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ABSTRACT: A random suffix search tree is a binary search tree con-
structed for the suffixes X; = 0.B;B;y1B;12 ... of a sequence By, Bs, ... of inde-
pendent identically distributed random b-ary digits B;. Let D,, denote the depth
of the node for X, in this tree when B is uniform on Z,. We show that for any
valueof b>1, ED, =2logn+ O(log2 logn), just as for the random binary search
tree. We also show that D,/ ED,, — 1 in probability.

1 Introduction

Current research in data structures and algorithms is focused on the efficient
processing of large bodies of text (encyclopedia, search engines) and strings of data
(DNA strings, encrypted bit strings). For storing the data such that string search-
ing is facilitated, various data structures have been proposed. The most popular
among these are the suffix tries and suffix trees (Weiner, 1973; McCreight, 1976),
and suffix arrays (Manber and Myers, 1990). Related intermediate structures such
as the suffix cactus (Karkkainen, 1995) have been proposed as well. Apostolico
(1985), Crochemore and Rytter (1994) and Stephen (1994) cover most aspects of
these data structures, including their applications and efficient construction algo-
rithms (Ukkonen 1995, Weiner 1973, Giegerich and Kurtz, 1997, and Kosaraju,
1994). If the data are thought of as strings By, Ba,... of symbols taking values
in an alphabet Z, = {0,1,...,b — 1} for fixed finite b, then the suffix trie is an
ordinary b-ary trie for the strings X; = (B;, Bit1,--.), 1 < i < n. The suffix tree
is a compacted suffix trie. The suffix array is an array of lexicographically ordered
strings X; on which binary search can be performed. Additional information on
suffix trees is given in Farach (1997), Farach and Muthukrishnan (1996, 1997), Gi-
ancarlo (1993, 1995), Giegerich and Kurtz (1995), Gusfield (1997), Sahinalp and
Vishkin (1994), Szpankowski (1993). The suffix search tree we are studying in this
paper is the search tree obtained for X3, ..., X, where again lexicographical or-
dering is used. Care must be taken to store with each node the position in the
text, so that the storage comprises nothing but pointers to the text. Suffix search
trees permit dynamic operations, including the deletion, insertion, and alteration
of parts of the string. Suffix arrays on the other hand are clearly only suited for
off-line applications.

The analysis of random tries has a long history (see Szpankowski, 2001, for
references). Random suffix tries were studied by Jacquet, Rais and Szpankowski
(1995) and Devroye, Szpankowski and Rais (1992). The main model used in these
studies is the independent model: the B;’s are independent and identically dis-
tributed. Markovian dependence has also been considered. If p; = P{B; = j},
0 < j < b, then it is known that the expected depth of a typical node in an n-
node suffix trie is close in probability to (1/&)logn, where & = 3~ p;log(1/p;)
is the entropy of B;. The height is in probability close to (b/€)logn, where
& =log(1l/ > j p;’) If £ or £ are small, then the performance of these structures
deteriorates to the point that perhaps more classical structures such as the binary
search tree are preferable.



In this paper, we prove that for first order asymptotics, random suffix search
trees behave roughly as random binary search trees. If D, is the depth of X,,, then

ED,, =2logn + O(log?logn)

and D, /logn — 2 in probability, just as for the random binary search tree con-
structed as if the X;’s were independent identically distributed strings (Knuth,
1973, and Mahmoud, 1992, have references and accounts). We prove this for b = 2
and pg = p1 = 1/2. The generalization to b > 2 is straightforward as long as B is
uniform on Zs,.

The second application area of our analysis is related directly to random bi-
nary search trees. We may consider the X;’s as real numbers on [0, 1] by considering
the b-ary expansions

X,’ZO.BiBi+1..., ].SZSTL

In that case, we note that X;; = {bX;} := (bX;) mod 1. If we start with X;
uniform on [0,1], then every X; is uniform on [0,1], but there is some depen-
dence in the sequence X1, Xa,.... The sequence generated by applying the map
Xit1 = {bX;} resembles the way in which linear congruential sequences are gen-
erated on a computer, as an approximation of random number sequences. In fact,
all major numerical packages in use today use linear congruential sequences of the
form z, 1 = (bx, + a) mod M, where a,b, x,,, T, 1, M are integers. The sequence
Zn /M is then used as an approximation of a truly random sequence. Thus, our
study reveals what happens when we replace i.i.d. random variables with the mul-
tiplicative sequence. It is reassuring to note that the first order behavior of binary
search trees is identical to that for the independent sequence.

The study of the behavior of random binary search trees for dependent se-
quences in general is quite interesting. For the sequence X,, = (nU) mod 1, with
U uniform on [0,1], a detailed study by Devroye and Goudjil (1998) shows that
the height of the tree is in probability ©(logn loglogn). The behavior of less de-
pendent sequences X,, = (n®U) mod 1, @ > 1, is largely unknown. The present
paper shows of course that X, = (2"U) mod 1 is sufficiently independent to en-
sure behavior as for an i.i.d. sequence. Antos and Devroye (2000) looked at the
sequence X, = 2?21 Y:, where the Y;’s are i.i.d. random variables and showed
that the height is in probability ©@(y/n). Cartesian trees (Devroye 1994) provide
yet another model of dependence with heights of the order ©(y/n).

This extended abstract is organized as follows. In section 2 we introduce a
perturbed version of the random suffix search tree on which we will draw back
troughout our analysis. Section 3 provides a rough bound for the mean of the
height of the random suffix search tree, which will be used later in the analysis of
E D, . In the following two sections we present a key lemma on which our expansion
of the mean and a weak law of large numbers for D,, is based, and give a detailed
proof for ED,, = 2logn + O(log2 logn). From section 6 on we approach the tree
from a different path, the spacings formed by Xi,..., X, on [0,1]. First we show
a limit law for the scaled length of a randomly chosen spacing, convergence of all
moments and a related limit law when the spacings are chosen with probability
according to their length. These results could also be used to find the dominant
term in the expansion of E D,,. We will derive asymptotic information on the size
of the subtree rooted at X for a large range of j. In the last section we state some
lemmas which were used in the analysis. Complete proofs can be found in Devroye
and Neininger (2002).



2 Notation and perturbed tree

Denote the uniform distribution on [0, 1] by U[0,1] and the Bernoulli(p) dis-
tribution by Be[p]. We have given a U[0,1] distributed random variable X; and
define Xy, := T(Xj_1) for k > 2, with the map T : [0,1] = [0,1],z — {22} = 2z
mod 1.

In the binary representation X; = 0.B1Bs .. ., the By, are independent Be[1/2]
bits. Then we have

Xk = O.BkBk+1Bk+2 e
for all ¥ > 1. For m > 1 we introduce the corresponding perturbed random variates

Y{™ :=0.BxBis1...Beym 1BFB® .. k=1,...,n,

where {B](-k) 1 k,j > 1} is a family of independent Be[1/2] distributed bits, inde-
pendent of X;. Then we have for all & > 1,

1
| Xk — Yk<m>| < om’”
and Y™ Y}<m> are independent if |i — j| > m.

Since we will switch in our analysis between the random suffix search tree
built from X1,...,X, and its perturbed counterpart generated by Y1<m>, S A
we have to control the probability that they coincide. We denote by |z || := 2|z/2]
the largest even integer not exceeding x. For a vector (ai,...,an) of distinct real
numbers, let 7(ay,...,a,) be the permutation given by the vector.

Lemma 2.1 If m := 18|log, n||, then for all n > 16,

P (w(X1, .. Xn) £ 7 (™, V™)) < %

The perturbed tree and the original tree are thus identical with high proba-

bility. In the perturbed tree, note that Yi(m> and Yj(m> are independent whenever

|i — j| > m. Unfortunately, it is not true that random binary search trees con-
structed on the basis of identically distributed m-dependent sequences behave as
those for i.i.d. sequences, even when m is as small as 1. For example, the depth of
a typical node and the height may increase by a factor of m when m is small and
positive.

3 A rough bound for the height

We will need a rough upper bound for the mean of the height of the random
suffix search tree.

Lemma 3.1 Let a binary search tree T be built up from distinct numbers z,, ..., x,
and denote its height by H. We assume that the set of indices {1,...,n} is de-
composed into k nonempty subsets Iy, ..., T of cardinalities |I;| = n;. Assume

that Z; consists of the indices n(j,1) < --- < n(j,n;) and denote the height of



the binary search tree T; built up from Ty 1y,-- -, Tn(jn,) by Hj forj=1,...,k.
Then we have

k
H<k-1+) H;

=1

This can be turned into a rough estimate for the height using the fact the
mean of the height is known to be of the order logn for the binary search tree in
the random permutation model, where each permutation of the keys inserted is
equally likely (Devroye 1987). Lemma 3.2 below is valid for our model, but also for
any random binary search tree constructed on the basis of U[0, 1] random variables
that are m-dependent, with m = O(logn).

Lemma 3.2 Let H, denote the height of the random suffix search tree with n
nodes. Then EH, = O(log®n).
4 A key lemma

We introduce the events A; = {X; is ancestor of X,, in the tree}. Then we
have the representations

n—1 n—1
D, =Y 14, ED, =) P(4)).
j=1 j=1

We use the notation «, 8 > 71, - ., Tn, if there does not exist k with 1 <k <n
for which @ < v, < B or 8 < 1 < a, i.e, a,f are neighbors in {v1,...,v,.}.

Note that 4; = {X;, X, > Xq,...,X;_1}. We use A§-m> for the corresponding
event involving the Y™ : Ay”) = {1/;.(7”),1/}57”> b Y™ ,Yj(inl)}. Thoughout we
abbreviate m = 18| log, n||.

Our key lemma consists of an analysis of the depth of the n-th inserted node
X, conditioned on its location. For z € [0,1] and 1 <4 < n — 1, define

pi(z) == ]P’(Yz.<m),xl>Y1<m>, .. ,Yf_"{))

We use the following bad set:
Bn(&) == J{z € [0,1]: |e - TH=)| < &}, £>0,
k=1

where T is the map T'(z) := {2z} and T* its k-th iteration, see Figure 1.
Lemma 4.1 For all n sufficiently large, all © € [0,1], and 1 < i < n, we have

2 . :

pi(x) = 1lpm2/ii-me2/q(T) 7 + Ri(n,i) + 1p, (am2/vi) (z)Rz(n, 1)

+ (1 = Lpn2/i,1-m2/q (2)) Rs(n, i),



Figure 1: The last line shows the bad set B (&) for m =
lines above show the sets {|x —T*(x)| < €} fork=1,...,
case k = 3, it is shown how these sets emerge.

and £ = 3/50. The siz
. In the square, for the

where for appropriate constants Cy,Cy,C3 > 0,

. log® n

|Ri(n, )| < CligTﬂ

. log® n

|R2(TL,/L)| S 02 gl )
logn

|Rs(n,i)] < Cs

5 Analysis of the depth

Based on Lemma, 4.1, we obtain an expansion for the mean of the depth D,
as well as a weak law of large numbers. For a random binary search tree based on
i.i.d. random variables, it is well-known that ED,, = 2logn + O(1), where D,, is
the depth of the n-th node (see, e.g., Knuth 1973 or the references in Mahmoud
1992).

Theorem 5.1 The depth D,, of the n-th node inserted into a random suffiz search
tree satisfies

ED,, = 2logn + O(log?logn).



Proof: We define the events A; = {Xj is ancestor of X, in the tree} and the
representations

n—1 n—1
D, = Z 14;, ED, = Z P(4;).
j=1 j=1

For the estimate of P(A;) we distinguish three ranges for the index j, namely
1< j < [logi?n], [logi’n] < j < n—m, and n —m < j < n, where we choose
m = 18| log, n||.

12
The range 1 < j < [logy> n]: Note that 3 ][1:()%2 " 14 ; is bounded from above by
the height of the random suffix search tree with [logi” n] nodes. Thus, by Lemma
3.2, we obtain

[ogs? n]

> P(4)) < EHjpogp ) = O(logs logy” 1)) = O(log” log n).
j=1

The range [logy°n] < j < n — m: We start, using Lemma 2.1, with the represen-
tation

P(4;) = P(X;,Xn>X1,...,X; 1)
= P,y ey ™ LY 4 0(1/n?)
= P(A™) +0(1/n?).
Note that ¥,\™ is independent of Y1<m>, ... ,Yj<m), since j < n —m. Thus for the

calculation of ]P’(A§-m)) we may condition on Y™ . With the notation of Lemma 4.1
and using the fact that nym> is U0, 1] distributed this yields for all 1 < j < n—m,

log®n

m m 2
P(AS™) = Blp; (V)] = % + By, |Rugl < O,

for some constant C' > 0. When summing note that

> log® n °°
> % glog%/ —7 do=0(1).
j=liogiz n] ? fog3? =1 &
We obtain
> Py = Y (S4B +0(5))
) ) J n
j=llog}? n] 7=[log3* n]
= 2logn + O(loglogn).

Hence, this range gives the main contribution.



The range n — m < j <n — 1: With ¢ := |j/m] — 1 we have

P(4;) P(X;, X > X1,...,Xj 1)
P(Xj,Xn I>Xj_m, . an—qm)

_ (m) v (m) o y(m) (m) 2
= PY;™, VMo Y Y )+ 0(1/n?).

IA I

We have, using Lemma 9.2, for n sufficiently large,
(m) y-(m (m) {m)
PY;™, VMmoo Yy Y
< P = v > mP i v e vy

{m) m 2/
+]P’(|Y} —YTS >|<m /9)
2

m2\i/m-2  m
< (1-— +8—
< (=5
2
< dexp(—m) + 8—
1 2
< 0( 18>+8m—

so that the third range makes an asymptotically negligible contribution. Collecting
the estimates of the three ranges, we obtain the assertion.

Theorem 5.2 We have D,,/ED,, — 1 in probability as n — oo.

6 Weak convergence of a random spacing

The lengths of the spacings formed by X;,...,X, on [0,1] are denoted by
S]n = X(j+1) —X(j) fOI‘j = ]., .. .,n—l and Sg’ = X(l): Ss = ]-_X(n)a where X(J)
denotes the j-th order statistic of Xi,...,X,. In this section we provide a limit
law for the rescaled length of a spacing chosen uniformly from Sg, ..., S}, where
by uniform we mean that we choose one of the indices j = 0,...,n uniformly at
random. Later we will choose an index by into which spacing an U[0, 1] random

variable, independent of X7, falls.

Lemma 6.1 We have

nST, =N E, (n— o0),

T

where E is exp(l)-distributed, i.e., has Lebesgue-density e ® on [0,00) and I, is

uniformly distributed on {0,...,n} and independent of X;.



This can be reduced to the following result on the spacings between fractional
parts of lacunary sequences due to Rudnick and Zaharescu (2002). A lacunary
sequence is a sequence (a;);>1 of integers such that we have liminf;_, a;q1/a; >
1. The primary example is a; = 2/. Now, for an a € R we define Si(a) for
j =0,...,n as the spacings between the fractional parts of aa;, 7 = 1,...,n, in the
unit interval [0, 1]. More precisely, for 97 := {aa;} we define ST () := J(;1.1) —9;)
for j=1,...,n—1as well as Sg'(a) := ¥(1) and S} (@) := 1 —J(,). Then Rudnick
and Zaharescu (2002) prove:

Theorem 6.2 Let (a;) be a lacunary sequence. Then we have for almost all & € R
and all 0 < a < b,

b
#{0<j <n:nS}(a) € [a,b]} = / e ?dzx.

a

. 1
lim
n—oo 1 + 1

For background, see also Kurlberg and Rudnick (1999, Appendix A). This can
directly be turned into a proof of Lemma 6.1.

7 Uniform integrability

In this section we show that the convergence in Corollary 6.1 holds for all
moments.

Lemma 7.1 For all fized p > 0

sup E(nST, )? < oo,
neN

where the random index I, is unif{0,...,n} distributed and independent of X; .

The limit law of Theorem 6.1 together with the uniform integrability of Lemma
7.1 implies convergence of all moments (Billingsley 1979, Theorem 25.12). Thus
we have

lim E(nS} )" = / e ®dr =10, £=0,1,2,.... (1)
0

n—oo

We turn to the analysis of the rescaled length of a spacing chosen according
to into which spacing an indepedendent U[0, 1] random variable falls. For this we
define the conditional distribution of the index .J,, chosen by

P(J,=k|SE,....,S) =S;, k=0,...,n.
Then we have the following limit law:

Lemma 7.2 We have

nS} N Ga, (n— ),

—T

where G is Gamma(2)-distributed, i.e., has Lebesgue density xe=* on [0, 00).



8 Applications of spacings

The analysis of the random spacings generated by Xi,...,X,, can be used
for the asymptotic analysis of parameters of the random suffix search tree. The
leading order term of ED,, can be rediscovered using (1) with £ = 2. This provides
an alternative path to that followed in Theorem 5.1. The limit law for the size N, ;
of the subtree rooted at X; can be found for a large range of values j. This result
is rooted in the lemmas of section 7.

Theorem 8.1 The size N, ; of the subtree of the random suffiz search tree of size
n rooted at X; satisfies for j = j(n) with j = o(n/log’n) and j/log®n — oo,

o
EN, ; ~ 7” %Nn,j £ Go,

as n — 0o, where Gy denotes the Gamma(2)-distribution.

It can be shown that in the case j ~ an with a € (0,1) the size N, ; tends in
distribution to the negative binomial distibution with parameters (2, a), given by
its generating function s = (a/(1 — (1 — a)s))?.

9 Appendix

Lemma 9.1 Let I be an interval in [0,1] of length |I|. Then for all 1 < i <
—log, |I| we have

I
I[D(Xl,X1+,' S I) < |2_z|

Lemma 9.2 For all integer 1 <i < j,t>1 and real € > 0,
P(X; - Xj| <e) <2, PV -y <e) < e
Lemma 9.3 For all integer 1 <i < j, t>1 and real € > 0, and U being U|0, 1]
distributed and independent of X1, Yi<t>, Yj<t> we have
P(Xi, Xj € [U,U +¢]) <22, P, € [U,U +¢]) < 82

Lemma 9.4 For any Borel set A C[0,1], real e,d > 0, integer i > 0, and U being
UJ0,1] distributed we have

eA(A)
6 )

PNTT((U,U +¢)) N A) > 6) <

where M\(-) denotes Lebesgue measure.
Lemma 9.5 Foralln >1,a€[0,1), and A € (0,1/+/n) witha+ A < 1, we have

LA 2L

P(y;<m>,...,YL<72> ¢ [a,a+A]) <1-=-+7

where L = | log, n|| and m = 18L.
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