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Abstract

An algorithm for perfect simulation from the unique solution of the
distributional fixed point equation Y =d UY +U(1−U) is constructed,
where Y and U are independent and U is uniformly distributed on [0, 1].
This distribution comes up as a limit distribution in the probabilistic
analysis of the Quickselect algorithm. Our simulation algorithm is
based on coupling from the past with a multigamma coupler. It has
four lines of code.

Keywords: Perfect simulation, perpetuity, Quickselect, coupling from the
past, multigamma coupler, key exchanges.

1 Introduction

In a probabilistic analysis of the algorithm Quickselect Hwang and Tsai [8]
showed that, when applied to a uniformly random permutation of length n
and selecting a rank of order o(n), the normalized number of key exchanges
performed by Quickselect converges in distribution to a limit distribution
µ. This limit distribution is characterized as the unique probability measure
µ = L(Y ) such that

Y
d
= UY + U(1− U), (1)
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where
d
= (also =d) denotes equality in distribution and U is uniformly dis-

tributed over the unit interval [0, 1] and independent of Y .
The distribution µ was studied in [9]. In particular we showed that µ

has a bounded, 1/2-Hölder continuous density, µ is supported by the unit
interval [0, 1] and we developed a method to numerically approximate the
density and the corresponding distribution function. In Remark 2.9 of [9]
we noted that this is sufficient to theoretically construct an algorithm for
perfect simulation from µ based on von Neumann’s rejection method along
the approach taken in Devroye [2]. While the numerical approximations
yield an algorithm for perfect simulation in almost surely finite time, the
convergence rates of our approximations are poor and the expected running
time is infinite. We do not expect such an algorithm to terminate within
our lifetimes.

Recently, Fill and Huber [6] published an algorithm for perfect simu-
lation of a related distribution, known as the Dickman distribution and
characterized as unique solution of the distributional fixed point equation
Y =d UY +1. This algorithm is based on coupling from the past of a Markov
chain with the Dickman distribution as stationary distribution. The method
makes use of a multigamma coupler and of a dominating chain to deal with
the unbounded support of the Dickman distribution. In fact Fill and Huber
develop their algorithm for a more general class of distributions, the Vervaat
perpetuities. Devroye and Fawzi [3] presented a different multigamma cou-
pler and a different dominating chain resulting in a faster coupling from the
past algorithm for the Dickman distribution. Both algorithms are also fully
satisfactory from a practical point of view, millions of independent samples
from the Dickman distribution can be generated within seconds.

In this note we construct a coupling from the past algorithm for the
solution µ of (1). Compared to the more difficult Dickman case we benefit
from the special analytic structure of the densities ϕx of Ux+U(1−U) for
x ∈ [0, 1]. In particular, we have

inf
x∈[0,1]

inf
t∈[0,1/4]

ϕx(t) ≥ 1/2, (2)

which allows for the construction of a multigamma coupler as proposed by
Murdoch and Green [10, Section 2.1]. This results in a fast and simple
four-line-code algorithm.

Note that a general method described in an unpublished extension of [3],
see Fawzi [5], can also be applied to our µ: In [5, Section 4] it is shown that
when one is able to perfectly simulate from the solution of Y =d AY + 1
with a random 0 ≤ A ≤ 1 this can be turned into an algorithm to simulate
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from the solution of Y =d AY + B, whenever B ≥ 0 is bounded. Here,
(A,B) is independent of Y . Hence, this method together with the simula-
tion algorithm for the Dickman distribution yields as well an algorithm to
simulate from µ.

For general perfect simulation algorithms for another class of perpetuities
see Devroye and James [4]. For perfect simulation algorithms from station-
ary distributions of positive Harris recurrent Markov chains see Hobert and
Robert [7].

In the field of exact simulation from nonuniform distributions it is cus-
tomary to assume that a sequence of independent and identically, uniformly
on [0, 1] distributed random variables is available and that elementary op-
erations of and between real number such as +, −, /, ∗,

√
x, log x, etc., can

be performed with absolute precision, see Devroye [1] for a comprehensive
account on nonuniform random number generation.

2 Markov chain and multigamma coupler

An underlying ergodic Markov chain (Xj) on [0, 1] having µ as stationary
distribution is given as follows: For all x ∈ [0, 1], given Xj = x, we define
Xj+1 to be distributed as Ux + U(1 − U) with a uniform [0, 1] random
variable U . In the context of coupling from the past a realization of such
a Markov chain is usually constructed with a deterministic update function
Φ : [0, 1]× [0, 1]→ [0, 1] such that Xj+1 := Φ(Xj , Uj+1) yields a realization
of the chain, where (Uj) is a sequence of independent and uniform [0, 1]
random variables. A trivial choice for Φ is (x, u) 7→ ux+u(1−u). However,
to make coupling of the chains possible, we follow the construction of a
multigamma coupler as described by Murdoch and Green [10].

The construction is as follows: Assume that a probability density f
is written as f = f1 + f2 with measurable, nonnegative functions f1, f2
such that ‖f1‖1 :=

∫
f1(x) dx, ‖f2‖1 > 0. Assume that Y1, Y2 are random

variables with densities f1/‖f1‖1 and f2/‖f2‖1 respectively and that B is a
Bernoulli(‖f1‖1) random variable independent of (Y1, Y2). Then the random
variable BY1 + (1−B)Y2 has density f .

The aim now is to obtain for the densities ϕx of Ux+U(1−U) represen-
tations ϕx = r+ gx as above, where r is independent of x ∈ [0, 1]. Typically
this may not be possible since one may have inf ϕx = 0 such that a non-zero
r independent of x does not exist. However, in our particular situation we
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have (2), hence we are able to choose, e.g.,

r(t) :=
1

2
1[0,1/4)(t), t ∈ [0, 1]. (3)

Clearly, U/4 has density r/‖r‖1 and let us assume for the moment that a ran-
dom variable Yx with density gx/‖gx‖1 can be simulated via its inverse dis-
tribution function (quantile function) G−1x , i.e., L(Yx) = L(G−1x (U)). Then,
with a Bernoulli(‖r‖1) random variable B, independent of U , we have that
for all x ∈ [0, 1]

Ux+ U(1− U)
d
=
BU

4
+ (1−B)G−1x (U).

Hence, our update function is Φ
′

: [0, 1]× {0, 1} × [0, 1]→ [0, 1], (x, b, u) 7→
bu/4 + (1 − b)G−1x (u). If we construct our Markov chain from the past
using Φ

′
, in each step there is a probability of ‖r‖1 = 1/8 that all chains

couple simultaneously. In other words, we can just start at a Geometric(1/8)
distributed time N in the past, the first instant of {B = 1} when moving
back into the past. At this time −N we couple all chains via X−N := U−N/4
and let the chain run from there until time 0 using the updates G−1Xj

(Uj+1)

for j = −N, . . . ,−1. It is shown in [10, Section 2.1] that this is a valid
implementation of the coupling from the past algorithm in general.

Hence, we need to derive expressions for the functions G−1x containing
only elementary operations. It was calculated in [9, equation (28)] that, for
all t ∈ [0, 1] we have

ϕx(t) =
(
(1 + x)2 − 4t

)−1/2 (
1[0,x)(t) + 2 · 1[x,bx)(t)

)
with bx := ((1 + x)/2)2. Hence, with r given in (3) we have ϕx(t) ≥ r(t) for
all x, t ∈ [0, 1]. Note that coupling occurs faster when the function r can be
chosen larger. For our densities ϕx we could as well choose

r∗(t) =
1

2
√

1− t
1[0,1/4)(t), t ∈ [0, 1].

Then we have ϕx(t) ≥ r∗(t) ≥ r(t) for all x, t ∈ [0, 1]. However, the subse-
quent inversion of distribution functions can be done elementary with our
choice of r.

We need to invert the distribution functions Gx : [0, 1] → [0, 1] corre-
sponding to the normalized versions of gx = ϕx − r. We have

Gx(y) =
1

1− ‖r‖1

∫ y

0
ϕx(t)− r(t) dt =

8

7

(
Fx(y)− 1

2
(y ∧ 1/4)

)
,
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where

Fx(y) :=


1
2

(
1 + x−

√
(1 + x)2 − 4y

)
, 0 ≤ y < x,

1−
√

(1 + x)2 − 4y, x ≤ y < bx,
1, bx ≤ y ≤ 1,

is the distribution function of Ux+ U(1− U).
The inversion of Gx can be done by explicit calculations and yields

G−1x (z) =



−7
4z +

√
7z + (1− x)2 + x− 1, if x ∈ [0, 1/4], z ∈ [0, qx],

−7
4z + 2

√
7z + 9 + x(x+ 2)− 6, if x ∈ [0, 1/4], z ∈ (qx, rx],

1
256(15 + 8x− 7z)(1 + 8x+ 7z), if x ∈ [0, 1/4], z ∈ (rx, 1],

−7
4z +

√
7z + (1− x)2 + x− 1, if x ∈ (1/4, 1], z ∈ [0, sx],

1
64(7 + 8x− 7z)(1 + 7z), if x ∈ (1/4, 1], z ∈ (sx, tx],

1
256(15 + 8x− 7z)(1 + 8x+ 7z), if x ∈ (1/4, 1], z ∈ (tx, 1],

where

qx :=
4

7
x, rx := 1− 8

7

√
x(x+ 2),

sx :=
1

7

(
3 + 4x− 4

√
x(x+ 2)

)
, tx :=

1

7
(8x− 1).

3 The algorithm

Our algorithm Simulate[Y =d UY +U(1−U)] has the form discussed in the
previous section: It draws back to a sequence of independent uniform[0, 1]
random variables (U−n)n≥0 and an independent geometrically distributed
random variable. (This clearly can be simulated on the basis of independent
uniform[0, 1] random variables as well.)

Simulate[Y =d UY + U(1− U)]:

N ← Geometric(1/8)
X ← U−N/4
for j from −N + 1 to 0 do X ← G−1X (Uj)
return(X)
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Figure 1: Histogram of the values of 10 million independent samples from
µ generated with the algorithm Simulate[Y =d UY + U(1− U)].

The analysis of the complexity of this algorithm is trivial as the loop is
iterated a random Geometric(1/8) number of times, hence, e.g., on average
eight times.

In Figure 1 the histogram (normalized to area 1) of the values of 10
million independent samples generated with Simulate[Y =d UY+U(1−U)]
is plotted. This simulation was done within a few seconds. A numerical
approximation of the density of µ has already been presented in [9, Figure
1].
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