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Abstract

A random suffix search tree is a binary search tree constructed for the
suffixes Xi = 0.BiBi+1Bi+2 . . . of a sequence B1, B2, B3., . . . of independent
identically distributed random b-ary digits Bj . Let Dn denote the depth of the
node for Xn in this tree when B1 is uniform on Zb. We show that for any value
of b > 1, EDn = 2 log n + O(log2 log n), just as for the random binary search
tree. We also show that Dn/EDn → 1 in probability.
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1 Introduction

Current research in data structures and algorithms is focused on the efficient pro-
cessing of large bodies of text (encyclopedia, search engines) and strings of data
(DNA strings, encrypted bit strings). For storing the data such that string search-
ing is facilitated, various data structures have been proposed. The most popular
among these are the suffix tries and suffix trees (Weiner, 1973; McCreight, 1976),
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and suffix arrays (Manber and Myers, 1990). Related intermediate structures such
as the suffix cactus (Karkkainen, 1995) have been proposed as well. Apostolico
(1985), Crochemore and Rytter (1994), and Stephen (1994) cover most aspects of
these data structures, including their applications and efficient construction algo-
rithms (Ukkonen 1995, Weiner 1973, Giegerich and Kurtz, 1997, and Kosaraju,
1994). If the data are thought of as strings B1, B2, . . . of symbols taking values in
an alphabet Zb = {0, 1, . . . , b−1} for fixed finite b, then the suffix trie is an ordinary
b-ary trie for the strings Xi = (Bi, Bi+1, . . .), 1 ≤ i ≤ n. The suffix tree is a com-
pacted suffix trie. The suffix array is an array of lexicographically ordered strings
Xi on which binary search can be performed. Additional information on suffix trees
is given in Farach (1997), Farach and Muthukrishnan (1996, 1997), Giancarlo (1993,
1995), Giegerich and Kurtz (1995), Gusfield (1997), Sahinalp and Vishkin (1994),
Szpankowski (1993). The suffix search tree we are studying in this paper is the
search tree obtained for X1, . . . , Xn, where again lexicographical ordering is used.
Care must be taken to store with each node the position in the text, so that the stor-
age comprises nothing but pointers to the text. Suffix search trees permit dynamic
operations, including the deletion, insertion, and alteration of parts of the string.
Suffix arrays on the other hand are clearly only suited for off-line applications.

The analysis of random tries has a long history (see Szpankowski, 2001, for refer-
ences). Random suffix tries were studied by Jacquet, Rais and Szpankowski (1995)
and Devroye, Szpankowski and Rais (1992). The main model used in these stud-
ies is the independent model: the Bi’s are independent and identically distributed.
Markovian dependence has also been considered. If pj = P{B1 = j}, 0 ≤ j < b,
then it is known that the expected depth of a typical node in an n-node suffix trie
is close in probability to (1/E) logn, where E =

∑
j pj log(1/pj) is the entropy of

B1. The height is in probability close to (b/ξ) logn, where ξ = log(1/
∑

j p
b
j). If ξ

or E are small, then the performance of these structures deteriorates to the point
that perhaps more classical structures such as the binary search tree are preferable.

In this paper, we prove that for first order asymptotics, random suffix search
trees behave roughly as random binary search trees. If Dn is the depth of Xn, then

EDn = 2 log n+O(log2 log n)

and Dn/ log n → 2 in probability, just as for the random binary search tree con-
structed as if the Xi’s were independent identically distributed strings (Knuth, 1973,
and Mahmoud, 1992, have references and accounts). We prove this for b = 2 and
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p0 = p1 = 1/2. The generalization to b > 2 is straightforward as long as B1 is
uniform on Zb.

The second application area of our analysis is related directly to random binary
search trees. We may consider the Xi’s as real numbers on [0, 1] by considering the
b-ary expansions

Xi = 0.BiBi+1 . . . , 1 ≤ i ≤ n .

In that case, we note that Xi+1 = {bXi} := (bXi) mod 1. If we start with X1

uniform on [0, 1], then every Xi is uniform on [0, 1], but there is some dependence
in the sequence X1, X2, . . .. The sequence generated by applying the map Xi+1 =
{bXi} resembles the way in which linear congruential sequences are generated on
a computer, as an approximation of random number sequences. In fact, all major
numerical packages in use today use linear congruential sequences of the form xn+1 =
(bxn + a) mod M , where a, b, xn, xn+1,M are integers. The sequence xn/M is then
used as an approximation of a truly random sequence. Thus, our study reveals what
happens when we replace i.i.d. random variables with the multiplicative sequence.
It is reassuring to note that the first order behavior of binary search trees is identical
to that for the independent sequence.

The study of the behavior of random binary search trees for dependent sequences
in general is quite interesting. For the sequence Xn = (nU) mod 1, with U uniform
on [0, 1], a detailed study by Devroye and Goudjil (1998) shows that the height of the
tree is in probability Θ(logn log log n). The behavior of less dependent sequences
Xn = (nαU) mod 1, α > 1, is largely unknown. The present paper shows of course
that Xn = (2nU) mod 1 is sufficiently independent to ensure behavior as for an
i.i.d. sequence. Antos and Devroye (2000) looked at the sequence Xn =

∑n
i=1 Yi,

where the Yi’s are i.i.d. random variables and showed that the height is in probability
Θ(
√
n). Cartesian trees (Devroye 1994) provide yet another model of dependence

with heights of the order Θ(
√
n).

The paper is organized as follows: in sections 2 through 5, we develop the basic
tools for our analysis. In section 6, we show that

EDn = 2 log n+O(log2 log n).

In section 7, a more general refined analysis leads to a weak law of large numbers:
Dn/EDn → 1 in probability. These are our main results — they rest on a key
circular symmetrization argument used in the proof of Lemma 5.1. There is another
avenue, based on the observation that if Sn0 , . . . , S

n
n are the lengths of the spacings
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defined on [0, 1] by X1, . . . , Xn, then the expected depth of Xn+1 in the tree for
X1, . . . , Xn is roughly given by

n−1∑
j=1

j∑
i=0

E

[
(Sji )

2
]
.

The study of the spacings is also important for the analysis of the size of the subtree
rooted at Xj , as this has expected value roughly given by

(n− j)ES∗j (j − 1),

where S∗n(i) is the length of the unique spacing among Si0, . . . , S
i
i that covers Xn.

Thus we embark on the study of the spacings in section 8 and 9, where we show first
that a randomly picked spacing in the n-th partition is asymptotically of size E/n,
where E is an exponential random variable (just as for the case of spacings defined by
i.i.d. uniform [0, 1] random variables). Although this result can be obtained from
the number theoretical work of Rudnick and Zaharescu (2002), a self-contained
probabilistic proof is included in this paper. In section 10 and 11, the spacings
argument is fleshed out to show, for example that the size of a subtree rooted
at Xj times j/n tends in distribution to a Gamma(2) random variable, whenever
j/ log5 n→∞ and (j log2 n)/n→ 0.

2 Notation

Denote the uniform distribution on [0, 1] by U [0, 1] and the Bernoulli(p) distribution
by Be[p]. We have given a U [0, 1] distributed random variable X1 and define Xk :=
T (Xk−1) for k ≥ 2, with the map T : [0, 1]→ [0, 1], x 7→ {2x} = 2x mod 1.

In the binary representation X1 = 0.B1B2 . . ., the Bk are independent Be[1/2]
bits. Then we have

Xk = 0.BkBk+1Bk+2 . . .

for all k ≥ 1. For m ≥ 1 we introduce the corresponding perturbed random variates

Y
〈m〉
k := 0.BkBk+1 . . . Bk+m−1B

(k)
1 B

(k)
2 . . . , k = 1, . . . , n,

where {B(k)
j : k, j ≥ 1} is a family of independent Be[1/2] distributed bits, inde-

pendent of X1. Then we have for all k ≥ 1,

|Xk − Y
〈m〉
k | ≤ 1

2m
,
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and Y
〈m〉
i , Y

〈m〉
j are independent if |i− j| ≥ m.

3 The perturbed tree

In this section we control the probability that the random suffix search tree built
from X1, . . . , Xn and the perturbed tree generated by Y 〈m〉1 , . . . , Y

〈m〉
n coincide. We

denote by |bxc| := 2bx/2c the largest even integer not exceeding x. For a vector
(a1, . . . , an) of distinct real numbers, let π(a1, . . . , an) be the permutation given by
the vector, i.e., π(a1, . . . , an) is the vector of the ranks of a1, . . . , an in {a1, . . . , an}.

Lemma 3.1 If m := 18|blog2 nc|, then for all n ≥ 16,

P

(
π(X1, . . . Xn) 6= π(Y 〈m〉1 , . . . , Y 〈m〉n )

)
≤ 8
n2
.

Proof: We introduce the truncated random variables Yk by their binary represen-
tations Yk := 0.BkBk+1 · · ·Bk+m−1 for k ≥ 1. Then we have{

π(X1, . . . Xn) 6= π(Y 〈m〉1 , . . . , Y 〈m〉n )
}
⊆

⋃
1≤i<j≤n

{Yi = Yj},

since the permutations given by (X1, . . . , Xn) and (Y 〈m〉1 , . . . , Y
〈m〉
n ) can only differ

if some of the Xi, Xj coincide in the first m bits. This implies

P

(
π(X1, . . . Xn) 6= π(Y 〈m〉1 , . . . , Y 〈m〉n )

)
≤

∑
1≤i<j≤n

P(Yi = Yj)

≤ n2

2m
+ n

m∑
j=2

P(B1 · · ·Bm = Bj · · ·Bm+j−1).

For 1 < j ≤ m we have P(B1 · · ·Bj−1 = Bj · · ·B2j−2) = 1/2j−1. We split the bit
vector B1 · · ·Bm into b := bm/(j − 1)c blocks of length j − 1. Then we obtain

P(B1 · · ·Bm = Bj · · ·Bm+j−1)

≤ P(B1 · · ·Bj−1 = Bj · · ·B2j−2 = · · · = B(b−1)(j−1)+1 · · ·Bb(j−1))

≤ 1
2(b−1)(j−1)

≤ 1
2m−2j+2

.
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Altogether we have

P

(
π(X1, . . . Xn) 6= π(Y 〈m〉1 , . . . , Y 〈m〉n )

)
≤ n2

2m
+ n

dm/3e∑
j=2

1
2m−2j+2

+
m∑

j=dm/3e+1

1
2j−1


≤ n2

2m
+ n

(
4
3

1
2m/3

+
2

2m/3

)
.

With m = 18|blog2 nc| we obtain n2/2m ≤ 4/n2 for all n ≥ 8 and n((4/3+2)/2m/3) ≤
4/n2 for all n ≥ 16. The assertion follows.

The perturbed tree and the original tree are thus identical with high probability.
In the perturbed tree, note that Y 〈m〉i and Y

〈m〉
j are independent whenever |i −

j| ≥ m. Unfortunately, it is not true that random binary search trees constructed
on the basis of identically distributed m-dependent sequences behave as those for
i.i.d. sequences, even when m is as small as 1. For example, the depth of a typical
node and the height may increase by a factor of m when m is small and positive.

For later use we provide a technical lemma on the distances of the quantities
Xi, Xj and Y

〈t〉
i , Y

〈t〉
j respectively.

Lemma 3.2 For all integer 1 ≤ i < j, t ≥ 1 and real ε > 0,

P(|Xi −Xj | ≤ ε) ≤ 2ε, P(|Y 〈t〉i − Y
〈t〉
j | ≤ ε) ≤ 8ε.

Proof: Define k := j − i. We have {|Xi −Xj | ≤ ε} = {|Xi − T k(Xi)| ≤ ε}, where
T k is the k-th iteration of the map T defined in section 2. With the representation

Xi =
`

2k
+

ξ

2k
, ` ∈ {0, . . . , 2k − 1}, ξ ∈ [0, 1], (1)

we obtain T k(Xi) = ξ. Thus we have |Xi −Xj | = |`/2k + ξ/2k − ξ| ≤ ε if and only
if

ξ ∈
[
`− 2kε
2k − 1

,
`+ 2kε
2k − 1

]
∩ [0, 1].

Plugging this into (1) we obtain

{|Xi −Xj | ≤ ε} =

{
Xi ∈

2k−1⋃
`=0

([
`− ε

2k − 1
,
`+ ε

2k − 1

]
∩
[
`

2k
,
`+ 1

2k

])}
, (2)

6



Figure 1: Shown is the set {|Xi −Xj | ≤ ε} (in red) for k = j − i = 2 and ε = 3/20
together with Xi and Xj, where Xi is modeled as the identity on [0, 1].

see Figure 1. Since Xi is U [0, 1] distributed, we obtain P(|Xi −Xj | ≤ ε) ≤ 2ε.
For the second statement note that for k > t there is nothing to prove, since

Y
〈t〉
i , Y

〈t〉
j are independent in this case. Hence, we assume k ≤ t and denote J`m :=

[(` − 1)/2k + (m − 1)/2t, (` − 1)/2k + m/2t] for ` = 1, . . . , 2k, m = 1, . . . , 2t−k.
Conditioned on {Y 〈t〉i ∈ J`m} the variables Y 〈t〉i , Y

〈t〉
j are independent with uniform

distributions on J`m and Jm := [(m−1)/2t−k,m/2t−k] respectively. We abbreviate
these conditioned variates by V`m and Wm. Then we have

P(|Y 〈t〉i − Y
〈t〉
j | ≤ ε) =

1
2t

2k∑
`=1

2t−k∑
m=1

P(|V`m −Wm| ≤ ε). (3)

Note that conditioning on V`m we obtain the estimate P(|V`m−Wm| ≤ ε) ≤ 2ε2t−k,
valid for all `,m. We fix ` in (3) and distinguish two cases:
Case ε ≤ 2−(t−k): We have {|V`m −Wm| ≤ ε} 6= ∅ for at most three of the m ∈
{1, . . . , 2t−k}. Thus, we obtain

P(|Y 〈t〉i − Y
〈t〉
j | ≤ ε) ≤

1
2t

2k∑
`=1

6ε2t−k = 6ε.

Case ε ≥ 2−(t−k): Since incrementing m by one changes the distance between the
centers of J`m and Jm by 2−(t−k) − 2−t ≥ 2−(t−k+1), at most 2 + 2dε2t−k+1e of the

7



events {|V`m −Wm| ≤ ε} are nonempty. Thus

P(|Y 〈t〉i − Y
〈t〉
j | ≤ ε) ≤

1
2t

2k∑
`=1

(2ε2t−k+1 + 4) = 4ε+ 4(2−(t−k)) ≤ 8ε,

which completes the proof.

4 A rough bound for the height

We will need a rough upper bound for the mean of the height of the random suffix
search tree.

Lemma 4.1 Let a binary search tree T be built up from distinct numbers x1, . . . , xn

and denote its height by H. We assume that the set of indices {1, . . . , n} is decom-
posed into k nonempty subsets I1, . . . , Ik of cardinalities |Ij | = nj. Assume that Ij
consists of the indices n(j, 1) < · · · < n(j, nj) and denote the height of the binary
search tree Tj built up from xn(j,1), . . . , xn(j,nj) by Hj for j = 1, . . . , k. Then we have

H ≤ k − 1 +
k∑
j=1

Hj . (4)

Proof: A basic property of the binary search tree is that a pair of keys x < y

is inserted in nodes on a common path form the root if and only if no key s with
x < s < y has been inserted before x and y. For an arbitrary node u in T we
consider two keys on its path to the root such that their indices i1 < i2 belong to
the same set Ij for some j ∈ {1, . . . , k}. It follows that no key xi exists with index
i < i1 and xi1 < xi < xi2 . In particular there is no such xi with i ∈ Ij . Therefore,
in Tj the keys xi1 , xi2 are inserted on a common path from the root as well. This
implies that the number of nodes in T on the path from the root to u having indices
in Ij is at most Hj + 1. The assertion follows.

Lemma 4.2 Let Hn denote the height of the random suffix search tree with n nodes.
Then EHn = O(log2 n).

Proof: For j = 1, . . . ,m := 18|blog2 nc| we define Ij := {bm+ j : b ∈ N0, bm+ j ≤
n}. The families (Y 〈m〉i )i∈Ij consist each of independent random variables being
U [0, 1] distributed. Thus these families form random equiprobable permutations.
The trees Tj built from (Y 〈m〉i )i∈Ij are random binary search trees, where random
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refers to the random permutation model. With Ĥj denoting the height of Tj , and
H̄n denoting the height of the tree built from Y

〈m〉
1 , . . . , Y

〈m〉
n , by Lemma 4.1,

H̄n ≤ m+
m∑
j=1

Ĥj . (5)

From the analysis of random binary search trees we know E Ĥj ∼ γ log(n/m) with
γ > 0 (see Devroye 1987). Thus (5) implies E H̄n = O(log2 n). Finally, we have

Hn = H̄n + 1{π(X1,...Xn) 6=π(Y
〈m〉
1 ,...,Y

〈m〉
n )}(Hn − H̄n)

≤ H̄n + 1{π(X1,...Xn) 6=π(Y
〈m〉
1 ,...,Y

〈m〉
n )}n.

Here, 1A denotes the indicator function of an event A. Lemma 3.1, for n ≥ 16,
implies EHn ≤ E H̄n + 8/n = O(log2 n).

Lemma 4.2 is valid for our model, but also for any random binary search tree
constructed on the basis of U [0, 1] random variables that are m-dependent, with
m = O(log n).

5 A key lemma

We introduce the events Aj = {Xj is ancestor of Xn in the tree}. Then we have
the representations

Dn =
n−1∑
j=1

1Aj , EDn =
n−1∑
j=1

P(Aj).

We use the notation α, β . γ1, . . . , γn, if there does not exist k with 1 ≤ k ≤ n

for which α < γk < β or β < γk < α, i.e., α, β are contained in the same interval
of the partition of [0, 1] induced by the cutting points γ1, . . . , γn. We use A〈m〉j for

the corresponding event involving the Y 〈m〉k : A〈m〉j = {Y 〈m〉j , Y
〈m〉
n .Y

〈m〉
1 , . . . , Y

〈m〉
j−1 }.

Thoughout we abbreviate m = 18|blog2 nc|.
Our key lemma consists of an analysis of the depth of the n-th inserted node

Xn conditioned on its location. For x ∈ [0, 1] and 1 ≤ i ≤ n− 1, define

pi(x) := P

(
Y
〈m〉
i , x . Y

〈m〉
1 , . . . , Y

〈m〉
i−1

)
.

We use the following bad set:

Bn(ξ) :=
m⋃
k=1

{x ∈ [0, 1] : |x− T k(x)| < ξ}, ξ > 0,
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where T is the map introduced in section 2, see Figure 2.

Figure 2: The last line shows the bad set Bn(ξ) for m = 6 and ξ = 3/50. The six
lines above show the sets {|x− T k(x)| ≤ ξ} for k = 1, . . . , 6. In the square, for the
case k = 3, it is shown how these sets emerge.

Lemma 5.1 For all n sufficiently large, all x ∈ [0, 1], and 1 ≤ i < n, we have

pi(x) = 1[m2/i,1−m2/i](x)
(

2
i

+R1(n, i) + 1Bn(2m2/
√
i)(x)R2(n, i)

)
+
(
1− 1[m2/i,1−m2/i](x)

)
R3(n, i),

where for appropriate constants C1, C2, C3 > 0,

|R1(n, i)| ≤ C1
log6 n

i3/2
,

|R2(n, i)| ≤ C2
log3 n

i
,

|R3(n, i)| ≤ C3
log n
i

.

Proof: Let X1, . . . , Xi be given. Recall the notation from section 2:

Y
〈m〉

1 = 0.B1B2 . . . BmB
(1)
1 B

(1)
2 . . .

Y
〈m〉
i = 0.BiBi+1 . . . Bi+m−1B

(i)
1 B

(i)
2 . . . .
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We rename these variates as Zk := Y
〈m〉
k for k = 1, . . . , i, and circularly complete

the Zk as follows:

Zi+1 := 0.Bi+1Bi+2 . . . Bi+m−1B1B
(i+1)
1 B

(i+1)
2 . . .

Zi+2 := 0.Bi+2Bi+3 . . . Bi+m−1B1B2B
(i+2)
1 B

(i+2)
2 . . .

...

Zi+m−1 := 0.Bi+m−1B1B2 . . . Bm−1B
(i+m−1)
1 B

(i+m−1)
2 . . .

Define Zk := Zk−i−m+1 for k ≥ i+m, and let S be a random index uniformly dis-
tributed on {1, . . . , i+m−1}, and independent of the other quantities. Subsequently
we will repeatedly use the fact that, by the cyclic nature of the sequence (Zk), the
vectors (ZS , ZS+1, . . . , ZS+i+m−2) and (Z1, . . . , Zi+m−1) are identically distributed.
We write

pi(x) = P(Y 〈m〉i , x . Y
〈m〉

1 , . . . , Y
〈m〉
i−1 )

= P({Y 〈m〉i , x . Y
〈m〉

1 , . . . , Y
〈m〉
i−1 } ∩ {Y

〈m〉
i < x})

+ P({Y 〈m〉i , x . Y
〈m〉

1 , . . . , Y
〈m〉
i−1 } ∩ {Y

〈m〉
i ≥ x}). (6)

We bound the first summand in the latter expression. The second one can be treated
similarly. We have

{Y 〈m〉i , x . Y
〈m〉

1 , . . . , Y
〈m〉
i−1 } ∩ {Y

〈m〉
i < x} = {Zi = max{Zk : k ≤ i, Zk ≤ x}}.

Note that {Zi = max{Zk : k ≤ i, Zk ≤ x}} implies that Zi is one of the
m largest among all Z1, . . . , Zi+m−1 with Zk ≤ x for k = 1, . . . , i + m − 1.
Since (ZS , ZS+1, . . . , ZS+i+m−2) and (Z1, . . . , Zm+i−1) are identically distributed,
the probability for that is the same as for Zi−1+S being one of the m largest among
ZS , . . . , ZS+i+m−2. Conditioned on Z1, . . . , Zi+m−1, which is the same as condition-
ing on the whole sequence (Zk), this probability is at most m/(i+m− 1) since S is
uniformly distributed on {1, . . . , i + m − 1} and has at most m choices. Note that
S has m choices if at least m of the points Z1, . . . , Zi+m−1 are ≤ x and less than m
choices otherwise. Thus we have

P(Zi = max{Zk : k ≤ i, Zk ≤ x}) ≤
m

i+m− 1
≤ m

i
.

Since the second term in (6) can be estimated similarly we obtain the assertion of
the Lemma for x /∈ [m2/i, 1−m2/i].
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Figure 3: The interval [0, 1] is shown with the m largest of the points Z1, . . . , Zi+m−1

less than x, where the (green) lines mark those of these m points belong-
ing to {Z1, . . . , Zi} and the (red) dots mark the corresponding points from
{Zi+1, . . . , Zi+m−1}.

Subsequently, we assume m2/i ≤ 1/2 and x ∈ [m2/i, 1 − m2/i]. We have the
disjoint decomposition

{Zi = max{Zk : k ≤ i, Zk ≤ x}}

= {Zi = max{Zk : k ≤ i+m− 1, Zk ≤ x}}

∪
(
{Zi = max{Zk : k ≤ i, Zk ≤ x}}

∩ {Zi 6= max{Zk : k ≤ i+m− 1, Zk ≤ x}}
)

=: E1 ∪ E′1,

hence P(Zi = max{Zk : k ≤ i, Zk ≤ x}) = P(E1) + P(E′1).
Using the fact that (ZS , ZS+1, . . . , ZS+i+m−2) and (Z1, . . . , Zi+m−1) are iden-

tically distributed we argue, by conditioning on the sequence (Zk), as above as
follows: Conditioned on (Zk) and that there is at least one of the Zk with Zk ≤ x

we have one possible choice for S and thus in this case the conditional probability
of E1 is 1/(i + m − 1). Clearly the conditional probability of E1 is zero if there is
no Zk with Zk ≤ x. Hence, we have

P(E1) = P(ZS+i−1 = max{ZS+k−1 : 1 ≤ k ≤ i+m− 1, ZS+k−1 ≤ x})

=
1

i+m− 1
P

(
i+m−1⋃
k=1

{Zk ≤ x}

)
.
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Since x ≥ m2/i and m2/i ≤ 1/2 we obtain, denoting b = bi/mc − 1,

P

(
i+m−1⋂
k=1

{Zk > x}

)
≤ P

(
b⋂

k=0

{Z1+km > x}

)
= (1− x)b+1

≤
(

1− m2

i

)i/m−1

≤ 2 exp(−m)

= O
( 1
n18

)
.

Together we obtain P(E1) = 1/(i + m − 1) + O(n−17). This term will lead to the
main term 2/i in the representation of pi(x). The contribution of P(E′1) gives the
error terms and thus can be bounded from above.

For this we define ∆ := m2/i. For x ≥ ∆ and with I = [x−∆, x] we have

E′1 ⊆ {∃ 1 ≤ k ≤ i+m− 1 : Zk, Zk+1, . . . , Zk+i−1 /∈ I}

∪
(
{Zi = max{Zk : k ≤ i, Zk ≤ x}}

∩ {Zi 6= max{Zk : k ≤ i+m− 1, Zk ≤ x}} ∩ {Zi ∈ I}
)

=: E2 ∪ E3.

Using the fact that Z1, Z1+m, Z1+2m, . . . are independent and that 1−∆ ≥ 1/2, we
obtain

P(E2) ≤ (i+m− 1)P(Z1, . . . , Zi /∈ I)

≤ (i+m− 1)P(Z1, Z1+m, Z1+2m, . . . /∈ I)

≤ (i+m− 1)(1−∆)i/m−1

≤ 2(i+m− 1) exp(−∆i/m)

≤ 2(i+m− 1) exp(−m)

= O(n−17)

= O(i−3/2).

For the estimate of P(E3), we first associate an event E3(S) similarly as for the
analysis of E1,

E3(S) := {ZS+i−1 = max{ZS+k−1 : 1 ≤ k ≤ i, ZS+k−1 ≤ x}}

∩ {ZS+i−1 6= max{ZS+k−1 : 1 ≤ k ≤ i+m− 1, ZS+k−1 ≤ x}}

∩ {ZS+i−1 ∈ I}.

13



We have P(E3) = P(E3(S)) since (ZS , ZS+1, . . . , ZS+i+m−2) and (Z1, . . . , Zi+m−1)
are identically distributed. Note that the probability of E3(S) conditioned on any
event involving only the sequence (Zk) is at most m/(n + m − 1) since S has at
most m choices out of n+m− 1 equally likely indices. These are the choices such
that ZS+i−1 is among the m largest of the points Z1, . . . , Zi+m−1 less or equal than
x, cf. Figure 3. We condition on

F :=
n+m−1⋃
i=1

(
{Zi ∈ I} ∩

m−1⋃
k=1

{|Zi − Zi+k| ≤ ∆}

)
.

Clearly, P(E3(S) |F c) = 0, hence we obtain

P(E3) = P(E3(S))

= P(E3(S) |F )P(F )

≤ m

n+m− 1
P

(
n+m−1⋃
i=1

(
{Zi ∈ I} ∩

m−1⋃
k=1

{|Zi − Zi+k| ≤ ∆}

))

≤ mP

(
{Z1 ∈ I} ∩

m−1⋃
k=1

{|Z1 − Z1+k| ≤ ∆}

)
≤ mP(X1 ∈ I+ ∩Bn(∆ + 237/n18})), (7)

where, for I+, we use the notation [a, b]+ := [a− 236/n18, b+ 236/n18] for intervals
[a, b]. Note that we have |Zk−Xk| ≤ 1/2m for k = 1, . . . ,m and m ≥ 18 log2 n−36.
For n sufficiently large we have 236/n18 ≤ ∆ and thus I+ ⊆ Ī := [x − 2∆, x + ∆].
With the representation given in (2) for {|X1 −X1+k| ≤ 3∆} we find that Bn(3∆)
intersects Ī at most in 3∆(2k−1)+2 intervals of lengths at most 6∆/(2k−1). This
implies the bound

P(E3) ≤ m

m−1∑
k=1

(
18∆2 +

12∆
2k − 1

)
(8)

≤ 18m2∆2 + 24m∆

=
18m6

i2
+

24m3

i
.

Together with P(E2) this yields an error term of the order of R2(n, i).
Finally, we consider x /∈ Bn(∆∗) with ∆∗ := 2

√
n∆ and refine the estimate

in (8). For x /∈ Bn(∆∗) we get a contribution of {|X1 − X1+k| ≤ 3∆} ∩ Ī in (7)
only if 3∆/(2k − 1) + 2∆ > ∆∗/(2k − 1), see Figure 4, which holds exactly for
k > log2(

√
n− 1/2). Therefore for x /∈ Bn(∆∗) the summation in (8) can be refined

14



Figure 4: Shown is a case, where the part {|T k(x)−x| < 3∆} of the bad set Bn(3∆)
(in red) intersects the interval [x−2∆, x+ ∆] (in green), while x is outside the part
{|T k(x)− x| < ∆∗} of the bad set Bn(∆∗) (in blue).

to

P(E3) ≤ m
m−1∑

k=dlog2(
√
n−1/2)e

(
18∆2 +

12∆
2k − 1

)

≤ 18m2∆2 +
48m∆√

n

≤ 18m6

i2
+

48m3

i3/2
.

We have estimated the first summand in (6) for all different ranges of x appearing
in Lemma 5.1. Since the second summand in (6) can be estimated similarly we
obtain for all x ∈ [0, 1] and 1 ≤ i ≤ n− 1,

pi(x) = 1[m2/i,1−m2/i](x)
(

2
i+m− 1

+R1(n, i) + 1Bn(2m2/
√
i)(x)R2(n, i)

)
+
(
1− 1[m2/i,1−m2/i](x)

)
R3(n, i),

with orders for Rk(n, i), k = 1, 2, 3, as in the Lemma. Since we have |2/i − 2/(i +
m− 1)| ≤ C(log n)/i2 for some constant C > 0 the assertion follows.

6 Expansion of the mean of the depth

In this section we find the mean of Dn:

Theorem 6.1 The depth Dn of the n-th node inserted into a random suffix search
tree satisfies

EDn = 2 log n+O(log2 log n).
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Proof: We recall the events Aj = {Xj is ancestor of Xn in the tree} and the
representations

Dn =
n−1∑
j=1

1Aj , EDn =
n−1∑
j=1

P(Aj).

For the estimate of P(Aj) we distinguish three ranges for the index j, namely
1 ≤ j ≤ dlog12

2 ne, dlog12
2 ne < j ≤ n −m, and n −m < j < n, where we choose

m = 18|blog2 nc|.

The range 1 ≤ j ≤ dlog12
2 ne: Note that

∑dlog12
2 ne

j=1 1Aj is bounded from above by the
height of the random suffix search tree with dlog12

2 ne nodes. Thus, by Lemma 4.2,
we obtain

dlog12
2 ne∑

j=1

P(Aj) ≤ EHdlog12
2 ne = O(log2

2 log12
2 n)) = O(log2 log n).

The range dlog12
2 ne < j ≤ n−m: We start, using Lemma 3.1, with the representa-

tion

P(Aj) = P(Xj , Xn . X1, . . . , Xj−1)

= P(Y 〈m〉j , Y 〈m〉n . Y
〈m〉

1 , . . . , Y
〈m〉
j−1 ) +O(1/n2)

= P(A〈m〉j ) +O(1/n2).

Note that Y 〈m〉n is independent of Y 〈m〉1 , . . . , Y
〈m〉
j , since j ≤ n −m. Thus for the

calculation of P(A〈m〉j ) we may condition on Y 〈m〉n . With the notation of Lemma 5.1

and using the fact that Y 〈m〉n is U [0, 1] distributed this yields for all 1 ≤ j ≤ n−m,

P(A〈m〉j ) = E [pj(Y 〈m〉n )] =
2
j

+Rn,j , |Rn,j | ≤ C
log6 n

j3/2
,

for some constant C > 0. When summing note that

∞∑
j=dlog12

2 ne

log6 n

j3/2
≤ log6 n

∫ ∞
dlog12

2 ne−1

1
x3/2

dx = O(1).

We obtain

n−m∑
j=dlog12

2 ne

P(Aj) =
n−m∑

j=dlog12
2 ne

(2
j

+Rn,j +O
( 1
n2

))
= 2 log n+O(log log n).
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Hence, this range gives the main contribution.

The range n−m < j < n− 1: With q := bj/mc − 1 we have

P(Aj) = P(Xj , Xn . X1, . . . , Xj−1)

≤ P(Xj , Xn . Xj−m, . . . , Xj−qm)

= P(Y 〈m〉j , Y 〈m〉n . Y
〈m〉
j−m, . . . , Y

〈m〉
j−qm) +O(1/n2).

We have, using Lemma 3.2, for n sufficiently large,

P(Y 〈m〉j , Y 〈m〉n . Y
〈m〉
j−m, . . . , Y

〈m〉
j−qm) (9)

≤ P(|Y 〈m〉j − Y 〈m〉n | < m2/j)

+ P
(
{|Y 〈m〉j − Y 〈m〉n | ≥ m2/j} ∩ {Y 〈m〉j , Y 〈m〉n . Y

〈m〉
j−m, . . . , Y

〈m〉
j−qm}

)
≤ 8

m2

j
+
(

1− m2

j

)j/m−2

≤ 8
m2

j
+ 4 exp(−m)

≤ 8
m2

j
+O

(
1
n18

)
.

The summation yields

n−1∑
j=n−m

P(Aj) = O(1),

so that the third range makes an asymptotically negligible contribution. Collecting
the estimates of the three ranges, we obtain the assertion.

7 A weak law of large numbers

In this section we prove a weak law of large numbers for the depth Dn.

Theorem 7.1 We have Dn/EDn → 1 in probability as n→∞.

Proof: Let ε, ε′ > 0 be given. We have to show

P

(∣∣∣∣ Dn

EDn
− 1
∣∣∣∣ > ε

)
< ε′

17



for all n sufficiently large. We define the decomposition Dn = D∗n +D∗∗n , where

D∗n :=
bn/2c∑

j=blog68 nc

1Aj , D∗∗n :=
blog68 nc−1∑

j=1

1Aj +
n−1∑

j=bn/2c+1

1Aj .

From Theorem 6.1 we have ED∗n ∼ 2 log n and ED∗∗n = O(log log n). We bound
the summands in the estimate

P

(∣∣∣∣ Dn

EDn
− 1
∣∣∣∣ > ε

)
≤ P

(∣∣∣∣ D∗n
EDn

− 1
∣∣∣∣ > ε

2

)
+ P

(
D∗∗n
EDn

>
ε

2

)
(10)

separately. By Markov’s inequality we have

P

(
D∗∗n
EDn

>
ε

2

)
≤ ED∗∗n

(ε/2)EDn
= O

(
log log n

log n

)
≤ ε′/2

for all n suffitiently large. Thus we only need the first summand in (10) to be at
most ε′/2. By Chebychev’s inequality this is implied by

Var(D∗n)
(EDn)2

→ 0,

as n → ∞. Since we have (EDn)2 = Ω(log2 n) and (ED∗n)2 ∼ 4 log2 n, it is
sufficient for completing the proof of Theorem 7.1 to establish

E

[
(D∗n)2

]
=

∑
blog68 nc≤i≤j≤bn/2c

P(Ai ∩Aj) ∼ 4 log2 n.

Note that we have E [(D∗n)2] ≥ (E [D∗n])2 ∼ 4 log2 n, so it suffices to establish
the upper bound. Since the contribution of the summands with i = j is of the
order O(log n) we may additionally assume i < j. We distinguish the cases where
j − i > log32 n and j − i ≤ log32 n.

The case j − i ≤ log32 n: We have

P(Ai ∩Aj) = P

(
Ai ∩Aj ∩ {|Xi −Xj | ≥ (2 log2 n)/i}

)
+ P

(
Ai ∩Aj ∩ {|Xi −Xj | < (2 log2 n)/i}

)
. (11)
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For all n large enough we obtain with b := bi/mc − 1, Lemma 3.1, and (log2 n)/i ≤
1/2,

P

(
Ai ∩Aj ∩ {|Xi −Xj | ≥ (2 log2 n)/i}

)
≤ P

(
A
〈m〉
i ∩A〈m〉j ∩ {|Y 〈m〉i − Y 〈m〉j | ≥ (log2 n)/i}

)
+

8
n2

≤ P

(
{Y 〈m〉i , Y

〈m〉
j . Y

〈m〉
1 , . . . , Y

〈m〉
i−1 }

∩ {|Y 〈m〉i − Y 〈m〉j | ≥ (log2 n)/i}
)

+
8
n2

≤ P

(
{Y 〈m〉i , Y

〈m〉
j . Y

〈m〉
1 , Y

〈m〉
1+m . . . , Y

〈m〉
1+bm}

∩ {|Y 〈m〉i − Y 〈m〉j | ≥ (log2 n)/i}
)

+
8
n2

≤
(

1− log2 n

i

)i/m−2

+
8
n2

≤ 4 exp
(
− log2 n

m

)
+

8
n2

≤ 12
n2
.

For the last summand in (11) we introduce the lengths of the spacings formed by
X1, . . . , Xn on [0, 1] by Snj := X(j+1)−X(j) for j = 1, . . . , n−1 and Sn0 := X(1), Snn :=
1 − X(n), where X(j) denotes the j-th order statistic of X1, . . . , Xn. Furthermore
we denote the maximal spacing Mi := max0≤k≤i−m S

i−m
k of the X1, . . . , Xi−m and

correspondingly, M 〈m〉i for the maximum spacing of the perturbed variates. For n
sufficiently large, and with n− i > m, we have

P

(
Ai ∩Aj ∩ {|Xi −Xj | < (2 log2 n)/i}

)
≤ P

(
Ai ∩Aj ∩ {|Xi −Xj | < (2 log2 n)/i} ∩ {Mi ≤ 1/

√
i}
)

+ P
(
Ai ∩Aj ∩ {|Xi −Xj | < (2 log2 n)/i} ∩ {Mi > 1/

√
i}
)

≤ P

(
A
〈m〉
i ∩A〈m〉j ∩ {|Y 〈m〉i − Y 〈m〉j | < (4 log2 n)/i} ∩ {M 〈m〉i ≤ 2/

√
i}
)

(12)

+ P
(
{M 〈m〉i > 1/(2

√
i)}
)

+
16
n2
.

For the estimate of

P({M 〈m〉i > 1/(2
√
i)})
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note that for any 0 ≤ x ≤ 1/2 we have, with b = bi/mc − 1,

P

(
{M 〈m〉i > 2x}

)
(13)

≤ P

( d1/xe−1⋃
`=1

{
Y
〈m〉

1 , . . . , Y
〈m〉
i−m /∈ [(`− 1)x, `x]} ∪ {Y 〈m〉1 , . . . , Y

〈m〉
i−m /∈ [1− x, x]}

)
≤ d1/xe sup

y∈[0,1−x]
P

(
Y
〈m〉

1 , Y
〈m〉

1+m, . . . , Y
〈m〉

1+bm /∈ [y, y + x]
)

≤ d1/xe(1− x)i/m−2

≤ 4d1/xe exp
(
−xi
m

)
.

Using this with x = 1/(4
√
i) we obtain P({M 〈m〉i > 1/(2

√
i)}) ≤ (16

√
i +

4) exp(−
√
i/(4m)) ≤ 1/n2 for n sufficiently large, since we have i ≥ log68 n.

It remains to bound the term in (12). Note that A〈m〉i in particular implies that
{Y 〈m〉i , Y

〈m〉
n .Y

〈m〉
1 , . . . , Y

〈m〉
i−m}. Under {M 〈m〉i ≤ 2/

√
i} this implies {|Y 〈m〉i −Y 〈m〉n | ≤

2/
√
i}. Hence, using Lemma 3.2 and that Y 〈m〉n is independent of (Y 〈m〉i , Y

〈m〉
j ) we

obtain

P

(
A
〈m〉
i ∩A〈m〉j ∩ {|Y 〈m〉i − Y 〈m〉j | < (4 log2 n)/i} ∩ {M 〈m〉i ≤ 2/

√
i}
)

≤ P

(
{|Y 〈m〉i − Y 〈m〉j | < (4 log2 n)/i} ∩ {|Y 〈m〉i − Y 〈m〉n | ≤ 2/

√
i}
)

≤ 128 log2 n

i3/2
.

Combining all this yields P(Ai∩Aj) ≤ (C log2 n)/i3/2 for an appropriate constant
C > 0. Therefore, the contribution of this range is∑

i≥blog68 nc
i<j≤i+blog32 nc

P(Ai ∩Aj) ≤ C log34 n
∑

i≥blog68 nc

1
i3/2

≤ C log34 n

∫ ∞
blog68 nc−1

x−3/2 dx

= O(1).
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The case j − i > log32 n: We have

P(Ai ∩Aj) = P

(
{Xi, Xn . X1, . . . , Xi−1} ∩ {Xj , Xn . X1, . . . , Xj−1}

)
≤ P

(
{Y 〈m〉i , Y 〈m〉n . Y

〈m〉
1 , . . . , Y

〈m〉
i−1 }

∩ {Y 〈m〉j , Y 〈m〉n . Y
〈m〉

1 , . . . , Y
〈m〉
j−1 }

)
+

8
n2

≤ P

(
{Y 〈m〉i , Y 〈m〉n . Y

〈m〉
1 , . . . , Y

〈m〉
i−1 }

∩ {Y 〈m〉j , Y 〈m〉n . Y
〈m〉
i+m+1, . . . , Y

〈m〉
j−1 }

)
+

8
n2
,

where we assume that n is sufficiently large such that log32 n > 2m. Conditioned
on Y

〈m〉
n these two events are independent. This implies

P(Ai ∩Aj) ≤ E [pi(Y 〈m〉n )pj−i−m(Y 〈m〉n )] +
8
n2
.

We abbreviate ` := j− i−m and s := i∧ `. Thus from Lemma 5.1, for appropriate
constants C,C ′ > 0,

E

[(
1− 1[m2/s,1−m2/s](Y

〈m〉
n )

)
pi(Y 〈m〉n )p`(Y 〈m〉n )

]
≤ Cm4

si`
,

E

[
1Bn(2m2/

√
s)(Y

〈m〉
n )pi(Y 〈m〉n )p`(Y 〈m〉n )

]
≤ C ′m15

√
si`

.

Note that in the last estimate we used Lemma 3.2 to obtain λ(Bn(2m2/
√
s)) ≤

4m3/
√
s, where λ denotes Lebesgue measure. Therefore, with an appropriate con-

stant C ′′ > 0 and C1 as in Lemma 5.1, we have

P(Ai ∩Aj) ≤
(

2
i

+
C1m

6

i3/2

)(
2
`

+
C1m

6

`3/2

)
+
C ′′m15

√
si`

+
8
n2
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Thus we obtain∑
blog68 nc≤i≤bn/2c
i+blog32 nc≤j≤bn/2c

P(Ai ∩Aj)

≤
∑

blog68 nc≤i≤bn/2c
blog32 nc−m≤`≤bn/2c

((2
i

+
C1m

6

i3/2

)(2
`

+
C1m

6

`3/2

)
+
C ′′m15

√
si`

+
8
n2

)

≤ 4 log2 n+O(log n) + 2C ′′m15
∑

blog32 nc−m≤s≤r≤bn/2c

( 1
s3/2r

)
+O(1)

≤ 4 log2 n+O(log n) + 2C ′′m16
∑

s≥blog32 nc−m

1
s3/2

= 4 log2 n+O(log n) +O(1).

The assertion follows.

8 Further analysis of the model

In the remaining sections, we analyze the random suffix search tree from another
perspective, based on the spacings defined by X1, . . . , Xn on [0, 1]. This approach
provides some new insight, and bears many fruits, as it permits us to analyze the
size of the subtrees at the nodes. We begin with four auxiliary lemmas in the present
section, and obtain the fundamental limit theorem for the size of a random spacing
in the next section. The implications for the random suffix search tree are explained
in section 11.

Lemma 8.1 Let I be an interval in [0, 1] of length |I|. Then for all 1 ≤ i ≤
− log2 |I| we have

P(X1, X1+i ∈ I) ≤ |I|
2i
.

Proof: With the map T (x) := {2x} we have X1+i = T i(X1) and {X1+i ∈ I} =
{X1 ∈ T−i(I)}, where T−i is the i-th iterate of the inverse image of T . With
I = [x, x+ ∆] we obtain the representation

T−i(I) =
2i⋃
k=1

Iik, Iik :=
[
k − 1

2i
+
x

2i
,
k − 1

2i
+
x+ ∆

2i

]
.
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Since i ≤ − log2 |I|, the interval I can only cover either one of the intervals Iik or
parts of two consecutive Iiks with total length covered being at most |I|/2i. This
implies

P(X1, X1+i ∈ I) = |I ∩ T−i(I)| ≤ |I|
2i
.

Lemma 8.2 For all integer 1 ≤ i < j, t ≥ 1 and real ε > 0, and U being U [0, 1]
distributed and independent of X1, Y

〈t〉
i , Y

〈t〉
j we have

P(Xi, Xj ∈ [U,U + ε]) ≤ 2ε2, P(Y 〈t〉i , Y
〈t〉
j ∈ [U,U + ε]) ≤ 8ε2.

Proof: With Lemma 3.2 we have

P

(
Xi, Xj ∈ [U,U + ε]

)
= P

(
|Xi −Xj | ≤ ε

)
P

(
Xi, Xj ∈ [U,U + ε]

∣∣∣ |Xi −Xj | ≤ ε
)

≤ 2εε = 2ε2.

The second statement follows analogously.

Lemma 8.3 For any Borel set A ⊆ [0, 1], real ε, δ > 0, integer i ≥ 0, and U being
U [0, 1] distributed we have

P(λ(T−i((U,U + ε)) ∩A) ≥ δ) ≤ ελ(A)
δ

,

where λ( · ) denotes Lebesgue measure.

Proof: Applying Markov’s inequality and Fubini’s theorem we obtain

P(λ(T−i((U,U + ε)) ∩A) ≥ δ) ≤ 1
δ
E [λ(T−i((U,U + ε)) ∩A)]

=
1
δ

∫ 1

0

∫ 1

0
1A(y)1T−i((x,x+ε))(y) dy dx

≤ 1
δ

∫ 1

0
1A(y)

2i−1∑
j=0

∫ 1

0
1[2iy−j−ε,2iy−j](x) dx dy.

A nonzero contribution of the inner integrals may happen at most for two values of
j. We obtain

2i−1∑
j=0

∫ 1

0
1[2iy−j−ε,2iy−j](x) dx ≤ ε,

uniformly over all y ∈ [0, 1]. The assertion follows.
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Lemma 8.4 For all n ≥ 1, a ∈ [0, 1), and ∆ ∈ (0, 1/
√
n) with a+ ∆ ≤ 1, we have

P

(
Y
〈m〉

1 , . . . , Y
〈m〉
L/2 /∈ [a, a+ ∆]

)
≤ 1− L∆

4
+

2L
n
,

where L = |blog2 nc| and m = 18L.

Proof: Since |Y 〈m〉j −Xj | ≤ 4/n18 ≤ 4/n for j = 1, . . . , L/2 we have

P

(
Y
〈m〉

1 , . . . , Y
〈m〉
L/2 /∈ [a, a+ ∆]

)
≤ P

(
X1, . . . , XL/2 /∈ [a+ 4/n, a+ ∆− 4/n]

)
. (14)

Applying the Chung-Erdös inequality (Chung and Erdös 1952) and denoting I :=
[a+ 4/n, a+ ∆− 4/n], we obtain

P(X1, . . . , XL/2 /∈ I)

= 1− P

(
L/2⋃
j=1

{Xj ∈ I}

)

≤ 1−

(∑L/2
j=1 P(Xj ∈ I)

)2

∑L/2
j=1 P(Xj ∈ I) +

∑
1≤i<j≤L/2 P(Xi, Xj ∈ I)

. (15)

We have

∑
1≤i<j≤L/2

P(Xi, Xj ∈ I) =
L/2−1∑
k=1

(L/2− k)P(X1, X1+k ∈ I),

and since k ≤ L/2 ≤ log2

√
n ≤ − log2 ∆ ≤ − log2 |I|, we may apply Lemma 8.1 to

obtain P(X1, X1+k ∈ I) ≤ (∆− 8/n)/2k. Thus,∑
1≤i<j≤L/2

P(Xi, Xj ∈ I) ≤ L

2

(
∆− 8

n

)
.

Plugging this estimate into (15) and (14) we obtain

P

(
Y
〈m〉

1 , . . . , Y
〈m〉
L/2 /∈ [a, a+ ∆]

)
≤ 1− ((L/2)(∆− 8/n))2

(L/2)(∆− 8/n) + (L/2)(∆− 8/n)

= 1− L∆
4

+
2L
n
.
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9 Weak convergence of a random spacing

The lengths of the spacings formed by X1, . . . , Xn on [0, 1] are denoted by Snj :=
X(j+1) − X(j) for j = 1, . . . , n − 1 and Sn0 := X(1), Snn := 1 − X(n), where X(j)

denotes the j-th order statistic of X1, . . . , Xn. In this section we provide a limit
law for the rescaled length of a spacing chosen uniformly from Sn0 , . . . , S

n
n , where

by uniform we mean that we choose one of the indices j = 0, . . . , n uniformly at
random. In the next section we will choose an index by drawing a U [0, 1] random
variable independently of X1 and selecting the index of the spacing into which this
random variable falls.

Lemma 9.1 We have

nSnIn
L−→ E, (n→∞), (16)

where E is exp(1)-distributed, i.e., has Lebesgue-density e−x on [0,∞) and In is
uniformly distributed on {0, . . . , n} and independent of X1.

This can be reduced to the following result on the spacings between fractional
parts of lacunary sequences due to Rudnick and Zaharescu (2002). A lacunary
sequence is a sequence (aj)j≥1 of integers with lim infj→∞ aj+1/aj > 1. The primary
example is aj = 2j . Now, for an α ∈ R we define Snj (α) for j = 0, . . . , n as the
spacings between the fractional parts of αaj , j = 1, . . . , n, in the unit interval [0, 1].
More precisely, for ϑnj := {αaj} we define Snj (α) := ϑ(j+1)−ϑ(j) for j = 1, . . . , n− 1
as well as Sn0 (α) := ϑ(1) and Snn(α) := 1−ϑ(n). Then Rudnick and Zaharescu (2002)
prove:

Theorem 9.2 Let (aj) be a lacunary sequence. Then we have for almost all α ∈ R
and all 0 ≤ a < b,

lim
n→∞

1
n+ 1

#{0 ≤ j ≤ n : nSnj (α) ∈ [a, b]} =
∫ b

a
e−xdx. (17)

For background, see also Kurlberg and Rudnick (1999, Appendix A). This can
directly be turned into a proof of Lemma 9.1:

Proof of Lemma 9.1: The result of Rudnick and Zaharescu says that nSnIn(α)→
E in distribution for almost all α ∈ R. Note that in this notation the variate
SnIn(U), where U is a U [0, 1] distributed random variable being independent of In,

25



coincides in distribution with the SnIn defined previously. Let Fαn , Fn, FE denote the
distribution functions of nSnIn(α), nSnIn , and E respectively. Then, by dominated
convergence, for all x ∈ R,

Fn(x) =
∫ 1

0
Fαn (x) dα −→

∫ 1

0
FE(x) dα = FE(x), (n→∞), (18)

thus nSnIn → E in distribution.

However, since the proof of Theorem 9.2 is rather involved, it is of interest to
give a direct probabilistic proof of Lemma 9.1.

Probabilistic proof of Lemma 9.1: We have to show P(nSnIn ≤ t)→ 1− e−t for
all t > 0. Define ε := t/n. Using the convention X0 := 0, we have

P(SnIn ≥ ε) =
1

n+ 1

n∑
k=0

P

(
{X1, . . . , Xk−1, Xk+1, . . . , Xn /∈ [Xk, Xk + ε]}

∩ {Xk ≤ 1− ε}
)
.

It suffices to show that each summand satisfies

lim
n→∞

P({X1, . . . , Xk−1, Xk+1, . . . , Xn /∈ [Xk, Xk + ε]} ∩ {Xk ≤ 1− ε}) = e−t. (19)

We derive an upper and a lower bound. Throughout we set m = 18|blog2 nc|.

Upper bound for (19): For intervals [a, b], we use the notation [a, b]− := [a +
236/n18, b− 236/n18]. This yields with ε′ = ε− 236/n18

P

(
{X1, . . . , Xk−1, Xk+1, . . . , Xn /∈ [Xk, Xk + ε]} ∩ {Xk ≤ 1− ε}

)
(20)

≤ P

(
{Y 〈m〉1 , . . . , Y

〈m〉
k−1 , Y

〈m〉
k+1 , . . . , Y

〈m〉
n /∈ [Y 〈m〉k , Y

〈m〉
k + ε]−} ∩ {Y 〈m〉k ≤ 1− ε′}

)
≤ P

(
{Y 〈m〉1 , . . . , Y

〈m〉
k−m, Y

〈m〉
k+m, . . . , Y

〈m〉
n /∈ [Y 〈m〉k , Y

〈m〉
k + ε]−} ∩ {Y 〈m〉k ≤ 1− ε′}

)
.
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In the last expression, Y 〈m〉k is independent of the other random variables. Now
condition on Y

〈m〉
k = x for 0 ≤ x ≤ 1− ε′: We have

P

(
Y
〈m〉

1 , . . . , Y
〈m〉
k−m, Y

〈m〉
k+m, . . . , Y

〈m〉
n /∈ [x, x+ ε]−

)
(21)

= P

(
Y
〈m〉

1 /∈ [x, x+ ε]−)P
(
Y
〈m〉
m+1 /∈ [x, x+ ε]−

)
× · · · × P

(
Y
〈m〉

(dn/me−1)m+1 /∈ [x, x+ ε]−
)

× P
(
Y
〈m〉

2 /∈ [x, x+ ε]− |Y 〈m〉1 , Y
〈m〉
m+1 /∈ [x, x+ ε]−

)
× P

(
Y
〈m〉
m+2 /∈ [x, x+ ε]− |Y 〈m〉m+1, Y

〈m〉
2m+1 /∈ [x, x+ ε]−

)
× P

(
Y
〈m〉

2m+2 /∈ [x, x+ ε]− |Y 〈m〉2m+1, Y
〈m〉

3m+1 /∈ [x, x+ ε]−
)

× · · ·

× · · ·

× P
(
Y 〈m〉m /∈ [x, x+ ε]− |Y 〈m〉1 , . . . , Y

〈m〉
m−1, Y

〈m〉
m+1, . . .

. . . , Y
〈m〉

2m−1 /∈ [x, x+ ε]−
)

× · · ·

≤ (1− p1,ε)n/m−3 · · · (1− pm,ε)n/m−3,

where, for i = 1, . . . ,m,

pi,ε = P

(
Y
〈m〉
i ∈ [x, x+ ε]− |Y 〈m〉1 , . . . , Y

〈m〉
i−1 , Y

〈m〉
m+1, . . . , Y

〈m〉
m+i−1 /∈ [x, x+ ε]−

)
.

We introduce the bad set

B̂n(ξ) :=
⋃

0≤i<j≤2m

{x ∈ [0, 1] : |T i(x)− T j(x)| ≤ ξ}, ξ > 0. (22)

Note that, by Lemma 3.2, we obtain

λ({x ∈ [0, 1] : |T i(x)− T j(x)| ≤ ξ}) = P(|Xi+1 −Xj+1| ≤ ξ) ≤ 2ξ, (23)

so that

λ(B̂n(ξ)) ≤ 8ξm2 = O(ξ log2 n).

With the notion of the bad set and [a, b]−− := ([a, b]−)− for intervals [a, b] we have

pi,ε ≥ P(Y 〈m〉i ∈ [x, x+ ε]−, Y 〈m〉1 , . . . , Y
〈m〉
i−1 , Y

〈m〉
m+1, . . . , Y

〈m〉
m+i−1 /∈ [x, x+ ε]−)

≥ P(Xi ∈ [x, x+ ε]−−, X1, . . . , Xi−1, Xm+1, . . . , Xm+i−1 /∈ [x, x+ ε])

≥ P(X1 ∈ T−i([x, x+ ε]−−) ∩ B̂c
n(ε)).
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In order to estimate this term we define for i ≥ 1 the sets

Di := {x ∈ [0, 1] : P(X1 ∈ T−i([x, x+ ε]−−) ∩ B̂c
n(ε)) ≥ (1− 1/ log n)ε}

and

D̄n :=
m⋂
i=1

Di.

With U being U [0, 1] distributed, Lemma 8.3 and the estimate (23) imply

λ(Di) = P(λ(T−i([U,U + ε]−−) ∩ B̂c
n(ε)) ≥ (1− 1/ log n)ε)

≥ P(λ(T−i([U,U + ε]−−) ∩ B̂n(ε)) ≤ ε/ log n− 238/n18)− ε

= 1− P(λ(T−i([U,U + ε]−−) ∩ B̂n(ε)) > ε/ log n− 238/n18)− ε

≥ 1− P(λ(T−i([U,U + ε]) ∩ B̂n(ε)) > ε/ log n− 238/n18)− ε

≥ 1− ελ(B̂n(ε))
ε/ log n− 32/n18

− ε

≥ 1− Ct log3 n

n
,

for n sufficiently large, where C > 0 is an appropriate constant. Hence, we have

λ(D̄n) ≥ 1−O
(
t
log4 n

n

)
→ 1, n→∞.

For x ∈ D̄n we have pi,ε ≥ (1 − 1/ log n)ε for all i = 1, . . . ,m. Thus we obtain for
the term (20) splitting into the set {Y 〈m〉k ∈ D̄n} and its complement

P(Y 〈m〉1 , . . . , Y
〈m〉
k−m, Y

〈m〉
k+m, . . . , Y

〈m〉
n /∈ [Y 〈m〉k , Y

〈m〉
k + ε]−)

≤ λ(D̄n)
(

1−
(

1− 1
log n

)
t

n

)n−3m

+ λ(D̄c
n)

→ e−t, n→∞.

Lower bound for (19): We have the basic estimate

P

(
{X1, . . . , Xk−1, Xk+1, . . . , Xn /∈ [Xk, Xk + ε]} ∩ {Xk ≤ 1− ε}

)
≥ P

(
{X1, . . . , Xk−m, Xk+m, . . . , Xn /∈ [Xk, Xk + ε]} ∩ {Xk ≤ 1− ε}

)
(24)

− P
(
{Xk ≤ 1− ε} ∩

⋃
{j:1≤|j−k|<m}

{Xj ∈ [Xk, Xk + ε]}
)
.
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The second summand in (24) has a negligible asymptotic contribution: We have,
using Lemma 3.2,

P

( ⋃
{j:1≤|j−k|<m}

{Xj ∈ [Xk, Xk + ε]}
)
≤ P

( ⋃
{j:1≤|j−k|<m}

{|Xj −Xk| ≤ ε}
)

≤ 2m2ε

≤ 72t
log2 n

n
.

For the lower bound of the first summand in (24) we use for intervals [a, b] the
notation [a, b]+ := [a− 236/n18, b+ 236/n18]. We have with ε′ = ε+ 236/n18,

P

(
{X1, . . . , Xk−m, Xk+m, . . . , Xn /∈ [Xk, Xk + ε]} ∩ {Xk ≤ 1− ε}

)
≥ P

(
{Y 〈m〉1 , . . . , Y

〈m〉
k−m, Y

〈m〉
k+m, . . . , Y

〈m〉
n /∈ [Y 〈m〉k , Y

〈m〉
k + ε]+} ∩ {Y 〈m〉k ≤ 1− ε′}

)
.

A decomposition as in (21) gives

P(Y 〈m〉1 , . . . , Y
〈m〉
k−m, Y

〈m〉
k+m, . . . , Y

〈m〉
n /∈ [x, x+ ε]+)

= (1− p′1,ε)bn/mc−1 · · · (1− p′m,ε)bn/mc−1 × p̄,

where analogously to (22) we have

p′i,ε = P(Y 〈m〉i ∈ [x, x+ ε]+ |Y 〈m〉1 , . . . , Y
〈m〉
i−1 , Y

〈m〉
m+1, . . . , Y

〈m〉
m+i−1 /∈ [x, x+ ε]+),

and, with s1 = n−m(bn/mc − 1) and s2 = n−mbn/mc,

p̄ =
m∏
i=1

P

(
Y
〈m〉
s1+i /∈ [x, x+ ε]+ |Y 〈m〉s1+1, . . . , Y

〈m〉
s1+i−1, Y

〈m〉
s2+1, . . . ,

Y
〈m〉

(s2+i−1)∧n /∈ [x, x+ ε]+
)

×
n−s2∏
i=1

P

(
Y
〈m〉
s2+i /∈ [x, x+ ε]+ |Y 〈m〉s2+1, . . . , Y

〈m〉
s2+i−1 /∈ [x, x+ ε]+

)
.

For x ≤ 1− ε′ we obtain the estimate

p′i,ε ≤
P(Y 〈m〉i ∈ [x, x+ ε]+)

P(Y 〈m〉1 , . . . , Y
〈m〉
i−1 , Y

〈m〉
m+1, . . . , Y

〈m〉
m+i−1 /∈ [x, x+ ε]+)

≤ ε+ 237/n18

1− 2m(ε+ 237/n18)
,
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which is independent of i. Analogously we have

p̄ ≥
(

1− ε+ 237/n18

1− 2m(ε+ 236/n18)

)n−s1
,

so that

P(Y 〈m〉1 , . . . , Y
〈m〉
k−m, Y

〈m〉
k+m, . . . , Y

〈m〉
n /∈ [x, x+ ε]+)

≥
(

1− ε+ 237/n18

1− 2m(ε+ 236/n18)

)n
=

(
1− (1 + o(1))

t

n

)n
→ e−t, n→∞.

This implies the remaining lower bound.

10 Uniform integrability

In this section we show that the convergence in Lemma 9.1 holds for all moments.
Analogously to the notation Snj we introduce the lengths S〈m〉,nj for j = 1, . . . , n

of the spacing formed by Y
〈m〉

1 , . . . , Y
〈m〉
n . In this section we denote L := |blog2 nc|,

m := 18L and define intervals of indices as follows. For j = 1, . . . , s := bn/(18.5L)c
we define

Gj := {18.5(j − 1)L+ 1, . . . , (18.5(j − 1) + 1/2)L},

Dj := {(18.5(j − 1) + 1/2)L+ 1, . . . , 18.5jL}.

Then, by construction, the random vectors (Y 〈m〉k )k∈G1 , . . . , (Y
〈m〉
k )k∈Gs are indepen-

dent.

Lemma 10.1 For all fixed p > 0

sup
n∈N

E (nSnIn)p <∞,

where the random index In is unif{0, . . . , n} distributed and independent of X1.

Proof: From |Xi−Y 〈m〉i | ≤ 236/n18 we obtain for n sufficiently large |Sni −S
〈m〉,n
i | ≤

1/n2 and therefore(
nSnIn

)p ≤ (nS〈m〉,nIn
+ 1/n

)p
≤ 2p

(
nSnIn

)p + (2/n)p.
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Hence it is sufficient to prove supn∈N E (nS〈m〉,nIn
)p <∞. We have the basic estimate

E (nS〈m〉,nIn
)p =

∫ ∞
0
P

(
(nS〈m〉,nIn

)p ≥ x
)
dx

≤
∫ np/2

0
P

(
S
〈m〉,n
In

≥ x1/p

n

)
dx+

∫ np

np/2
P

(
S
〈m〉,n
In

≥ x1/p

n

)
dx

=: J1 + J2.

With y := x1/p the integrands can be rewritten as

P

(
S
〈m〉,n
In

≥ y/n
)

=
1

n+ 1

n∑
i=0

P

(
{Y 〈m〉1 , . . . , Y

〈m〉
i−1 , Y

〈m〉
i+1 , . . . , Y

〈m〉
n /∈ [Y 〈m〉i , Y

〈m〉
i + y/n)}

∩ {Y 〈m〉i ≤ 1− y/n}
)
,

since a random interval drawn equally likely among all n + 1 intervals can be
drawn by choosing one of the left endpoints Y 〈m〉0 := 0, Y 〈m〉1 , . . . , Y

〈m〉
n equally likely.

Estimate of J1: Note that Y 〈m〉i is independent of at least s − 2 of the families
(Y 〈m〉k )k∈Gj , j = 1, . . . , s, say the first s− 2 families. This implies with Lemma 8.4,
y ≤

√
n, noting that Y 〈m〉i is uniformly distributed on [0, 1], and for n sufficiently

large such that L(y − 4)/(2n) ≤ 1/2,

P

(
{Y 〈m〉1 , . . . , Y

〈m〉
i−1 , Y

〈m〉
i+1 , . . . , Y

〈m〉
n /∈ [Y 〈m〉i , Y

〈m〉
i + y/n]} ∩ {Y 〈m〉i ≤ 1− y/n}

)
≤

∫ 1−y/n

0
P

(
s⋂
l=1

⋂
k∈Gl

{
Y
〈m〉
k /∈ [a, a+ y/n]

})
da

≤
∫ 1−y/n

0

(
P

( ⋂
k∈Gl

{
Y
〈m〉
k /∈ [a, a+ y/n]

}))s−2

da

≤
(

1− Ly

2n
+

2L
n

)s−2

≤
(

1− L(y − 4)
2n

)n/(18.5L)−3

≤ 8 exp
(
−y − 4

37

)
.
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Thus, we obtain

J1 ≤
∫ np/2

0
8 exp

(
−x

1/p − 4
37

)
dx ≤ 8

∫ ∞
0

exp

(
−x

1/p − 4
37

)
dx <∞,

uniformly in n ∈ N for all p > 0.

Estimate of J2: For all i ∈ {0, . . . , n} at least s − 2 of the random variables
Y
〈m〉

18.5(j−1)L+1, j = 1, . . . , s are independent of Y 〈m〉i . For y ≥
√
n and n sufficiently

large we obtain

P

(
{Y 〈m〉1 , . . . , Y

〈m〉
i−1 , Y

〈m〉
i+1 , . . . , Y

〈m〉
n /∈ [Y 〈m〉i , Y

〈m〉
i + y/n)} ∩ {Y 〈m〉i ≤ 1− y/n)}

)
≤ P

 s⋂
j=1

{
Y
〈m〉

18.5(j−1)L+1 /∈
[
Y
〈m〉
i , Y

〈m〉
i +

y

n

)}
∩
{
Y
〈m〉
i ≤ 1− y

n

}
≤

(
1− y

n

)s−2

≤

(
1− n1/2

n

)n/(18.5L)−3

≤ 8 exp

(
− n1/2

18.5L

)
≤ C exp(−n1/3)

with an appropriate constant C > 0. Hence, we obtain

J2 ≤
∫ np

np/2
C exp(−n1/3)dx ≤ Cnp exp(−n1/3)→ 0, n→∞,

for any p > 0.

The limit law of Theorem 9.1 together with the uniform integrability of Lemma
10.1 implies convergence of all moments (Billingsley 1979, Theorem 25.12). Thus
we have

lim
n→∞

E (nSnIn)` =
∫ ∞

0
x`e−x dx = `!, ` = 0, 1, 2, . . . . (25)

In particular we have:

Corollary 10.2 We have E (nSnIn)2 → 2 for n→∞.
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We turn to the analysis of the rescaled length of a spacing chosen according
to into which spacing an indepedendent U [0, 1] random variable falls. For this we
define the conditional distribution of the index Jn chosen, by

P(Jn = k |Sn0 , . . . , Snn) = Snk , k = 0, . . . , n.

Then we have the following limit law:

Lemma 10.3 We have

nSnJn
L−→ G2, (n→∞),

where G2 is Gamma(2)-distributed, i.e., has Lebesgue density xe−x on [0,∞).

Proof: We use the method of moments. With In uniformly distributed on
{0, . . . , n} and independent of X1 we have for all ` ≥ 0,

E (nSnJn)` = n` E
[
E [(SnJn)` |Sn0 , . . . , Snn ]

]
= n` E

[ n∑
k=0

P(Jn = k |Sn0 , . . . , Snn)E [(Snk )` |Sn0 , . . . , Snn ]
]

= n` E
[ n∑
k=0

(Snk )`+1
]

= n`(n+ 1)E (SnIn)`+1

=
n+ 1
n

E (nSnIn)`+1

→
∫ ∞

0
x`+1e−x dx,

where we used the representation (25). The last integral is the `th moment of
the Gamma(2)-distribution. Hence we have convergence of all moments of nSnJn to
the corresponding moments of the Gamma(2)-distribution. Since these moments
characterize the Gamma(2)-distribution uniquely we obtain the assertion.

11 Applications of spacings

In this section we show how the analysis of the random spacings generated by
X1, . . . , Xn can be used for the asymptotic analysis of parameters of the random suf-
fix search tree. First we show how the leading order term of EDn can be obtained.
This provides an alternative path to that followed in Theorem 6.1. Afterwards we
obtain a limit law for the size of the subtree rooted at Xj for a large range of values
j. This result is rooted in the lemmas of section 10. We provide two lemmas.
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Lemma 11.1 Let (an) be a sequence of real numbers with an → a 6= 0 and (τn),
(ξn) be sequences of integers with log(τn) = o(log(n)) and n− ξn = Ω(n). Then we
have

n−ξn∑
j=τn

aj
j
∼ a log(n), (n→∞).

Lemma 11.2 For all q > 0 we have

∞∑
i=1

(
1
2i

)2(
1− 1

2i

)q
≤ 6
q2
.

Proof: The function f : [0, 1] → R
+
0 , y 7→ y2(1 − y)q is unimodal with the

maximum at 2/(2 + q), thus ‖f‖∞ ≤ 4/q2. Therefore we may estimate the series by
the corresponding integral where we have to estimate the summand being maximal
separately. This implies

∞∑
i=1

(
1
2i

)2(
1− 1

2i

)q
≤ 4

q2
+
∫ ∞

0

(
1
2y

)2(
1− 1

2y

)q
dy

=
4
q2

+
1

log 2

∫ 1

0
x(1− x)q dx

=
4
q2

+
1

log 2
1

(q + 1)(q + 2)
,

which implies the assertion.

Proof of EDn ∼ 2 log n: We use the events Aj = {Xj is ancestor of Xn in the
tree} and recall the representations

Dn =
n−1∑
j=1

1Aj , EDn =
n−1∑
j=1

P(Aj).

For the estimate of P(Aj) we distinguish three ranges for the index j, namely 1 ≤ j ≤
dlog6

2 ne, dlog6
2 ne < j ≤ n−m, and n−m < j < n, where we choose m = 18|blog2 nc|.

Ranges 1 ≤ j ≤ dlog6
2 ne and n−m < j < n: We refer to the corresponding range

1 ≤ j ≤ dlog12
2 ne and n −m < j < n in the proof of Theorem 6.1. We only treat

the critical middle range:
The range dlog6

2 ne < j ≤ n−m: We use the notation α, β . γ1, . . . , γn as introduced
in section 5 and recall that we have Aj = {Xj , Xn . X1, . . . , Xj−1}. Denoting
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t := j −m, we start, using Lemma 3.1, with the representation

P(Aj) = P(Xj , Xn . X1, . . . , Xj−1) (26)

= P(Y 〈m〉j , Y 〈m〉n . Y
〈m〉

1 , . . . , Y
〈m〉
j−1 ) +O(1/n2)

= P(Y 〈m〉j , Y 〈m〉n . Y
〈m〉

1 , . . . , Y
〈m〉
t ) +O(1/n2)

− P
(
{Y 〈m〉j , Y 〈m〉n . Y

〈m〉
1 , . . . , Y

〈m〉
t } (27)

∩ {Y 〈m〉j , Y 〈m〉n . Y
〈m〉

1 , . . . , Y
〈m〉
j−1 }

c
)
.

With q := bj/mc − 1 we estimate

P({Y 〈m〉j , Y 〈m〉n . Y
〈m〉

1 , . . . , Y
〈m〉
t } ∩ {Y 〈m〉j , Y 〈m〉n . Y

〈m〉
1 , . . . , Y

〈m〉
j−1 }

c) (28)

≤
j−1∑
i=t

P({Y 〈m〉j , Y 〈m〉n . Y
〈m〉
j−m, Y

〈m〉
j−2m, . . . , Y

〈m〉
j−qm} ∩ {Y

〈m〉
j , Y 〈m〉n . Y

〈m〉
i }c).

In order to estimate the latter summands we introduce εk := 1/2k and for a ∈ [0, 1]
the intervals a[ε−k ] := [a− εk, a] and a[ε+

k ] := [a, a+ εk]. Then we have

P({Y 〈m〉j , Y 〈m〉n . Y
〈m〉
j−m, Y

〈m〉
j−2m, . . . , Y

〈m〉
j−qm} ∩ {Y

〈m〉
j , Y 〈m〉n . Y

〈m〉
i }c) (29)

≤ P

( ⋃
k≥1

(
{εk ≤ Y 〈m〉n ≤ 1} ∩ {Y 〈m〉i , Y

〈m〉
j ∈ Y 〈m〉n [ε−k−1]}

∩ {Y 〈m〉j−m, Y
〈m〉
j−2m, . . . , Y

〈m〉
j−qm /∈ Y 〈m〉n [ε−k ]}

))

+ P

( ⋃
k≥1

(
{0 ≤ Y 〈m〉n ≤ 1− εk} ∩ {Y

〈m〉
i , Y

〈m〉
j ∈ Y 〈m〉n [ε+

k−1]}

∩ {Y 〈m〉j−m, Y
〈m〉
j−2m, . . . , Y

〈m〉
j−qm /∈ Y 〈m〉n [ε+

k ]}
))

.

The last two summands are the same. We will consider the first summand. Note
that all random variates appearing there are U [0, 1] distributed and that we have
dependency only between Y

〈m〉
i and Y

〈m〉
j . Therefore with Lemma 8.2 and Lemma

35



11.2, the first summand in the latter display is bounded from above by

∞∑
k=1

P

(
Y
〈m〉
i , Y

〈m〉
j ∈ Y 〈m〉n [ε−k−1]

)
(1− εk)q ≤

∞∑
k=1

16ε2
k(1− εk)q

≤ 96
(

1
bj/mc − 1

)2

= O

(
log2(n)
j2

)
.

Note that the big O term is independent of i. Plugging this into (28) we obtain

P

(
{Y 〈m〉j , Y 〈m〉n . Y

〈m〉
1 , . . . , Y

〈m〉
t } ∩ {Y 〈m〉j , Y 〈m〉n . Y

〈m〉
1 , . . . , Y

〈m〉
j−1 }

c
)

= O

(
log3 n

j2

)
= O

(
j−3/2

)
,

since j = Ω(log6(n)) in the range under consideration. Substituting this into (26)
we obtain

P(Aj) = P(Y 〈m〉j , Y 〈m〉n . Y
〈m〉

1 , . . . , Y
〈m〉
t ) +O(j−3/2). (30)

Now, we note that Y 〈m〉j , Y
〈m〉
n are independent and U [0, 1] distributed, and inde-

pendent of Y 〈m〉1 , . . . , Y
〈m〉
t . Therefore, with It uniformly distributed on {0, . . . , t}

and independent of all other quantities, we obtain, by Corollary 10.2, and using
|Xi − Y 〈m〉i | ≤ 236/n18,

P(Y 〈m〉j , Y 〈m〉n . Y
〈m〉

1 , . . . , Y
〈m〉
t ) = E

t∑
i=0

(S〈m〉,ti )2

= E

t∑
i=0

((Sti )
2) +O((log n)/n18)

= (t+ 1)E (StIt)
2 +O(1/n2)

=
t+ 1
t2

E (tStIt)
2 +O(1/n2)

∼ 2
j −m

, (j →∞). (31)

Putting (30) and (31) together we finally obtain for the second range

n−m∑
j=dlog6

2 ne+1

P(Aj) =
n−2m∑

j=dlog6
2 ne+1−m

(
aj
j

)
+O(1),
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with aj → 2 for j →∞ which, by Lemma 11.1, implies

n−m∑
j=dlog6

2 ne+1

P(Aj) = 2 log n+ o(log n).

We turn to the analysis of the size Nn,j of the subtree rooted at Xj .

Theorem 11.3 The size Nn,j of the subtree of the random suffix search tree of size
n rooted at Xj satisfies for j = j(n) with j = o(n/ log2 n) and j/ log5 n→∞,

ENn,j ∼
2n
j
,

j

n
Nn,j

L−→ G2,

as n→∞, where G2 denotes the Gamma(2)-distribution.

Proof: Recall the notation S∗n(j) for the length of the unique spacing among the
spacings formed by X1, . . . , Xj on [0, 1] which covers Xn. We denote by Ŝ∗n(j) the
corresponding length for the quantities Y

〈m〉
1 , . . . , Y

〈m〉
n and by Sn(j) and Ŝn(j)

these chosen spacings respectively. We show first that for the j = j(n) under
consideration we have E Ŝ∗j (j − 1) ∼ 2/j and jŜ∗j (j − 1) → G2 in distribution.
From this we will then obtain the assertions.

Claim: E Ŝ∗j (j − 1) ∼ 2/j. With the notation M 〈m〉j for the maximal spacing formed

by Y 〈m〉1 , . . . , Y
〈m〉
j−m as introduced in the proof of Theorem 7.1 we define the sets

V :=
m−1⋃
k=1

{Y 〈m〉j , Y
〈m〉
j−k . Y

〈m〉
1 , . . . Y

〈m〉
j−m},

W :=
{
M
〈m〉
j ≤ m2

j

}
.

Then we have

Ŝ∗j (j − 1) = Ŝ∗j (j −m)− 1V
(
Ŝ∗j (j −m)− Ŝ∗j (j − 1)

)
(32)

= Ŝ∗j (j −m)−
(
1W + 1W c

)
1V
(
Ŝ∗j (j −m)− Ŝ∗j (j − 1)

)
.

Using the the estimate (13) we obtain P(W c) = O(1/n2), thus together with Ŝ∗j (j−
m)− Ŝ∗j (j − 1) ≤ 1 we obtain

E

[
1W c1V

(
Ŝ∗j (j −m)− Ŝ∗j (j − 1)

)]
= O

(
1
n2

)
.
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On the set W we have Ŝ∗j (j −m)− Ŝ∗j (j − 1) ≤ m2/j thus we obtain

E

[
1W1V

(
Ŝ∗j (j −m)− Ŝ∗j (j − 1)

)]
≤ m2

j
P(V ) (33)

≤ m2

j

m∑
k=1

P

(
Y
〈m〉
j , Y

〈m〉
j−k . Y

〈m〉
1 , . . . Y

〈m〉
j−m

)
= O

(
log5 n

j2

)
,

where we estimate the last summands as shown in (9).
For the estimate of E Ŝ∗j (j −m) note that this is now the length of the spacing

among the S〈m〉,j−m0 , . . . , S
〈m〉,j−m
m−j , which are generated by Y 〈m〉1 , . . . Y

〈m〉
j−m on [0, 1],

where Y 〈m〉j falls into. Moreover Y 〈m〉j is independent of the generating points. Thus
applying Corollary 10.2 we obtain similarly to the estimate (31),

E Ŝ∗j (j −m) = E

j−m∑
k=0

(
S
〈m〉,j−m
i

)2

= E

j−m∑
k=0

(
Sj−mi

)2
+O

(
1
n2

)
= (j −m+ 1)E

(
Sj−mIm−j

)2
+O

(
1
n2

)
=

2
j −m

(1 + o(1)),

as j−m→∞, where Im−j is uniformly distributed on {0, . . . ,m− j} and indepen-
dent of X1. Collecting all the estimates we obtain

E Ŝ∗j (j − 1) =
2
j

(1 + o(1)) +O

(
log5 n

j2

)
∼ 2
j
,

as n→∞, when log5 n = o(j).

Claim: jŜ∗j (j − 1) L−→ G2. Note that Ŝ∗j (j − m) is in distribution equal to the

quantity Sj−mJj−m
appearing in Lemma 10.3, thus (j − m)Ŝ∗j (j − m) → G2 in

distribution. Now note that for Ŝ∗j (j − 1) we have the representaion (32) and that
P(V ) = O(log3 /j) = o(1) as shown in (33) for our j under consideration. Thus the
second summand in (32) tends to zero in probability. Since j/(j − m) → 1, the
first summand there tends to G2 in distribution.
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Claim: ENn,j ∼ 2n/j. Applying Lemma 3.1, we obtain

ENn,j = E

n∑
k=j

1{Xk∈Sj(j−1)}

= E

n∑
k=j

1{Y 〈m〉k ∈Ŝj(j−1)} +O

(
1
n2

)

= E

n∑
k=j+m

1{Y 〈m〉k ∈Ŝj(j−1)} +O(log n)

= (n− j −m+ 1)P({Y 〈m〉n ∈ Ŝj(j − 1)}) +O(log n)

= (n− j −m+ 1)E Ŝ∗j (j − 1) +O(log n)

∼ 2n
j

as n→∞, j = o(n/ log n) and log5 n = o(j), where we used that for k ≥ j +m we
have independence between Y

〈m〉
k and Ŝj(j − 1) and E Ŝ∗j (j − 1) ∼ 2n/j.

Claim: (j/n)Nn,j → G2. We denote the number of nodes of the subtree rooted at

Y
〈m〉
j in the tree built from Y

〈m〉
1 , . . . , Y

〈m〉
n by N 〈m〉n,j . Then we have

Nn,j = N
〈m〉
n,j + 1A

(
Nn,j −N 〈m〉n,j

)
,

where A denotes the event that X1, . . . , Xn and Y
〈m〉

1 , . . . Y
〈m〉
n do not give the

same permutation. By Lemma 3.1 we have P(A) → 0 as n → ∞ thus the second
summand in the last display tends to zero in probability. Hence it is sufficient to
show N

〈m〉
n,j → G2 in distribution for the choices of j under consideration.

The number N 〈m〉n,j is given as the sum P+
∑m

k=1 Pk, where P denotes the number

of points among Y 〈m〉j+1 , . . . , Y
〈m〉
j+m which contribute to the subtree rooted at Y 〈m〉j and

Pk denotes the corresponding number for the points Y 〈m〉j+k+m, Y
〈m〉
j+k+2m, Y

〈m〉
j+k+qkm

,
where dqk = (n − j − k −m + 1)/me. Thus we have

∑m
k=1 qk = n − j −m. Note

that given Ŝ∗j (j − 1) = T , by indepedence, Pk is binomial B(qk, T ) distributed
for k = 1, . . . ,m. Thus by Chebyshev’s inequality, noting that 0 ≤ P ≤ m, and
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denoting Tj = Ŝ∗j (j − 1) we obtain for all δ > 0, almost surely

P

(∣∣∣N 〈m〉n,j − (n− j −m)Tj
∣∣∣ ≥ mδ +m

∣∣∣Tj) ≤
m∑
k=1

P

(∣∣∣Pk − qkTj∣∣∣ ≥ δ ∣∣∣Tj)
≤

m∑
k=1

qkTj(1− Tj)
δ2

≤ n

δ2
Tj .

Thus for arbitrary ε > 0, we have, choosing δ = εn/((m+ 1)j), almost surely

P

(∣∣∣ j
n
N
〈m〉
n,j −

(n− j −m)j
n

Tj

∣∣∣ ≥ ε ∣∣∣Tj) ≤ (m+ 1)2j2

ε2n
Tj .

Now, for all x ≥ 0, denoting by FG2 the distribution function of the Gamma(2)
distribution and using the last estimate, jŜ∗j (j − 1) → G2 in distribution, and
E Ŝ∗j (j − 1) ∼ 2/j, we obtain, as n → ∞, j = j(n) = o(n/ log2 n) and j tending to
infinity,

P

( j
n
N
〈m〉
n,j ≤ x

)
= P

( j
n
N
〈m〉
n,j ≤ x,

(n− j −m)j
n

Tj > x+ ε
)

+ P
( j
n
N
〈m〉
n,j ≤ x,

(n− j −m)j
n

Tj ≤ x+ ε
)

≤ P

(∣∣∣ j
n
N
〈m〉
n,j −

(n− j −m)j
n

Tj

∣∣∣ ≥ ε)
+ P

((n− j −m)j
n

Ŝ∗j (j − 1) ≤ x+ ε
)

≤ (m+ 1)2j2

ε2n
E

[
Ŝ∗j (j − 1)

]
+ FG2(x+ ε) + o(1)

∼ 2(m+ 1)2j

ε2n
+ FG2(x+ ε)

→ FG2(x+ ε).
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Similarly, we have

P

( j
n
N
〈m〉
n,j ≤ x

)
= 1− P

( j
n
N
〈m〉
n,j > x

)
= 1− P

( j
n
N
〈m〉
n,j > x,

(n− j −m)j
n

Tj < x− ε
)

− P
( j
n
N
〈m〉
n,j > x,

(n− j −m)j
n

Tj ≥ x− ε
)

≥ 1− P
(∣∣∣ j
n
N
〈m〉
n,j −

(n− j −m)j
n

Tj

∣∣∣ ≥ ε)
− P

((n− j −m)j
n

Ŝ∗j (j − 1) ≥ x− ε
)

≥ 1− (m+ 1)2j2

ε2n
E

[
Ŝ∗j (j − 1)

]
− (1− FG2(x− ε)) + o(1)

→ FG2(x− ε).

Since FG2 is continuous and ε > 0 arbitrary we obtain (j/n)N 〈m〉n,j → G2 in distri-
bution and thus (j/n)Nn,j → G2 in distribution.

Using similiar arguments it can be shown that in the case j ∼ αn with α ∈ (0, 1) the
size Nn,j tends in distribution to the negative binomial distibution with parameters
(2, α), given by its generating function s 7→ (α/(1− (1− α)s))2.
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