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Abstract. The height of a random PATRICIA tree built from inde-
pendent, identically distributed infinite binary strings with arbitrary
diffuse probability distribution µ on {0, 1}N is studied. We show that
the expected height grows asymptotically sublinearly in the number of
leaves for any such µ, but can be made to exceed any specific sublinear
growth rate by choosing µ appropriately.

1. Introduction and results

The PATRICIA tree is a space efficient data structure for strings which
improves on the trie. For the purpose of this note it is sufficient to introduce
these tree structures for binary strings: Label the nodes of the complete
infinite rooted binary tree by the elements of ∪∞

k=0{0, 1}k, starting at the

root with ∅ and left and right child of a node labelled v ∈ {0, 1}k with v0 and
v1, respectively. Here, for v ∈ {0, 1}k with v = (v1, . . . , vk) we abbreviate v
as v = v1 . . . vk and denote vi := v1v2 . . . vki for i = 0, 1.

The coming definitions are depicted in Figure 1. For distinct infinite
binary strings x1, . . . , xn ∈ {0, 1}N a finite tree called a trie (or radix search
tree) to represent the strings x1, . . . , xn is constructed by first associating
with each xi the infinite path in ∪∞

k=0{0, 1}k consisting of the nodes whose
labels are the prefixes of xi. The node labelled with the shortest such prefix
that is not a prefix of any xj with j ∈ {1, . . . , n} \ {i} becomes a leaf in
the trie representing string xi for i = 1, . . . , n. The resulting tree, which is
a finite binary tree with n leaves, is the trie representing x1, . . . , xn. Next,
starting from the trie, all vertices with out-degree 1 (i.e. with exactly one
child) are deleted and the resulting gaps are closed by merging the two nodes
which formed a deleted edge. This results in the PATRICIA tree, which was
introduced independently by Morrison [20] and Gwehenberger [11] and first
systematically analysed by Knuth [16]. The PATRICIA tree contains all the
information needed to retrieve the strings and to perform operations such
as sorting, searching and selecting; for broad expositions, see [17, 19, 22].

PATRICIA trees have been analysed assuming various probabilistic mod-
els for the input strings; where usually the infinite strings are assumed to
be independent and identically distributed over {0, 1}N. Note that atoms of
such a distribution result in identical strings with positive probability, and
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2 ADDARIO-BERRY, MORIN, AND NEININGER

in this case the construction of the trie does not lead to a finite tree. Hence,
the law of the strings is usually assumed to be diffuse (non-atomic). Spe-
cial cases of such diffuse probability distributions have been considered in
the analysis of algorithms on strings such as the Bernoulli models, Markov
model, dynamical sources or the density model; see [3, 5, 10, 12–14, 18] and
the references given in these papers.
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Figure 1. On the left the trie for the strings 00000 . . ., 00001 . . .,
0100 . . ., 0101 . . ., 1100 . . ., and 1101 . . . is shown. It’s leaves are the
full black vertices, the indicated children of the full black vertices
do not belong to the trie. Vertices with out-degree 1 within the
trie are indicated by arrows. On the right the resulting PATRICIA
tree by deleting corresponding edges is shown.

In the present note we focus on the height of a PATRICIA tree, which
is the maximal (graph) distance of any leave from the root. The asymp-
totic behavior of the height of tries under the Bernoulli models is covered in
Devroye [4, 6]. For general diffuse laws concentration of the height of PA-
TRICIA trees is studied (assuming only independence of the infinite strings
not necessarily identical distribution) in Devroye [7] based on results from
[1]; see also [15] for concentration of the height of PATRICIA trees in the
Bernoulli model.

While such studies aim to show that the height behaves well with respect
to applications from algorithms, Evans and Wakolbinger [8, 9] studied these
random tree structures as tree-valued transient Markov chains from the per-
spective of Doob–Martin boundary theory. They asked (private communi-
cation) how high PATRICIA trees can grow for arbitrary diffuse probability
distributions of the strings (see [9, Section 5] for specific examples). The
subject of the present note is to answer this question by Theorems 1 and 2:
The expected height grows always sublinearly, but can be made to exceed
any fixed sublinear growth rate by the choice of an appropriate diffuse law.
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For a diffuse probability distribution µ on {0, 1}N and (Ξ(j))j∈N a se-
quence of independent and identically distributed random strings with law
µ we denote by Hµ

n the height of the PATRICIA tree constructed from
Ξ(1), . . . ,Ξ(n).

Theorem 1. For all diffuse probability distributions µ on {0, 1}N we have,
as n → ∞, that

E[Hµ
n ]

n
→ 0, and

Hµ
n

n
→ 0 almost surely.

Theorem 2. For any sequence α = (αn)n∈N of positive numbers with αn →
∞ as n → ∞ there exists a diffuse probability distribution µ = µ(α) on
{0, 1}N such that for all n sufficiently large

E[Hµ
n ] ≥

n

αn
.

We call a law µ on {0, 1}N causing large expected heights E[Hµ
n ] bad

since such laws are undesirable from the point of view of the efficiency of
algorithms based on PATRICIA trees. The remaining part of the present
note contains proofs of these two theorems.

2. Proofs

2.1. Proof of Theorem 1. We start with a technical observation:

Lemma 3. Suppose µ is a diffuse probability distribution on {0, 1}N, and let
Ξ = (ξi)i∈N be random with law µ. Then for all ε there exists k = k(ε) ∈ N
such that for any string v = v1 . . . vk ∈ {0, 1}k, P(ξ1 . . . ξk = v1 . . . vk) < ε.

Proof. Suppose for a contradiction that there exists ε > 0 such that for all
k ∈ N there is a string v1 . . . vk ∈ {0, 1}k such that P(ξ1 . . . ξk = v1 . . . vk) ≥
ε. Then by a compactness argument shown below there exists an infinite
string v = (vi)i∈N ∈ {0, 1}∞ such that for all k ∈ N, P(ξ1 . . . ξk = v1 . . . vk) ≥
ε. The events {ξ1 . . . ξk = v1 . . . vk} are decreasing in k, so this implies that

P(Ξ = v) = lim
k→∞

P(ξ1 . . . ξk = v1 . . . vk) ≥ ε ,

which contradicts the assumption that µ is diffuse.
It remains to show the existence of the infinite string v = (vi)i∈N ∈ {0, 1}N

such that for all k ∈ N, P(ξ1 . . . ξk = v1 . . . vk) ≥ ε. Consider {0, 1} as a
topological space with the discrete topology (all subsets being open) and
{0, 1}N as the product space with the product topology. As a product of
compact spaces {0, 1}N is compact, and the projections Πk : {0, 1}N →
{0, 1}k given by

(vi)i∈N
Πk7−→ v1 . . . vk
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are continuous for all k ∈ N. Hence, the set

Vk := {(vi)i∈N ∈ {0, 1}N |P(ξ1 . . . ξk = v1 . . . vk) ≥ ε}

=
⋃

v1...vk∈{0,1}k
P(ξ1...ξk=v1...vk)≥ε

Π−1
k ({v1 . . . vk})

is closed and thus compact in {0, 1}N. This implies that (Vk)k∈N is a nested
sequence of non-empty, compact sets. Hence, we have

∞⋂
k=1

Vk ̸= ∅.

Any element v of
⋂∞

k=1 Vk has the desired property. □

Proof of Theorem 1. Fix a diffuse probability distribution µ on {0, 1}N. Let
Ξ(j) = (ξ

(j)
i )i∈N for j ∈ N be independent, identically distributed with law

µ and denote by Tn the PATRICIA tree built from Ξ(1), . . . ,Ξ(n).
We first show that Hµ

n/n → 0 almost surely. Fix any ε ∈ (0, 1/4). Let
k = k(ε) be as in Lemma 3, so that for any string v = v1 . . . vk ∈ {0, 1}k, if
Ξ = (ξi)i∈N has law µ then P(ξ1 . . . ξk = v1 . . . vk) < ε. To prove Hµ

n/n → 0
almost surely we first show that

P(∃n0 ∀n ≥ n0 : H
µ
n ≤ k + 2εn) = 1.(1)

Note that if the event

En,k :=
⋃

v1...vk∈{0,1}k
{|{1 ≤ j ≤ n : ξ

(j)
1 . . . ξ

(j)
k = v1 . . . vk}| ≥ 2εn}

does not occur then the subtrees of Tn rooted at nodes v ∈ {0, 1}k all have
at most 2εn leaves and so height less than 2εn; thus if En,k does not occur
then Hµ

n ≤ k + 2εn. It follows that

P(∃n0 ∀n ≥ n0 : H
µ
n ≤ k + 2εn)

≥ P(En,k occurs for at most finitely many values n)

= P
((

lim sup
n→∞

En,k

)c)
,

so to prove (1) it suffices to show that the probability of lim supn→∞En,k is
0. For this, simply note that

P(En,k) ≤
∑

v1...vk∈{0,1}k
P(|{1 ≤ j ≤ n : ξ

(j)
1 . . . ξ

(j)
k = v1 . . . vk}| ≥ 2εn)

≤ 2kP(Yn ≥ 2εn) ,

where Yn has the Binomial distribution Bin(n, ε); the second inequality holds

since the events that ξ
(j)
1 . . . ξ

(j)
k = v1 . . . vk are independent for distinct

1 ≤ j ≤ n, and each has probability at most ε. A Chernoff bound then gives

P(En,k) ≤ 2ke−εn/2.
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Since this is summable, it follows by the first Borel–Cantelli lemma that

P
(
lim sup
n→∞

En,k

)
= 0,

hence we obtain (1). Now, note that for any m0 ∈ N,{
Hµ

n

n
→ 0

}
=

∞⋂
m=m0

∞⋃
n0=1

∞⋂
n=n0

{
Hµ

n

n
≤ 3

m

}
.

Thus, for ε = 1
m with fixed m ≥ m0 we can choose n sufficiently large so

that k(ε)/n ≤ ε and obtain

{Hµ
n ≤ k(ε) + 2εn} ⊂

{
Hµ

n

n
≤ 3

m

}
and see that (1) implies Hµ

n/n → 0 almost surely.
Finally, note that by construction of the PATRICIA tree we determinis-

tically have Hµ
n ≤ n− 1, thus Hµ

n/n ≤ 1. Hence, we obtain from Hµ
n/n → 0

almost surely and dominated convergence that E[Hµ
n ]/n → 0. □

2.2. Proof of Theorem 2. As building blocks for our bad distributions
we first define a set of auxiliary probability distributions (µN , N ∈ N), on
{0, 1}N as follows. For fixed N ∈ N we choose T uniformly at random from
{1, . . . , N2}. Independently of T , let (Bi)i∈N be independent Bernoulli(12)-
distributed random variables. Then define a sequence (ϑi)i∈N by

ϑi =


0, if i < T,

1, if i = T,

Bi−T , if i > T.

(2)

Now, µN is defined as the law of the string Θ = (ϑi)i∈N. Note that by
definition µN is diffuse for all N ∈ N. We use the notation

⟨Θ⟩ := min{i ∈ N |ϑi = 1}
for the index of the first entry of Θ equal to 1.

Lemma 4. For any n ∈ {1, . . . , N} we have E[HµN
n ] ≥ n− 2.

Proof. Let 1 ≤ n ≤ N ∈ N and Θ(1), . . . ,Θ(n) be i.i.d. with law µN . We
consider the set A := {⟨Θ(1)⟩, . . . , ⟨Θ(n)⟩} ⊂ {1, . . . , N2}. By construction
of the PATRICIA tree we have

HµN
n ≥ |A| − 1,(3)

where |A| denotes the cardinality of A, i.e., the number of distinct elements

within {⟨Θ(1)⟩, . . . , ⟨Θ(n)⟩}. For all 1 ≤ i < j ≤ n we have P(⟨Θ(i)⟩ =

⟨Θ(j)⟩) = 1/N2. Hence, we obtain

E[|A|] ≥ n− E

 ∑
1≤i<j≤n

1{⟨Θ(i)⟩=⟨Θ(j)⟩}

 ≥ n− n2

2N2
≥ n− 1,(4)
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since n ≤ N . Now, (3) and (4) imply the assertion. □

Proof of Theorem 2. Without loss of generality we may assume that αn =
o(n). There exists an n0 ∈ N such that αn ≥ 8 for all n ≥ n0. We define
βn := ⌊log2 αn⌋ − 2 and a sequence (A(n))n∈N as a generalized inverse of
(βn)n∈N by

A(n) := max{m ∈ N |βm ≤ n}, n ∈ N.(5)

The probability distribution µ(α) on {0, 1}N is obtained in two stages. First,
let G be a random variable with geometric distribution with parameter 1

2 ,

i.e., with P(G = k) = (12)
k for k ∈ N. Then define a sequence (λi)i∈N by

λi =

 0, if i < G,
1, if i = G,

ϑi−G, if i > G,
(6)

where Θ = (ϑi)i∈N is independent of G and has law µA(k) defined in (2)

with A(·) defined in (5). We then define µ = µ(α) as the law of Λ = (λi)i∈N.
Since the µA(k) are diffuse, we obtain that µ is diffuse.

Now, let Λ(j) = (λ
(j)
i )i∈N for j ∈ N be independent with law µ. For

n ≥ n0, by construction,

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
λ
(j)
1 , . . . , λ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
is Bin(n, 2−βn)-distributed. To get rid of the floors in the definition of βn
denote byX ′

n a Bin(n, 4/αn)-distributed random variable. Note that 2−βn ≥
4/αn. By Okamoto’s inequality, see [21] or [2, Exercise 2.12] we have

P
(
Xn <

2n

αn

)
≤ P

(
X ′

n − 4n

αn
< −2n

αn

)
≤ exp

(
− n(2/αn)

2

2(4/αn)(1− 4/αn)

)
≤ exp

(
− n

2αn

)
.

Hence, with high probability at least ⌈2n/αn⌉ of the n strings start with

the prefix (0, . . . , 0, 1) of length βn and thus have suffixes (λ
(j)
βn+1, λ

(j)
βn+2, . . .)

drawn independently from µA(βn) for the respective j. For all n ≥ n0 we
have ⌈2n/αn⌉ ≤ n ≤ A(βn). Hence, by Lemma 4, ⌈2n/αn⌉ such strings
cause an expected height of at least 2n/αn − 2. Together we obtain for all
sufficiently large n, note also αn = o(n), that

E[Hµ
n ] ≥ P

(
Xn ≥ 2n

αn

)
E
[
Hµ

n

∣∣∣Xn ≥ 2n

αn

]
≥

(
1− exp

(
− n

2αn

))(
2n

αn
− 2

)
≥ n

αn
. □
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