
c ELn−1 − Cc,∞γ‖2

+ 2E
〈 K∑

r=1

A(r),∞(L̃n−1,(r) − Z(r)),
K∑

r=1

(A(r),{n} − A(r),∞)L̃n−1,(r)

〉

+ 2E
〈
(Vn − V∞)bc, VnCc ELn−1 − Cc,∞γ

〉
. (5.32)

The other inner products vanish by independence and E L̃n−1,(r) = EZ(r) = 0.
For the last summand in (5.32) we use 〈a, b〉 ≤ ‖a‖2 + ‖b‖2. The first summand

in (5.32) is bounded from above by ξ2 `2
2(L̃

n−1, L̃), which can be obtained by a
calculation similar to the proof of Lemma 5.1.2. This yields
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`2
2(L̃

n, L̃)

≤ ξ2`2
2(L̃

n−1, L̃)

+ E
∥∥∥∥

K∑
r=1

(A(r),{n} − A(r),∞)L̃n−1,(r)

∥∥∥∥
2

(5.33)

+ 3E ‖(Vn − V∞)bc‖2 (5.34)

+ 3E ‖VnCc ELn−1 − Cc,∞γ‖2 (5.35)

+ 2E

〈
K∑

r=1

A(r),∞(L̃n−1,(r) − Z(r)),
K∑

r=1

(A(r),{n} − A(r),∞)L̃n−1,(r)

〉
. (5.36)

It remains to prove that the summands in (5.33)–(5.36) are converging to zero.
First observe that

E ‖A(r),{n} − A(r),∞‖2 (5.37)

= E
d∑

i,j=1

(A
(r),{n}
ij − A

(r),∞
ij )2

=
d∑

i,j=1

E [A2
ij]

((
Var(Ln−1

j )

Var(Ln
i )

)1/2

− cij

)2

−→ 0

by (5.15), in particular

E ‖A(r),{n} − A(r),∞‖2 = E ‖A(r)‖2 · o(1) for r = 1, . . . , K. (5.38)

Summand (5.33):

E
∥∥∥∥

K∑
r=1

(A(r),{n} − A(r),∞)L̃n−1,(r)

∥∥∥∥
2

= E
K∑

r=1

∥∥∥∥(A(r),{n} − A(r),∞)L̃n−1,(r)

∥∥∥∥
2

≤
K∑

r=1

E
[
‖A(r),{n} − A(r),∞‖2‖L̃n−1,(r)‖2

]

=
K∑

r=1

E ‖A(r),{n} − A(r),∞‖2 E ‖L̃n−1,(r)‖2

=
K∑

r=1

E ‖A(r)‖2 o(1) d −→ 0 for n →∞, (5.39)



5.1. A LIMIT THEOREM FOR THE L2-CASE 81

where E ‖L̃n−1,(r)‖2 = d has been used, which is caused by the scaling (5.9).

Summand (5.34):

E ‖(Vn − V∞)bc‖2 ≤ max
1≤i≤d

{
1

(Var(Ln
i ))1/2

− ϑi

}2

E ‖bc‖2 −→ 0 (5.40)

by (5.14) and (5.19).

Summand (5.35):

E ‖VnCc ELn−1 − Cc,∞γ‖2

= E ‖VnC
cV −1

n−1Vn−1 ELn−1 − Cc,∞γ‖2

= E ‖(VnCcV −1
n−1 − Cc,∞)Vn−1 ELn−1 + Cc,∞(Vn−1 ELn−1 − γ)‖2

≤ 3
(
E ‖(VnC

cV −1
n−1 − Cc,∞)Vn−1 ELn−1‖2

+E ‖+ Cc,∞(Vn−1 ELn−1 − γ)‖2
)

≤ 3
(
E

[‖Cc,{n} − Cc,∞‖2‖Vn−1 ELn−1‖2
]

+E
[‖Cc,∞‖2‖Vn−1 ELn−1 − γ‖2

] )

= 3
(
o(1) ‖Cc‖2‖Vn−1 ELn−1‖2 + E ‖Cc,∞‖2‖Vn−1 ELn−1 − γ‖2

)

−→ 0 for n →∞, (5.41)

since ‖Vn−1 ELn−1‖2 is bounded by (5.16) and ‖Vn−1 ELn−1− γ‖ → 0 by (5.16).

Summand (5.36):

E

〈
K∑

r=1

A(r),∞(L̃n−1,(r) − Z(r)),
K∑

q=1

(A(q),{n} − A(q),∞)L̃n−1,(q)

〉

= E
K∑

q,r=1

〈
A(r),∞(L̃n−1,(r) − Z(r)), (A(q),{n} − A(q),∞)L̃n−1,(q)

〉

= E
K∑

r=1

〈
A(r),∞(L̃n−1,(r) − Z(r)), (A(r),{n} − A(r),∞)L̃n−1,(r)

〉

≤
K∑

r=1

E
[
‖A(r),∞(L̃n−1,(r) − Z(r))‖ · ‖(A(r),{n} − A(r),∞)L̃n−1,(r)‖

]
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≤
K∑

r=1

o(1)E [‖A(r),∞‖ ‖A(r)‖]
(
E ‖L̃n−1,(r)‖2 + E [‖Z(r)‖ ‖L̃n−1,(r)‖]

)

−→ 0, (5.42)

since E ‖L̃n−1,(r)‖2 = d and using the Cauchy-Schwarz inequality

E [‖Z(r)‖ ‖L̃n−1,(r)‖] ≤ E [‖Z(r)‖2]1/2 E [‖L̃n−1,(r)‖2]1/2

≤ const
√

d. (5.43)

Altogether this implies

`2
2(L̃

n, L̃) ≤ ξ2 `2
2(L̃

n−1, L̃) + bn (5.44)

for n ≥ 1. Iteration for this reduction inequality leads to

`2
2(L̃

n, L̃) ≤ ξ2n `2
2(L̃

0, L̃) +
n−1∑

k=0

ξ2kbn−k. (5.45)

Since ξ < 1 and bn → 0 we can directly deduce

n−1∑

k=0

ξ2kbn−k −→ 0 for n →∞ (5.46)

(see Cramer (1995, Lemma 6.30)). This implies

`2
2(L̃

n, L̃) −→ 0 for n →∞. (5.47)

5.2 Covariance structure

For the application of Theorem 5.1.3 it is necessary to check the conditions
(5.14)–(5.16). The asymptotic of the mean vector ELn is given by (5.5)

ELn = (EC)n EL0 +
n−1∑

k=0

(EC)k E b. (5.48)

For the mean, therefore, the computational complexity reduces to the deriva-
tion of the powers of the matrix EC. For the asymptotics of the vari-
ances Var(Ln

1 ), . . . ,Var(Ln
d) we have to investigate the whole covariance matrix

Cov(Ln). We use the following notation: For an n × m matrix A = (aij) de-
note by As := (as1, . . . , asm)t the sth row vector of A for 1 ≤ s ≤ n. If X
is an r.v. in Rd, Cov(X) denotes the matrix (Cov(Xi, Xj))

d
i,j=1. For two r.v.

X,Y in Rd, Rd′ respectively, Cov(X, Y ) denotes the d× d′ matrix (Cov(Xi, Yj)),
1 ≤ i ≤ d, 1 ≤ j ≤ d′.
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Lemma 5.2.1 Let (Ln) satisfy the recursion (5.3) and C =
∑K

r=1 A(r). Then
for 1 ≤ s, t ≤ d

(Cov(Ln))st =
K∑

r=1

E
〈
Cov(Ln−1)A(r)

s , A
(r)
t

〉

+
〈
Cov(Cs, Ct)ELn−1, ELn−1

〉

+
〈
Cov(Cs, bt) + Cov(Ct, bs), ELn−1

〉

+(Cov(b))st (5.49)

Proof: Using linearity we deduce

(Cov1(Ln))st = Cov

(
K∑

r=1

〈
A(r)

s , Ln−1,(r)
〉

+ bs,

K∑
q=1

〈
A

(q)
t , Ln−1,(q)

〉
+ bt

)

=
K∑

q,r=1

Cov
(〈

A(r)
s , Ln−1,(r)

〉
,
〈
A

(q)
t , Ln−1,(q)

〉)
(5.50)

+
K∑

r=1

Cov
(〈

A(r)
s , Ln−1,(r)

〉
+ bt

)
(5.51)

+
K∑

q=1

Cov
(
bs,

〈
A

(q)
t , Ln−1,(q)

〉)
(5.52)

+ Cov (bs, bt) . (5.53)

Let A, Ã, L, L̃ be square integrable r.v. in R1 so that (A, Ã), (L, L̃) are indepen-
dent. Then a direct calculation leads to the formula

Cov(AL, ÃL̃) = Cov(L, L̃)EAE Ã + Cov(A, Ã)E [LL̃]. (5.54)

With this identity we first expand the summand (5.50)

K∑
q,r=1

Cov
(〈

A(r)
s , Ln−1,(r)

〉
,
〈
A

(q)
t , Ln−1,(q)

〉)

=
K∑

q,r=1

d∑
i,j=1

Cov
(
A

(r)
si L

n−1,(r)
i , A

(q)
tj L

n−1,(q)
j

)
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=
K∑

q,r=1

d∑
i,j=1

(
Cov

(
L

n−1,(r)
i , L

n−1,(q)
j

)
E

[
A

(r)
si A

(q)
tj

]

+ Cov
(
A

(r)
si , A

(q)
tj

)
EL

n−1,(r)
i EL

n−1,(q)
j

)

=
K∑

q,r=1

d∑
i,j=1

(
δrqCov

(
Ln−1

i , Ln−1
j

)
E

[
A

(r)
si A

(q)
tj

]

+ Cov
(
A

(r)
si , A

(q)
tj

)
ELn−1

i ELn−1
j

)

=
K∑

r=1

E

[
d∑

i,j=1

Cov
(
Ln−1

i , Ln−1
j

)
A

(r)
si A

(r)
tj

]

+
d∑

i,j=1

( K∑
q,r=1

Cov
(
A

(r)
si , A

(q)
tj

) )
ELn−1

i ELn−1
j

=
K∑

r=1

E
[ 〈

Cov
(
Ln−1

)
A(r)

s , A
(r)
t

〉]

+
d∑

i,j=1

Cov (Csi, Ctj) ELn−1
i ELn−1

j

=
K∑

r=1

E
[〈

Cov
(
Ln−1

)
A(r)

s , A
(r)
t

〉]

+
〈
Cov(Cs, Ct)ELn−1, ELn−1

〉
. (5.55)

The summand (5.51) can be expanded to

K∑
r=1

Cov
(〈

A(r)
s , Ln−1,(r)

〉
+ bt

)

=
K∑

r=1

d∑
i=1

Cov
(
A

(r)
si L

n−1,(r)
i , bt

)

=
K∑

r=1

d∑
i=1

EL
n−1,(r)
i Cov

(
A

(r)
si , bt

)



5.2. COVARIANCE STRUCTURE 85

=
d∑

i=1

ELn−1
i

K∑
r=1

Cov
(
A

(r)
si , bt

)

=
d∑

i=1

ELn−1
i Cov (Csi, bt)

=
〈
Cov(Cs, bt), ELn−1

〉
. (5.56)

Summand (5.52) has the analogous representation. So, (5.51) and (5.52) together
make the contribution〈

Cov(Cs, bt) + Cov(Ct, bs), ELn−1
〉

(5.57)

to the expansion of (Cov(Ln))st.

Our aim is to give a formula for Var(Ln
i ) only in terms of the given quantities

A(1), . . . , A(K), b, L0. For an iteration of formula (5.49) we introduce the following
notation: For a given d× d matrix M = (mij) denote by MV ∈ Rd2

the vector

MV
(i−1)d+j := mij, for all 1 ≤ i, j ≤ d. (5.58)

This means that we write the matrix M row by row into the vector MV . We also
use the notation (Cov( · ))V = CovV ( · ). Define the d2×d2 matrices P,Q and the
d2 × d matrix R by

P(s−1)d+t,(i−1)d+j :=
K∑

r=1

E
[
A

(r)
si A

(r)
tj

]
, (5.59)

Q(s−1)d+t,(i−1)d+j :=
K∑

q,r=1

Cov
(
A

(r)
si , A

(r)
tj

)
, (5.60)

R(s−1)d+t,j :=
K∑

r=1

Cov
(
A

(r)
si , bt

)
+ Cov

(
A

(r)
tj , bs

)
, (5.61)

for 1 ≤ i, j, s, t ≤ d. Furthermore denote by Mn the d× d matrix

Mn := ELn · (ELn)t . (5.62)

By (5.48) Mn is expressible only in terms of A(1), . . . , A(K), b, L0. In this notation
the recurrence (5.49) reads

CovV (Ln) = P CovV (Ln−1) + QMV
n−1 + RELn−1 + CovV (b). (5.63)

Iteration of this formula leads to an explicit expansion of the covariance matrix
Cov(Ln):
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Theorem 5.2.2 The covariance matrix Cov (Ln) of Ln satisfying the recursion
(5.3) in the notions (5.58)–(5.62) has the expansion

CovV (Ln)

= P nCovV (L0) +
n∑

k=1

P k−1
(
QMV

n−k + RELn−k + CovV (b)
)
. (5.64)

This means that the computational difficulty to determine the asymptotics of
ELn and Var(Ln

1 ), . . . ,Var(Ln
d) reduces to calculate the powers of the matrices

EC and P given by

(EC)ij =
K∑

r=1

E
[
A

(r)
ij

]
, (5.65)

P(s−1)d+t,(i−1)d+j =
K∑

r=1

E
[
A

(r)
si A

(r)
tj

]
(5.66)

for 1 ≤ i, j, s, t ≤ d. A concrete example in the two-dimensional case for
the derivation of these asymptotics leading to the verification of the conditions
(5.14)–(5.16) was discussed in Cramer and Rüschendorf (1998).

5.3 Lyapunov exponents

The classical approach to study recursion (5.2) in the affine case K = 1 is based
on properties of Lyapunov exponents. For K = 1 the process (Ln) can be defined
pointwise by

Ln := AnLn−1 + bn for all n ≥ 1, (5.67)

where (An, bn) is an i.i.d. sequence of random n × n matrices An and random
translations bn. Furthermore an initial r.v. L0 is given. Iterating (5.67) Ln has
the representation

Ln = An · . . . · A1L
0 +

n∑
j=2

(An · . . . · Aj)bj−1 + bn. (5.68)

The distributional asymptotics of Ln are usually analyzed introducing a change
of time (see e.g. Verwaat (1979)): Let Y 0 := 0 and

Y n := b1 +
n−1∑
j=1

(A1 · . . . · Aj)bj+1. (5.69)



5.3. LYAPUNOV EXPONENTS 87

Then the distributional relation

Ln D
= Y n + A1 · . . . · AnL

0 (5.70)

holds. Assuming appropriate assumptions involving the notion of a Lyapunov
exponent A1 · . . . · AnL

0 becomes asymptotically small and Y n converges a.s. to

Y := b1 +
∞∑

j=1

(A1 · . . . · Aj)bj+1. (5.71)

Following this line Ln → Y in distribution can be deduced.
The (top) Lyapunov exponent of a random n × n matrix A satisfying the

condition E ln+ ‖A‖ < ∞ is defined by

γ(A) := inf
n∈N

1

n
E [ln ‖A1 · . . . · An‖], (5.72)

where (Ai) are independent with Ai ∼ A. The analysis of Y n is based on the
fact that

γ(A) = lim
n→∞

1

n
ln ‖A1 · . . . · An‖ a.s. (5.73)

which was proved in Furstenberg and Kesten (1960) and is a consequence of the
subadditive ergodic theorem of Kingman (1973). If E ln ‖b‖ < ∞ and γ(A) < 0
then convergence of Ln to Y was shown in Burton and Rösler (1995).

For a scaled version of such a result consider

L̃n := VnLn, for all n ≥ 1 (5.74)

with Vn given by (5.6). Define

β :=
1

2
min
1≤i≤d

lim inf
n→∞

1

n
ln

(
Var(Ln

i )
)
. (5.75)

Corresponding to Theorem 5.1.3 we derive a limit law for (L̃n) based on Lyapunov
exponents in the case K = 1:

Theorem 5.3.1 Let (Ln) be given by (5.67) with E ln+ ‖b‖ < ∞, ‖L0‖ < ∞
a.s., and γ(A) < β, where β > 0 is given by (5.75). Then

Z := lim
n→∞

Vn

(
b1 +

n−1∑
j=1

(A1 · . . . · Aj)bj+1

)
(5.76)

exists almost surely and

L̃n D−→ Z for n →∞. (5.77)
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Proof: By (5.69) and (5.70) it holds

L̃n D
= VnY n + VnA1 · . . . · AnL0. (5.78)

Since β > 0 and γ(A) < β there exists 0 < ξ < (β−γ(A))/4 with β− := β−ξ > 0
and α++ := γ(A) + 2ξ 6= 0. Define α+ := γ(A) + ξ. By (5.73) it exists a.s. a
n0 = n0(ω) ∈ N with

‖A1 · . . . · An‖ ≤ exp(nα+) for all n ≥ n0. (5.79)

Therefore a.s. a constant C1 = C1(ω) > 0 exists with

‖A1 · . . . · An‖ ≤ C1 exp(nα+) for all n ∈ N. (5.80)

Analogously using (5.75) there exists a C2 > 0 with

‖Vn‖ ≤ C2 exp(−nβ−) for all n ∈ N. (5.81)

Furthermore it exists a C3 > 0 so that a.s.

‖bn‖ ≤ C3 exp(nξ/4) for all n ∈ N. (5.82)

This can be seen by a standard argument:
∑
n≥1

P
(
‖bn‖ > exp(nξ/4)

)
=

∑
n≥1

P
(
(4/ξ) ln ‖bn‖ > n

)

≤ 4

ξ
E ln+ ‖b‖ < ∞. (5.83)

Then by the Borel-Cantelli Lemma

P
(

lim sup
n→∞

{
‖bn‖ > exp(nξ/4)

})
= 0. (5.84)

This means that with probability one ‖bn‖ > exp(nξ/4) occurs only finitely many
times. This implies (5.82).

Now we complete the proof showing

VnA1 · . . . · AnL
0 −→ 0 for n →∞ a.s., (5.85)

VnY
n −→ Z for n →∞ a.s. (5.86)

Ad (5.85): Almost surely holds

‖VnA1 · . . . · AnL
0‖ ≤ ‖Vn‖ ‖A1 · . . . · An‖ ‖L0‖

≤ C1C2 exp(−nβ−) exp(nα+)‖L0‖
≤ C1C2‖L0‖ exp(−2ξn) → 0 for n →∞, (5.87)

by (5.80), (5.81), and ‖L0‖ < ∞ a.s.
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Ad (5.86): It is

VnYn = Vn

(
b1 +

n−1∑
j=1

A1 · . . . · Ajbj+1

)
. (5.88)

For the convergence of VnYn we show that (VnYn) is a Cauchy sequence a.s. We
prove a.s.

lim
n0→∞

sup
n0≤m≤n

‖VnYn − VmYm‖ = 0. (5.89)

For n0 ≤ m < n it is

‖VnYn − VmYm‖

=

∥∥∥∥Vn

n−1∑
j=m

A1 · . . . · Ajbj+1 + (Vn − Vm)
m−1∑
j=1

A1 · . . . · Ajbj+1

∥∥∥∥

≤ ‖Vn‖
n−1∑
j=m

‖A1 · . . . · Aj‖ ‖bj+1‖

+ ‖Vn − Vm‖
m−1∑
j=1

‖A1 · . . . · Aj‖ ‖bj+1‖. (5.90)

The first summand in (5.90) denoting C := C1C2C3 is estimated a.s. by

‖Vn‖
n−1∑
j=m

‖A1 · . . . · Aj‖ ‖bj+1

≤ C exp(−nβ−)
n−1∑
j=m

exp(jα++)

= C exp(−nβ−)
exp(α++)m − exp(α++)n

1− exp(α++)

=
C

1− exp(α++)

[
exp(mα++ − nβ−)− exp(n(α++ − β−))

]

−→ 0 for n0 →∞, (5.91)

since exp(mα++ − nβ−) ≤ exp(−n0ξ) and exp(n(α++ − β−)) ≤ exp(−n0ξ). For
the second summand of (5.90) observe

‖Vn − Vm‖ ≤ C2 exp(−mβ−), (5.92)
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since m < n and β− > 0. This implies a.s.

‖Vn − Vm‖
m−1∑
j=1

‖A1 · . . . · Aj‖ ‖bj+1‖

≤ C exp(−mβ−)
m−1∑
j=1

exp(jα++)

= C exp(−mβ−)
1− exp(α++)m

1− exp(α++)

=
C

1− exp(α++)

[
exp(−mβ−)− exp(m(α++ − β−))

]

−→ 0 for n0 →∞, (5.93)

since exp(−mβ−) ≤ exp(−n0ξ) and exp(n(α++ − β−)) ≤ exp(−n0ξ).

Even in the unscaled case with K = 1 there is not much known about the
connection of the conditions arising in the L2-case formulated in expectations of
norms of certain matrices as in (5.29) with conditions on Lyapunov exponents.
For a discussion of this problem and a related conjecture see Burton and Rösler
(1995).
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Hoare, C. A. R. (1961). Algorithm 64, Quicksort; Algorithm 65, Find. Com-
munications of the ACM 4, 321–322.

Hoare, C. A. R. (1962). Quicksort. The Computer Journal 5, 10–15.

Holley, R. and T. M. Liggett (1981). Generalized potlatch and smoothing
processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebi-
ete 55, 165–195.

Jacquet, P. and W. Szpankowski (1995). Asymptotic behavior of the Lempel-
Ziv parsing scheme and digital search trees. Theoretical Computer Sci-
ence 144, 161–197.

Johnson, N. L. and S. Kotz (1990). Use of moments in deriving distributions
and some characterizations. Mathematical Scientist 15, 42–52.

Johnson, N. L. and S. Kotz (1995). Use of moments in studies of limit distri-
butions arising from iterated random subdivisions of an interval. Statistics
& Probability Letters 24, 111–119.



94 BIBLIOGRAPHY

Kahane, J.-P. and J. Peyrière (1976). Sur certaines martingales de Benoit
Mandelbrot. Advances in Mathematics 22, 131–145.

Kakutani, S. (1975). A problem of equidistribution on the unit interval [0, 1].
In Proceedings of the Oberwolfach Conference on Measure Theory, Volume
541 of LNM, pp. 369–375.

Kennedy, D. P. (1988). A note on stochastic search methods for global opti-
mization. Advances in Applied Probability 20, 476–478.

Kesten, H. (1973). Random difference equations and renewal theory for prod-
ucts of random matrices. Acta Mathematica 131, 207–248.

Kingman, J. F. C. (1973). Subadditive ergodic theory. Annals of Probability 1,
883–909.

Kirschenhofer, P., C. Mart́ınez, and H. Prodinger (1997). Analysis of Hoare’s
Find algorithm with median-of-three partition. Random Structures and Al-
gorithms 10, 143–156.

Kirschenhofer, P. and H. Prodinger (1998). Comparisons in Hoare’s FIND
algorithm. Combinatorics, Probability and Computing 7, 111–120.

Knessl, C. and W. Szpankowski (1999). Quicksort algorithm again revisited.
Discrete Mathematics and Theoretical Computer Science 3, 43–64.

Knuth, D. E. (1972). Mathematical analysis of algorithms. In Information
processing 71, Volume 10, pp. 19–27. North Holland Publishing Company
1972. Proceedings of IFIP Congress Ljubljana, 1971.

Knuth, D. E. (1997a). The Art of Computer Programming: Fundamental Al-
gorithms (third ed.), Volume 1. Addison Wesley.

Knuth, D. E. (1997b). The Art of Computer Programming: Seminumerical
Algorithms (third ed.), Volume 2. Addison Wesley.

Knuth, D. E. (1998). The Art of Computer Programming: Sorting and Search-
ing (second ed.), Volume 3. Addison Wesley.

Lent, J. and H. Mahmoud (1996). Average-case analysis of multiple quick-
select: An algorithm for finding order statistics. Statistics & Probability
Letters 28, 299–310.

Letac, G. and M. Scarsini (1998). Random nested tetrahedra. Advances in
Applied Probability 30, 619–627.

Mahmoud, H. (1986). On the average internal path length of m-ary search
trees. Acta Informatica 23, 111–117.

Mahmoud, H. (1992). Evolution of Random Search Trees. John Wiley.



BIBLIOGRAPHY 95

Mahmoud, H., R. Modarres, and R. Smythe (1995). Analysis of quickselect:
An algorithm for order statistics. RAIRO, Theoretical Informatics and Ap-
plications 28, 299–310.

Mahmoud, H. and R. Smythe (1998). Probabilistic analysis of MULTIPLE
QUICKSELECT. Algorithmica 22, 569–584.

Mandelbrot, B. (1974). Multiplications aléatoires itérées et distributions in-
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