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Abstract: In distributional reinforcement learning (RL), not only expected returns but the complete
return distributions of a policy are taken into account. The return distribution for a fixed policy is given
as the solution of an associated distributional Bellman equation. In this note, we consider general
distributional Bellman equations and study the existence and uniqueness of their solutions, as well as
tail properties of return distributions. We give necessary and sufficient conditions for the existence and
uniqueness of return distributions and identify cases of regular variation.

We link distributional Bellman equations to multivariate affine distributional equations. We show
that any solution of a distributional Bellman equation can be obtained as the vector of marginal laws
of a solution to a multivariate affine distributional equation. This makes the general theory of such
equations applicable to the distributional reinforcement learning setting.

Keywords: distributional reinforcement learning; distributional Bellman equation; random difference
equation; perpetuity; Markov decision process; regular variation; machine learning

1. Introduction

The objective in RL is to teach an agent that sequentially interacts with an environment to choose
“good” actions. For each action, the agent receives an immediate real-valued reward. The rewards
are accumulated over time, resulting in the so-called return, which describes the overall performance
of the agent. Randomness may be involved at all levels of this interaction: in choosing actions, the
environment reacting to actions, and/or in the rewards received by the agent. Hence, the return is to be
considered random as well. In more classical approaches to RL problems, the randomness is averaged
out, and only the expected return is considered when evaluating the performance of an agent. In [1],
not only the expectation but the complete distribution of the return was considered, introducing what
is now known as distributional RL, see [2].

Mathematically, an RL problem is typically modeled by a Markov decision process (MDP), that is,
as a particular type of a discrete-time stochastic control problem. An overview of the classical MDP
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theory and its applications is presented in [3]. For more details on distributional RL using notations
similar to here, we refer to [2, 4].

For any measurable space X, we write P(X) for the set of probability distributions on X. The
distribution (law) of a X-valued random variable (RV) X is denoted by L(X) = P[X ∈ · ] ∈P(X). We
also write short X ∼ µ, if L(X) = µ ∈ P(X). In case X is countable, discrete distributions ν ∈ P(X)
can be identified with functions ν : X → [0, 1] satisfying

∑
x∈X ν(x) = 1. For a random variable

X and an event A with P[A] > 0, we writeL(X|A) ∈P(X) for the conditional distribution of X given A.

Let S andA be non-empty finite sets. A MDP on states S and actionsA is a function

ρ : S ×A →P(S × R), (s, a) 7→ ρ(s,a).

The interpretation is as follows: S is the set of states an environment can occupy and A the set
of possible actions the agent can perform. If in state s ∈ S the agent performs action a ∈ A, the
environment reacts with a (possibly random) successor state S together with a (possibly random) real-
valued reward R having joint distribution (S ,R) ∼ ρ(s,a) ∈P(S×R). How an agent chooses its actions
can be modeled by a (stationary) policy

π : S →P(A), s 7→ πs.

An agent that is in state s and acts according to policy π chooses a (possibly random) action A
distributed as A ∼ πs ∈P(A).

Suppose an agent acts according to π. Starting at time t = 0 from a possibly random state S (0), the
following dynamic is defined inductively: at time t ∈ N0, the agent finds itself in state S (t), chooses
action A(t) ∼ πS (t) (independent of the past given S (t)) and the environment reacts with the next state
S (t+1) and immediate reward R(t) jointly distributed as (S (t+1),R(t)) ∼ ρ(S (t),A(t)) (independent of the past
given (S (t), A(t))). The resulting stochastic process

(S (t), A(t),R(t))t∈N0 (1.1)

is called a Markov reward process in [2] or a full MDP in [4]. To emphasize that the distribution of the
stochastic process (1.1) depends on π, we write Pπ instead of P.

A suitable way to judge the overall performance of the agent is to choose a discount factor γ ∈ (0, 1)
and to consider the discounted accumulated rewards, the so-called return:

G = R(0) + γR(1) + γ2R(2) + · · · =

∞∑
t=0

γtR(t).

The return G is defined as an infinite series of random variables and its existence as a R-valued random
variable is not automatically guaranteed, such as if rewards are (extremely) heavy-tailed. Theorem 1
below provides a complete characterization of when the return G exists almost surely as a R-valued ran-
dom variable starting from any state S (0) = s. The relation of Theorem 1 to earlier results is discussed
in Remarks 2, 3 and 4. In various applications, heavy-tailed reward distributions are not encountered.
For instance, if rewards are obtained as a deterministic function of states and actions, the rewards be-
come bounded, and the existence of the return G easily follows from a geometric series argument.
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However, unbounded and even heavy-tailed reward distributions are of interest in various applications:
fields in which RL approaches have been considered and heavy-tailed distributions play a crucial role
include insurance and finance. See [5] and [6] for RL approaches to pricing and trading and [7] for the
role of heavy-tailed distributions in that field. Recently, another research area in which heavy-tailed
reward distributions have been considered is the study of multi-armed bandit models, which corre-
sponds to an MDP with only a single state, |S| = 1. In [8], the authors report on several studies in
this direction, including linear bandits [9, 10], pure exploration [11], Lipschitz-bandits [12], Bayesian
optimization [13], and Thompson sampling [14]. Notably, in the latter work, a particular emphasis is
placed on α-stable reward distributions, which is an assumption also covered by our analysis, see The-
orem 4 and Example 3. It is worth noting that all of these works consider finite horizon non-discounted
returns rather than infinite discounted returns. Our analysis offers a theoretical justification for the
inclusion of heavy-tailed reward distributions in infinite discounted reward scenarios.

Remark 1. The case γ = 0 is sometimes considered in RL literature, resulting in G = R(0) and
trivializing many of the research questions we investigate here. Although we do not discuss this case
further, it should be noted that several parts of our results remain applicable even when γ = 0.

Suppose the return G exists as a R-valued RV starting from any state s. Of interest in distributional
policy evaluation are the distributions of the return starting from given states. The state(-action) return
distributions are defined by

ηπs = P
π[G ∈ · |S (0) = s], s ∈ S,

ηπ(s,a) = P
π[G ∈ · |S (0) = s, A(0) = a], (s, a) ∈ S ×A.

In [2], the collection ηπ = (ηπs)s∈S is called a return distribution function. The state(-action) return
distributions can be found as solutions to the distributional Bellman equations, which we now explain.
For r ∈ R, γ ∈ (0, 1) let fr,γ : P(R) → P(R) be the map that sends ν = L(X) to fr,γ(ν) = L(r + γX).
Using the recursive structure of the return, G = R(0) + γG′ with G′ =

∑∞
t=0 γ

tR(t+1), and Markov
properties of (1.1), it is seen that state and state-action return distributions are related by

ηπs =
∑
a∈A

πs(a)ηπ(s,a), s ∈ S,

ηπ(s,a) =

∫
S×R

fr,γ
(
ηπs′
)
dρ(s,a)(s′, r), (s, a) ∈ S ×A.

Substituting the formulas in one another yields the distributional Bellman equations, which comes
in two forms: one for states and one for state-actions:

ηπs =
∑
a∈A

∫
S×R

πs(a) fr,γ
(
ηπs′
)
dρ(s,a)(s′, r), s ∈ S,

ηπ(s,a) =

∫
S×R

∑
a′∈A

πs′(a′) fr,γ
(
ηπ(s′,a′)

)
dρ(s,a)(s′, r), (s, a) ∈ S ×A. (1.2)

The distributional Bellman equations are a system of |S| resp. |S×A| one-dimensional distributional
equations in R. The right hand side of the equations can be used to introduce the distributional Bellman
operator, which for the state return distributions is defined as:
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T π : P(R)S −→P(R)S, η = (ηs)s∈S 7−→ T
π(η) =

(
T π

s (η)
)

s∈S

with s-th component function T π
s (η) =

∑
a∈A

∫
S×R

πs(a) fr,γ
(
ηs′
)
dρ(s,a)(s′, r). (1.3)

No assumption on the MDP ρ nor the policy π is needed to define (1.3), and the relation to the state
return distributions is as follows: if the return G, starting from any state s, converges almost surely in
R then the return distribution function ηπ = (ηπs)s∈S is a fixed point of T π, that is ηπ = T π(ηπ). We
explore this connection in more detail.

We write log+(x) = log(x) for x ≥ 1 and log+(x) = 0 for x < 1. The definition of “essential state” is
given before Theorem 2. One result of this note is the following:

Theorem 1. The following are equivalent:

(i) T π has a fixed point η ∈P(R)S,
(ii) G =

∑∞
t=0 γ

tR(t) converges Pπ[ · |S (0) = s]-almost surely in R for every initial state s ∈ S,
(iii)
∫
S×R

log+(|r|)dρ(s,a)(s′, r) < ∞ for every pair (s, a) ∈ S×A that is essential with respect to the law
of the Markov chain (S (t), A(t))t∈N0 under Pπ,

(iv) For every ν ∈P(R)S as n→ ∞ the sequence
(
T π)◦n(ν) of n-th iterations of T π converges weakly

in the product space P(R)S.

If these hold the fixed point of T π is unique, given by the return distribution function ηπ and(
T π)◦n(ν)→ ηπ weakly as n→ ∞ for every ν ∈P(R)S.

A theorem that reads analogously can be formulated for the distributional Bellman operator
T π : P(R)S×A → P(R)S×A defined in terms of state-actions. We cover both cases simultaneously
by introducing simplified notations in Section 1.2 that allow to analyze the distributional Bellman
operator, its fixed point equations and its solutions more conveniently. In Section 2, we present our
main results in these notations, Theorem 1 will follow from the more general Theorem 2 presented
there. For connections to a model and results in [15] see Remark 2.
Besides giving necessary and sufficient conditions for the existence of solutions to the distributional
Bellman equations, we also study properties of their solutions, that is, of the return distribution
function ηπ (and also state-action return distributions). We consider tail probability asymptotics
ηπs((−∞,−x)) and ηπs((x,∞)) as x → ∞. In Theorem 3, we identify cases of exponential decay and
existence of p-th moments and in Theorem 4 we cover regular variation. A possible application of the
latter is in distributional dynamic programming (see Chapter 5 in [2]), see Remark 6 of the present note.

Building upon our simplified notation, we explore the connection of the distributional Bellman
equations to multivariate distributional equations of the form X d

= AX + B in Section 2.1. This
connection seems to have not been noticed in the literature so far, and can be used to apply available
results in that field to the distributional RL setting; we do that when proving Theorem 4 by applying
results presented in [16].

Before we switch to the simplified notation and present the main results, we shortly present the
ordinary Bellman equations for convenience.
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1.1. The ordinary Bellman equations

The following is well-known and the standard setting in much of the distributional RL literature:
if reward distributions ρ(s,a)(S × ·) ∈ P(R) have finite expectations for all (s, a), the return converges
almost surely and has finite expectations as well; this also follows from Theorems 2 and 3 presented
in this note. In many classical approaches to RL, only expected returns are used for policy evaluation.
The state values and state-action values are defined by

vπs = E
π[G|S (0) = s] =

∫
R

g dηπs(g),

qπ(s,a) = E
π[G|S (0) = s, A(0) = a] =

∫
R

g dηπ(s,a)(g).

The collection vπ = (vπs)s∈S is called a state value function and qπ a state-action value function.
They can be found as solutions to the (ordinary) Bellman equations, which can be derived from their
distributional counterparts (1.2) using linearity of expectation. For action a in state s, let r(s,a) ∈ R be
the expected reward and p(s,a) ∈P(S) the distribution of the next state, that is

r(s,a) =

∫
r dρ(s,a)(s′, r) = Eπ[R(t)|S (t) = s, A(t) = a],

p(s,a) = ρ(s,a)(· × R) = Pπ[S (t+1) ∈ · |S (t) = s, A(t) = a].

The ordinary Bellman equations are a system of |S| (resp. |S × A|) linear equations in the same
number of unknowns, and read as follows:

vπs =
∑
a∈A

πs(a)
[
r(s,a) + γ

∑
s′∈S

p(s,a)(s′)vπs′
]
, s ∈ S,

qπ(s,a) = r(s,a) + γ
∑
s′∈S

p(s,a)(s′)
∑
a′∈A

πs′(a′)qπ(s′,a′), (s, a) ∈ S ×A. (1.4)

As in the distributional setting, one can use the right-hand side of these equations to define the
(ordinary) Bellman operators (RS → RS for states) such that (1.4) are equivalent to the associated
fixed point equation of these operators.

When judging a policy based on expected returns, π is considered to be at least as good as some
other policy π̃ if vπ ≥ vπ̃ pointwise at each s. Classical MDP theory shows that there always exists
a policy at least as good as every other policy. Being able to calculate expected returns is not just of
interest for evaluating π, but also to improve it: the policy π′ defined by π′s = δargmaxa∈A qπ(s,a)

is at least as
good as π. This leads to an iterative algorithm known as policy iteration: starting from an initial policy
π(0) and letting π(k+1) =

(
π(k))′ it can be shown that vπ

(k)
converges as k → ∞ to the state value function

of an optimal policy.

1.2. Simplified notations

We introduce simplified notations and define the distributional Bellman operator in this setting. Let
d ∈ N and (R1, J1), . . . , (Rd, Jd) be random pairs such that each Ri is real-valued and Ji is discrete taking
values in [d] = {1, . . . , d}. For each i ∈ [d], it is L(Ri, Ji) ∈ P(R × [d]) the joint distribution of the
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random pair (Ri, Ji). The random pairs (R1, J1), . . . , (Rd, Jd) together with some constant γ ∈ (0, 1)
define (a version of) the distributional Bellman operator as follows:

T : P(R)d −→P(R)d, η =


η1
...

ηd

 7−→ T (η) =


T1(η)
...

Td(η)

 ,
the i-th coordinate function Ti : P(R)d →P(R) being

Ti(η) = Ti(η1, . . . , ηd) = L(Ri + γGJi), (1.5)

where on the right hand side L(G j) = η j for each j ∈ [d] and G1, . . . ,Gd, (Ri, Ji) are independent.

Example 1 (State return). Let ρ be a MDP and π a stationary policy. Let d = |S| and choose an
arbitrary enumeration i = s to identify [d] with S. Let i = s, j = s′ and B ⊆ R be measurable. Consider
the joint distribution

P[Ri ∈ B, Ji = j] = Pπ[R(t) ∈ B, S (t+1) = s′|S (t) = s]

=
∑
a∈A

πs(a)ρ(s,a)({s′} × B).

In this case T in (1.5) is the same as T π in (1.3).

Example 2 (State-action return). Let ρ be a MDP and π a stationary policy. Let d = |S×A| and choose
an arbitrary enumeration i = (s, a) to identify [d] with S × A. Let i = (s, a), j = (s′, a′) and B ⊆ R
measurable. Consider the joint distribution

P[Ri ∈ B, Ji = j] = Pπ[R(t) ∈ B, S (t+1) = s′, A(t+1) = a′|S (t) = s, A(t) = a]
= ρ(s,a)({s′} × B)πs′(a′).

In this case, the distributions L(Ri, Ji), i ∈ [d] completely encode both ρ and π and, provided existence,
state-action return distributions (ηπ(s,a))(s,a)∈S×A are fixed points of T .

The connection to distributional RL shows that it is of interest to understand the fixed points of T ,
that is probability distributions η ∈P(R)d satisfying

η = T (η). (1.6)

Let G1, . . . ,Gd be real-valued random variables with ηi = L(Gi). Then, (1.6) is equivalent to the
distributional Bellman equations, which is a system of d one-dimensional distributional equations

Gi
d
= Ri + γGJi , i ∈ [d], (1.7)

where d
= (also denoted by =d) denotes equality in distribution and in the i-th equation G1, . . . ,Gd, (Ri, Ji)

are independent, i ∈ [d]. For i, j ∈ [d] let

pi j = P[Ji = j] and µi j = L(Ri|Ji = j),
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where in case pi j = 0 we set µi j = δ0, the Dirac measure in 0. It holds P[Ri ∈ ·, Ji = j] = pi jµi j(·). Let
Fi(x) = P[Gi ≤ x] be the cumulative distribution function (cdf) of real-valued random variable Gi. A
third equivalent formulation of the distributional Bellman equations (1.7) in terms of cdf’s is

Fi(·) =
d∑

j=1

pi j

∫ ∞

−∞

F j

( · − r
γ

)
dµi j(r), i ∈ [d].

The distributional Bellman equations in terms of cdfs appeared in the literature before, for instance,
in [17] or, in a more specific form, in [18].

We study the following aspects regarding solutions to the distributional Bellman equations, i.e.,
fixed points of T :

• Existence and uniqueness for which conditions being necessary and sufficient are given in Theo-
rem 2, see also Remark 3.
• Tail probability asymptotics, that is, if η is a fixed point of T with i-th component ηi = L(Gi) we

study the asymptotic behavior of P[Gi > x] and P[Gi < −x] as x → ∞. Depending on properties
of the distributions L(R1, J1), . . . ,L(Rd, Jd), we identify cases of

– exponential decay and existence of p-th moments, see Theorem 3.
– regular variation, see Theorem 4.

In Section 2.1, we explain how our findings relate to the area of multivariate distributional fixed
point equations of the form

X d
= AX + B, (1.8)

in which X,B are random d-dimensional vectors, A a random d × d matrix, and X and (A,B) are inde-
pendent. Such equations arise in many different applications, such as in the context of perpetuities and
random difference equations. In the above notation, the distributional Bellman equations (1.7) are a
system of d one-dimensional distributional equations which is less restrictive as a single distributional
equation in Rd such as (1.8), but more complicated then a single one-dimensional distributional equa-
tion. However, using Theorem 2, we show how general results from the multivariate setting become
applicable to study distributional Bellman equations, see Corollary 1.

In case d = 1, the random pairs (R1, J1), . . . , (Rd, Jd) reduce to a single real-valued random variable
(R1, J1) with J1 ≡ 1 and the distributional Bellman equations (1.7) reduce to a single distributional
equation in R:

G1
d
= γG1 + R1,

with G1 independent of R1. This is a simple special case of a one-dimensional distributional equation
X =d AX + B, also called perpetuity equation, for which the existence and uniqueness of solutions as
well as their properties have been studied in great detail, see, e.g., [19, 20] or [21]. A comprehensive
discussion is given in Chapter 2 in [16].

2. Results

Let γ ∈ (0, 1) and (R1, J1), . . . , (Rd, Jd) be the R × [d]-valued random pairs defining the Bellman
operator T : P(R)d →P(R)d as in (1.5). Some results can be formulated and proven within a special
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construction based on random variables

(It)t∈N0 , (Ri jt)(i, j)∈[d]2,t∈N0 , (2.1)

in which

• (It)t∈N0 is a [d]-valued homogeneous Markov chain having transition probabilities (pi j)(i, j)∈[d]2 and
a uniform starting distribution, that is, for any path i0, i1, . . . , iT ∈ [d] it holds that

P[I0 = i0, . . . , IT = iT ] = d−1 pi0i1 pi1i2 · · · piT−1iT ,

• (Ri jt)(i, j)∈[d]2,t∈N0 forms an array of independent real-valued random variables with

L(Ri jt) = L(Ri|Ji = j) = µi j,

in particular, for each pair (i, j), the sequence (Ri jt)t∈N0 is independent identically distributed (iid)
with distribution µi j,
• (It)t∈N0 and (Ri jt)(i, j)∈[d]2,t∈N0 are independent.

From now on, we omit quantification of indices in array-like quantities once the index-ranges have
been introduced.

Using RVs (2.1), an explicit description of the n-th iteration of T defined inductively as T ◦n =
T ◦(n−1) ◦ T can be given: the i-th component of T ◦n is the map T ◦ni : P(R)d →P(R) defined by

T ◦ni (η1, . . . , ηd) = L
(∑n−1

t=0
γtRIt ,It+1,t + γnGIn

∣∣∣ I0 = i
)
,

with L(G j) = η j and G1, . . . ,Gd, (Ri jt)i jt, (It)t independent.

To introduce some basic definitions from Markov chain theory, let i, j ∈ [d] be states. We write
i → j if there exists t ∈ N0 with P[It = j|I0 = i] > 0. State i is essential if for every state j the
implication i→ j⇒ j→ i holds. Since the state space [d] is finite, a state i is essential if and only if it
is recurrent, that is, P[It = i for some t > 0|I0 = i] = 1, which implies P[It = i for∞-many t|I0 = i] = 1.

Theorem 2. The following conditions are equivalent:

(i) T has a (unique) fixed point,
(ii) E[log+ |Ri|] < ∞ for all essential i,

(iii) The infinite series G =
∑∞

t=0 γ
tRIt ,It+1,t is almost surely (absolutely) convergent,

(iv) T ◦ni (ν) converges weakly as n→ ∞ for each i ∈ [d] for some (all) ν ∈P(R)d.

If one and hence all of (i)–(iv) hold, then the unique fixed point η ∈P(R)d of T has i-th component

ηi = L(G|I0 = i) = L
(∑∞

t=0
γtRIt ,It+1,t

∣∣∣ I0 = i
)
.

Remark 2. In [15], a model of iterations of random univariate affine linear maps within a Markovian
environment is introduced and its stability is studied. This model is similar to our version of the
distributional Bellman operator in (1.5). In [15], the Markov chain is allowed to have countable state
space but required to be ergodic whereas the present Markov chain in the distributional RL setting has
finite spate space and no further restrictions. The results in Section 3 of [15] partly imply claims of the
present Theorem 2 with similar underlying techniques based on [19, 21].
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Note that for a real-valued random variable X, the following much stronger properties each imply
E[log+ |X|] < ∞:

1) |X| is bounded: |X| ≤ K for some constant K ≥ 0,
2) |X| has a finite exponential moment: E[exp(β|X|)] < ∞ for some β > 0,
3) |X| has a finite p-th moment: E[|X|p] < ∞ for some p ∈ [1,∞).

Of course, we have 1) ⇒ 2) ⇒ 3). Hence, by Theorem 2, a sufficient condition for the existence of a
fixed point of T is that every R j, j ∈ [d] satisfies one of the latter three properties. Moreover, supposing
T has a fixed point η with i-component ηi = L(Gi), these properties are transferred from R j, j ∈ [d] to
Gi, the subsequent theorem presents a concise summary of these well-known facts:

Theorem 3. Let i ∈ [d]. If for all j with i→ j

1) |R j| ≤ K then |Gi| ≤
1

1−γK,
2) E[exp(β|R j|)] < ∞ then E[exp(β|Gi|)] < ∞,
3) E[|R j|

p] < ∞ then E[|Gi|
p] < ∞.

The first property transfer is fundamental in MDP theory, while property transfers of the second
type are well-established in perpetuity equation theory (cf. Theorem 2.4.1 in [16]). The third is com-
mon throughout the Distributional RL literature (cf. Remark 3). For completeness, a short proof of
Theorem 3 is presented in Section 3.2.

Remark 3. For p ≥ 1, let Pp(R) ⊂ P(R) be the subset of p-integrable distributions on R, that is,
Pp(R) = {µ ∈P(R)|

∫
R
|x|pdµ(x) < ∞}. Let pri : Rd → R be the i-th projection. The p-th Wasserstein

distance on Pp(R) is defined as

dp(µ1, µ2) = inf
{ ∫
R×R

|x − y|pdψ(x, y)
∣∣∣∣ ψ ∈P(R2) with ψ ◦ pr−1

i = µi, i = 1, 2
}1/p

.

The space (Pp(R), dp) is a complete metric space and so is the product (Pp(R)d, d′p) with d′p(η, ν) =
maxi∈[d] dp(ηi, νi). In [1], the following was shown by extending techniques of [22]: if for all j ∈ [d] it
holds that E[|R j|

p] < ∞, that is L(R j) ∈ Pp(R), then the restriction T|Pp(R)d of T to Pp(R)d maps to
Pp(R)d and is a γ-contraction with respect to d′p. Banach’s fixed point theorem yields that the operator
T|Pp(R)d : Pp(R)d → Pp(R)d has a unique fixed point η ∈ Pp(R)d. The latter also follows from our
results: if E[|R j|

p] < ∞ for all j then E[log+ |R j|] < ∞ for all j and, by Theorem 2, there exists a unique
fixed point η ∈ P(R)d. Now L(R j) ∈ Pp(R) for all j implies η ∈ Pp(R)d ⊂ P(R)d by Theorem 3.
Note, however, that our Theorem 2 improves upon results of [1] based on the dp metric twofold: First,
Theorem 2 has necessary and sufficient conditions for the existence and uniqueness of fixed points of
T without moment assumption such as E[|R j|

p] < ∞ for some p ≥ 1. Second, the uniqueness of the
fixed point is shown in the full space P(R)d, whereas the earlier results show uniqueness only in the
subspace Pp(R)d ⊂P(R)d.

Remark 4. Theorem 2 shows that, if it exists, the fixed point η of T can be obtained as the weak
limit of the iterates T ◦n(ν) as n→ ∞. This was observed in the distributional RL literature before, see
Proposition 4.34 in Chapter 4 of [2], and the proof of this part of the theorem shares many similarities
with their arguments.
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Next, we focus on asymptotic behavior of tail probabilities P[X > x] and P[X < −x] as x → ∞.
Each of the three properties stated in Theorem 3 above directly yields asymptotic bounds, in the latter
two cases by applying Markov’s inequality:

1) if |X| ≤ K then P[X > x] = P[X < −x] = 0 for all x > K,
2) if E[exp(β|X|)] < ∞ for some β > 0 then

lim sup
x→∞

logP[X > x]
x

≤ −β and lim sup
x→∞

logP[X < −x]
x

≤ −β,

3) if E[|X|p] < ∞ for some p ∈ [1,∞) then P[X > x],P[X < −x] are O(x−p) as x→ ∞.

With this at hand, in each of the three cases presented in Theorem 3, one can obtain asymptotic bounds
for the tail probabilities P[Gi > x] and P[Gi < −x] as x→ ∞.

Besides the three classical properties discussed so far, a further interesting and important prop-
erty of (the distribution of) a random variable X implying E[log+ |X|] < ∞ is that of regular variation.
Regularly varying distributions represent a broad and adaptable class of heavy-tailed distributions, con-
taining several important distribution families as specific cases, see Example 3. As mentioned in the
introduction, previous applied works have investigated scenarios that involve heavy-tailed reward dis-
tributions. Consequently, an in-depth understanding of how heavy-tailed reward behavior is reflected
in the returns is of interest, a question that Theorem 4 answers in the case of regular variation.

Regular variation is directly defined in terms of the asymptotic behavior of the tail probabilities
P[X > x] and P[X < −x] as x → ∞. First, a function f : (0,∞) → [0,∞) with f (x) > 0 for all x > x0

is called regularly varying with index β ∈ R if it is measurable and

lim
x→∞

f (tx)
f (x)

= tβ for every t > 0.

A function L : (0,∞) → [0,∞) is called slowly varying if it is regularly varying with index β = 0,
so L(tx)/L(x) → 1 for every t > 0. Every regularly varying function f with index β is of the form
f (x) = xβL(x) for some slowly varying function L, see [23].
Following [16], a real-valued random variable X is called regularly varying with index α > 0 if

a) the function x 7→ P[|X| > x] is regularly varying with index −α and
b) left and right tail probabilities are asymptotically balanced: for some q ∈ [0, 1]

lim
x→∞

P[X > x]
P[|X| > x]

= q and lim
x→∞

P[X < −x]
P[|X| > x]

= 1 − q.

An equivalent definition reads as follows: a real-valued random variable X is regularly varying with
index α > 0 if and only if there exists a slowly varying function L and some q ∈ [0, 1] such that

lim
x→∞

P[X > x]
x−αL(x)

= q and lim
x→∞

P[X < −x]
x−αL(x)

= 1 − q. (2.2)

In this situation, we have P[|X| > x] = P[X > x] + P[X < −x] ∼ x−αL(x) as x → ∞, so P[|X| > x] is
regularly varying of index −α, and the tail probabilities are asymptotically balanced.

Similar to the other three properties, regular variation transfers from rewards to returns in the fol-
lowing sense:
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Theorem 4. Let i ∈ [d], α > 0 and L a slowly varying function. Suppose for all j with i → j, there
exist q j ∈ [0, 1] and c j ∈ [0,∞), with c j > 0 for at least one j, such that

lim
x→∞

P[R j > x]
x−αL(x)

= q jc j and lim
x→∞

P[R j < −x]
x−αL(x)

= (1 − q j)c j.

Then with

wi j =

∞∑
t=0

(1 − γα)γαtP[It = j|I0 = i],

that is wi j = P[IN = j|I0 = i] with N ∼ Geo(1 − γα) independent of (It)t, it holds that

lim
x→∞

P[Gi > x]
x−αL(x)

=

∑d
j=1 wi jq jc j

1 − γα
and lim

x→∞

P[Gi < −x]
x−αL(x)

=

∑d
j=1 wi j(1 − q j)c j

1 − γα
. (2.3)

In particular, Gi is regularly varying with index α.

Remark 5. For d = 1 Theorem 4 is equivalent to Theorem 2.4.3 (2) in [16]. For d = 1, the tail
asymptotic of P[|G1| > x] as x→ ∞ could also be directly obtained from [24], Theorem 2.3.

Example 3. A regularly varying random variable R is called Pareto-like if P[R > x] ∼ qcx−α and
P[R < −x] ∼ (1 − q)cx−α for some constants c > 0, q ∈ [0, 1], α > 0, that is, if in (2.2) one can choose
L to be constant. Examples of Pareto-like distributions include Pareto, Cauchy, Burr, and α-stable
distributions, α < 2, see [7]. If there exists a non-empty subset J ⊆ [d] and α > 0 such that for each
j ∈ J R j is Pareto-like with index α and for each j < J P[|R j| > x] = o(x−α), then Theorem 4 applies by
choosing L ≡ 1 and yields that Gi is also Pareto-like.

Remark 6 (Application in distributional dynamic programming). The goal in distributional dynamic
programming is to perform distributional policy evaluation on a computer. A major problem to solve
is that probability distributions ηs ∈ P(R) are infinite dimensional objects and hence some form of
approximation has to be applied in practice. Several approaches are discussed in Chapter 5 of [2].
Additional issues arise in cases of Pareto-like tail behaviors with unbounded support as in Example 3:
it is then known that (some of) the true state-value distributions are Pareto-like, which may be an in-
formation desirable to include in evaluating the policy. Theorem 4 justifies modeling the tails of the
state-value distributions a priori as a Pareto-like distribution, the correct choice of asymptotic parame-
ters is given by (2.3). We plan to report on such issues in future work.

2.1. Connection to multivariate fixed point equations

A prevalent method for examining probabilistic behaviors of systems involves coupling techniques,
wherein multiple dependent versions of a system of interest are constructed and their collective behav-
ior is analyzed. In this section, we adapt this approach to our specific context, demonstrating how it
allows for the application of results from the well-established theory of multivariate distributional fixed
point equations in the study of distributional Bellman equations.
A first key insight is that the operator T : P(R)d → P(R)d, defined in (1.5), depends on the random
pairs (R1, J1), . . . , (Rd, Jd) only through their marginal laws(

L(R1, J1), . . . ,L(Rd, Jd)
)
∈P(R × [d])d,
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recall the definition of T = (T1, . . . ,Td) being

T : P(R)d −→P(R)d, T
(
L(G1), . . . ,L(Gd)

)
=
(
L(R1 + γGJ1), . . . ,L(Rd + γGJd )

)
,

where in the i-th component the random variables G1, . . . ,Gd, (Ri, Ji) are independent. However, the
second key insight is that the independence of G1, . . . ,Gd is not necessary for the definition: any
random vector (G̃1, . . . , G̃d) having the same marginal laws as (G1, . . . ,Gd) and being independent of
(Ri, Ji) satisfies L(Ri + γG̃Ji) = L(Ri + γGJi).

By a coupling of (R1, J1), . . . , (Rd, Jd) we understand any way the random pairs could be defined on
a common probability space, thus having a joint distribution

L
(
(R1, J1), . . . , (Rd, Jd)

)
∈P((R × [d])d). (2.4)

A coupling (2.4) induces an operator S on P(Rd) given by

S : P(Rd) −→P(Rd), S
(
L(G1, . . . ,Gd)

)
= L
(
R1 + γGJ1 , . . . ,Rd + γGJd

)
,

where on the right hand side (G1, . . . ,Gd) and ((R1, J1), . . . , (Rd, Jd)) are independent. The two key
insights mentioned above yield that S and T are related by

S(ζ) ◦ pr−1
i = Ti(ζ ◦ pr−1

1 , . . . , ζ ◦ pr−1
d ), i ∈ [d], ζ ∈P(Rd), (2.5)

with pri : Rd → R being the i-th coordinate projection and hence ζ ◦pr−1
i ∈P(R) the i-th marginal law

of ζ ∈P(Rd). An immediate consequence of (2.5) of interest to us is

L(G1, . . . ,Gd) = ζ ∈P(Rd) is a fixed point of S
=⇒ (L(G1), . . . ,L(Gd)) = (ζ ◦ pr−1

1 , . . . , ζ ◦ pr−1
d ) ∈P(R)d is a fixed point of T . (2.6)

Corollary 1 below implies the following converse of this implication: if T has a (unique) fixed point
(L(G1), . . . ,L(Gd)) then for any coupling (2.4) the induced operator S has a unique fixed point which,
due to (2.6), takes the form of a coupling L(G1, . . . ,Gd) of G1, . . . ,Gd. This justifies the following ap-
proach to study (fixed points of) T : choose a convenient coupling (2.4) and study its induced operator
S, in particular the marginal laws of a fixed point of S. We use this approach proving Theorem 4,
where it is most convenient to consider (R1, J1), . . . , (Rd, Jd) to be independent.

One advantage of this coupling approach is that it enables access to numerous results from the field
of multivariate fixed point equations, as we explain in the following.

Let S be induced by a coupling (2.4). Define the random d-dimensional vector

R = (R1, . . . ,Rd)T

and the random d × d matrix

J = (Ji j)(i, j)∈[d]×[d] with Ji j = γ · 1(Ji = j).

The coupling is then completely encoded in the joint distribution L(J,R) ∈P
(
Rd×d × Rd). Moreover,

for any random vector G = (G1, . . . ,Gd)T it holds

JG + R =
(
R1 + γGJ1 , . . . ,Rd + γGJd

)T
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and hence, if G is independent of (J,R), it holds that

S(L(G)) = L(JG + R)

and L(G) ∈P(Rd) is a fixed point of S if and only if

G d
= JG + R. (2.7)

Note that (2.7) is a single distributional equation in Rd, whereas the distributional Bellman equations,
see (1.7), are a system of d distributional equations in R. Multivariate fixed point equations like (2.7)
have long been studied for general joint laws L(J,R) ∈P(Rd×d × Rd) under various types of assump-
tions, some of them directly applicable to the situation presented here. A comprehensive overview
of the theory of multivariate distributional fixed point equations and its applications, in particular to
stochastic difference equations and many important stochastic time-series models, is presented in [16].
Theorem 2 can be used to show the following results, in which (J(t),R(t))t∈N0 are iid copies of (J,R).

Corollary 1. For any operator S induced by a coupling (2.4), the following statements are equivalent

(i) S has a (unique) fixed point,
(ii) S◦n(ζ) converges weakly as n→ ∞ for some (all) ζ ∈P(Rd),

(iii) The infinite series G =
∑∞

t=0

[∏t−1
s=0 J(s)

]
R(t) is almost surely (absolutely) convergent,

(iv) T has a (unique) fixed point,
(v) E[log+ |Ri|] < ∞ for all essential i.

If one, and hence all, of these hold, then the unique fixed point ζ ∈ P(Rd) of S is given by the law of
the infinite vector-valued series L(G) in (iii) and the unique fixed point of T is the vector of marginal
laws of ζ.

Before we present a short proof, we explain how this result fits the known theory of multivariate
fixed points equations. Let | · | be the euclidean norm on Rd. We also write | · | for the induced operator
norm on Rd×d. A result by [25] shows that for any joint law L(J,R) ∈ P(Rd×d × Rd) such that
E[log+ |J|],E[log+ |R|] < ∞ and such that (the distribution of) J has a strictly negative top Lyapunov
exponent, that is

inf
t≥1

1
t
E
[
log
∣∣∣∏t−1

s=0
J(s)
∣∣∣] < 0,

the sum in (iii) converges almost surely and its law is the unique solution to (2.7). We refer to
Appendix E in [16] for more information about top Lyapunov exponents. In our case, having
Ji j = γ1(Ji = j), and hence |

∏t−1
s=0 J(s)| = γt, the top Lyapunov exponent of J equals log(γ) < 0,

so it is strictly negative, and |J| = γ implies E[log+ |J|] = 0 < ∞. Thus, the implication (v)⇒(iii) in
Corollary 1 says that the condition E[log+ |R|] < ∞, which is equivalent to E[log+ |Ri|] < ∞ for all
i ∈ [d], can be relaxed to E[log+ |Ri|] < ∞ for all essential i to obtain almost sure convergence of the
infinite series in (iii) in our case.

The implication (ii)⇒(iii) can directly be obtained from Theorem 2.1 in [26] since |
∏t−1

s=0 J(s)| =

γt → 0 (almost surely) in our case. To deduce almost sure convergence from weak convergence in
Theorem 2 (implication (ii)⇒(iii) there), we present Proposition 1 in Section 3, the proof of which is
based on ideas presented in [27] to prove a version of Kolmogorov’s three Series theorem also involving
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distributional convergence.
Besides the top Lyapunov exponent another important notion in multivariate fixed point equations is
that of irreducibility: the joint law L(J,R) ∈ P(Rd×d × Rd) is called irreducible if the only affine
linear subspace H ⊆ Rd that fulfills P[JH + R ⊆ H] = 1 is the complete subspace H = Rd. In case
(J,R) is irreducible, the implication (i)⇒(iii) can be obtained directly from Theorem 2.4 in [28]. In
our situation, irreducibility of L(J,R) is not given in any situation and Corollary 1 shows that it is also
not needed to obtain the implication (i)⇒(iii).

Proof of Corollary 1. (iv)⇐⇒(v), see Theorem 2.
(iv)=⇒(iii). By Theorem 2, the infinite series

∑∞
t=0 γ

tRIt ,It+1,t is almost surely (absolute) convergent. For
each i ∈ [d], the i-th component of the vector-valued infinite series

∑∞
t=0

[∏t−1
s=0 J(s)

]
R(t) has the same

law as L
(∑∞

t=0 γ
tRIt ,It+1,t|I0 = i

)
, hence every component converges almost surely (absolutely).

(iii)=⇒(ii). Let ζ = L(G0) with G0 independent of (J(t),R(t))t. The n-th iteration of S can be repre-
sented as

S◦n(ζ) = L
( n−1∑

t=0

[ t−1∏
s=0

J(s)
]
R(t) +

[ n−1∏
s=0

J(s)
]
G0

)
.

Now
[∏n−1

s=0 J(s)
]
G0 → 0 almost surely and

∑n−1
t=0

[∏t−1
s=0 J(s)

]
R(t) converges almost surely by assump-

tion. So S◦n(ζ) converges in distribution, namely to the law of the infinite sum in (iii).
(ii)=⇒(i). Assume S◦n(ζ) → ζ0 converges weakly for some ζ. The map S : P(Rd) → P(Rd)
is continuous with respect to the topology of weak convergence, hence S(ζ0) = limn S(S◦n(ζ)) =
limn S

◦(n+1)(ζ) = ζ0, so ζ0 is a fixed point of S.
(i)=⇒(iv). See (2.5). □

3. Proofs

Let m ∈ N and γ ∈ (0, 1) be fixed. Consider random variables

(Kt)t∈N0 , (Xlt)l∈[m],t∈N0 (3.1)

such that (Kt)t is an [m] = {1, . . . ,m}-valued homogeneous Markov chain with an arbitrary starting
distribution, (Xlt)lt is an array of independent real-valued random variables such that for each l ∈ [m] the
variables (Xlt)t are iid and (Xlt)lt and (Kt)t are independent. A state l is called accessible if P[Kt = l] > 0
for some t ∈ N0. Note that we allow any starting distribution in our formulation, hence this is not
automatically satisfied. A state l is accessible essential if and only if P[Kt = l for infinitely many t ∈
N0] > 0 and this probability equals 1 if conditioned on the event of at least one visit in l. In light of
Theorem 2, which we proof in the next subsection, any result shown within the setting (3.1) can be
applied to (2.1) by considering

[m] ≃ [d]2, l = (i, j), Xlt = Ri jt,Kt = (It, It+1)

and in this case working under the condition P[ · |I0 = i] is equivalent to consider the starting distribu-
tion P[K0 = (i′, j)] = 1(i′ = i)pi j.
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3.1. Existence and uniqueness: Proof of Theorem 2

The proof of Theorem 2 is based on the following proposition, which shares similarities with Kol-
mogorov’s three-series theorem presented Theorem 5.18 in [27].

Proposition 1. For n ∈ N let S n =
∑n−1

t=0 γ
tXKt ,t. Then the following are equivalent

(i) S n converges in distribution as n→ ∞.
(ii) S n converges almost surely as n→ ∞.

(iii) E[log+ |Xlt|] < ∞ for each accessible essential state l ∈ [L].

Proof. Every finite state space Markov chain with probability one finally takes values in one of its
irreducible components, hence to show (iii)⇔(ii), we can reduce to the case that (Kt)t is irreducible, in
particular, every state is accessible essential in this case.
(iii)⇒(ii): We assume E[log+ |Xlt|] < ∞ for all l. Let 0 < c < log(1/γ) and c̃ = log(1/γ) − c > 0. For
each t ∈ N0, let

At = {γ
t|XKt ,t| ≥ exp(−ct)} = {log+ |XKt ,t| ≥ c̃t}.

We show
∑∞

t=0 P[At] < ∞ and apply the Borel–Cantelli lemma. Conditioning on Kt = l and bounding
P[Kt = l] ≤ 1 yields

∞∑
t=0

P[At] = P[A0] +
∞∑

t=1

P
[ log+ |XKt ,t|

c̃
≥ t
]
≤ P[A0] +

L∑
l=1

∞∑
t=1

P
[ log+ |Xl,t|

c̃
≥ t
]

≤ P[A0] +
L∑

l=1

E
[ log+ |Xl,t|

c̃

]
< ∞.

The Borel–Cantelli lemma implies that Ac
t = {γ

t|XKt ,t| < exp(−ct)} occurs for all but finitely many t
almost surely, and hence, almost surely

∑∞
t=0 γ

t|XKt ,t| < ∞, since the tail of the infinite sum is a.s. finally
dominated by that of the geometric series

∑
t exp(−ct) < ∞. Hence, S n is absolutely convergent and

thus is convergent almost surely.
(ii)⇒(iii): We assume there is an accessible essential state l such that E[log+ |Xlt|] = ∞ and show that

S n diverges almost surely. We closely follow the idea in the proof of [16], Theorem 2.1.3 (also [19],
proof of Lemma 1.7) and apply the root test, which states that for any real-valued sequence (at)t∈N0

lim sup
t∈N0

|at|
1/t > 1 =⇒

∞∑
t=0

at diverges,

where “diverges” means not having a finite limit. Let C̃ > 1, C = C̃/γ > 1 and

Bt =
{∣∣∣γtXKt ,t

∣∣∣1/t > C̃
}

=
{
|XKt ,t|

1/t > C
}

= {log+ |XKt ,t| > t log(C)}.

If we can show P[lim supt∈N0
Bt] = 1, the root test applies and yields the almost sure divergence of S n

and hence not (ii). We want to apply the second Borel–Cantelli lemma, but since the events Bt, t ∈ N0
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are not independent, we have to take a little higher effort. For l ∈ [m], j ∈ N, let Tl j be the time of the
j-th visit of (Kt)t in l with Tl j = ∞ in case no such visit occurs. With this, it holds that

lim sup
t∈N0

Bt =

m⋃
l=1

lim sup
j∈N
{log+ |Xl,Tl j | > Tl j log(C)}.

For calculating the probability of the right-hand side, we can replace Xl,Tl j with Xl j since (Xlt)lt and
(Tl j)l j are independent and (Xlt)t is iid for each l. Therefore, by defining the event

Cl j = {log+ |Xl j| > Tl j log(C)}

we have

P[lim supt∈N0
Bt] = P

[ L⋃
l′=1

lim sup j∈NCl′ j

]
≥ P[lim sup j∈NCl j],

where on the right hand side the state l is such that E[log+ |Xlt|] = ∞ which exists by assumption. We
show that the right-hand side is one. Using independence of (Xlt)t and (Tl j) j Fubini’s theorem implies

P
[
lim sup j∈NCl j

]
=

∫
P
[

lim sup j∈N
{
log+ |Xl j| > tl j log(C)

}]
dP(Tl j) j

(
(tl j) j
)
, (3.2)

where the integral on the right hand side is with respect to the distribution of (Tl j) j under P. Since (Kt)t

is assumed to be an irreducible Markov chain it holds that 1
j Tl j → cl > 0 almost surely as j → ∞

(where cl is the inverse of the unique stationary distribution probability for state l). Let (tl j)l j be a
realization of (Tl j)l j with tl j ∼ jcl as j → ∞. If we can show that for any such realization it holds
that
∑∞

j=1 P[log+ |Xl j| > tl j log(C)] = ∞, we can apply the second Borel–Cantelli lemma to conclude
P
[
lim sup j∈N{log+ |Xl j| > tl j log(C)}

]
= 1. Formula (3.2) and the fact that almost every realization (tl j) j

of (Tl j) j satisfies tl j ∼ jcl, then would yield P[lim sup j∈NC j] = 1 as desired.
Since tl j ∼ jcl for every ε > 0 there is some j0 such that tl j < (1 + ε) jcl for every j > j0 which

allows to conclude
∞∑
j=1

P[log+ |Xl j| > (1 + ε) jcl log(C)] = ∞ =⇒

∞∑
j=1

P[log+ |Xl j| > tl j log(C)] = ∞

With C′ = (1 + ε)cl log(C) > 0, we have

∞∑
j=1

P[log+ |Xl j| > (1 + ε) jcl log(C)] ≥ E
[⌊ log+ |Xl j|

C′
⌋]
= ∞,

since by assumption E[log+ |Xl j|] = ∞.
(ii)⇒(i). Obvious
(i)⇒(iii). We show that if there is some accessible essential state l with E[log+ |Xl,t|] = ∞, then S n

does not converge in distribution. For that, we use two technical Lemmas from [27] which were
used to prove a version of Kolmogorov’s three series theorem. Let (X′lt)lt be an array of independent
RVs, independent of (Xlt)lt, (Kt)t and distributed as (Xlt)lt. Let X̃lt = Xlt − X′lt. In [27] X̃lt is called
symmetrization of Xlt. Let S ′n =

∑n−1
t=0 γ

tX′Kt ,t and S̃ n = S n − S ′n =
∑n−1

t=0 γ
tX̃Kt ,t. Note that S̃ n is not a
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symmetrization of S n, because S n, S ′n are not independent as they both depend on (Kt)t. But for any
fixed realization (kt)t we have

∑n−1
t=0 γ

tX̃kt ,t a symmetrization of
∑n−1

t=0 γ
tXkt ,t, which is enough for our

reasoning.
From E[log+ |Xl,t|] = ∞, one can conclude that E[log+ |X̃l,t|] = ∞, and hence the already established

equivalence (ii)⇐⇒(iii) shows that S̃ n does not converge almost surely, in fact we saw that S̃ n diverges
almost surely. Thus, using independence of (Kt)t and (X̃kt)kt, Fubini’s theorem implies

1 = P[S̃ n diverges as n→ ∞] =
∫
P
[∑n−1

t=0
γtX̃kt ,t diverges as n→ ∞

]
dP(Kt)t((kt)t),

hence for almost every realization (kt)t of (Kt)t the sequence
∑n−1

t=0 γ
tX̃kt ,t diverges almost surely. The-

orem 5.17 in [27] about sums of independent symmetric random variables applies and shows that∣∣∣ ∑n−1
t=0 γ

tX̃kt ,t

∣∣∣ → ∞ in probability for almost every (kt)t. Hence, for almost every realization (kt)t and
any constant C > 0 it holds that

lim
n→∞
P
[∣∣∣∣ n−1∑

t=0

γtX̃kt ,t

∣∣∣∣ > C
]
= 1.

Since
∑n−1

t=0 γ
tX̃kt ,t is a symmetrization of

∑n−1
t=0 γ

tXkt ,t, Lemma 5.19 in [27] applies and yields the fol-
lowing bound

P
[∣∣∣∣ n−1∑

t=0

γtX̃kt ,t

∣∣∣∣ > C
]
≤ 2P
[∣∣∣∣ n−1∑

t=0

γtXkt ,t

∣∣∣∣ > C
]
.

Hence, for almost every realization (kt)t of (Kt)t it holds that

lim inf
n→∞

P
[∣∣∣∣ n−1∑

t=0

γtXkt ,t

∣∣∣∣ > C
]
≥

1
2
.

Fatou’s lemma together with Fubini’s theorem yields

lim inf
n→∞

P
[∣∣∣S n

∣∣∣ > C
]
≥

1
2
.

This holds for every C > 0 and hence the sequence L(S n), n ∈ N is not tight which shows that it does
not converge weakly. □

Proof of Theorem 2. Using the special construction let

S n =

n−1∑
t=0

γtRIt ,It+1,t.

For any ν ∈P(R)d with i-th component νi = L(Wi), let W1, . . . ,Wd, (Ri jt)i jt, (It)t be independent. Then
the representation

T ◦ni (ν) = L(S n + γ
nWIn |I0 = i)

holds. (i)⇐⇒(iv). Let η ∈P(R)d be a fixed point of T , hence with i-th component ηi = L(Gi) it holds
that

ηi = T
◦n
i (η) = L(S n + γ

nGIn |I0 = i).
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Since γnGIn → 0 almost surely, this implies that conditioned on I0 = i the sequence S n converges to
ηi in distribution. In particular, if a fixed point exists, its i-th component has to be the distributional
limit of S n under I0 = i, and thus, fixed points are unique. If a fixed point exists, then T ◦n(ν) converges
to the unique fixed point η for any ν, since γnWIn → 0 almost surely holds for any random variables
W1, . . . ,Wd. Now suppose that T ◦n(ν) → η holds for some ν. The map T is continuous in the product
topology on P(R)d and hence T (η) = T (limn T

◦n(ν)) = limn T (T ◦n(ν)) = limn T
◦(n+1)(ν) = η. So a

fixed point exists which finished the equivalence (i)⇐⇒(iv).
(iv)=⇒(iii). Supposing (iv) yields that conditioned on I0 = i the sequence S n converges in dis-

tribution. Applying Proposition 1 by considering l = (i, j) and Xlt = Ri jt and Kt = (It, It+1) with
P[K0 = (i′, j)] = 1(i′ = i)pi j yields the almost sure convergence. Since it holds conditioned for every i,
it also holds unconditioned, hence (iii).

(iii)=⇒(iv). Almost sure convergence holds also conditioned on I0 = i, one can now apply Proposi-
tion 1.

(iii)⇐⇒(ii). Again, we apply the equivalence of (ii) and (iii) from Proposition 1. We only note
that in the situation l = (i, j) and Kt = (It, It+1) a state l = (i, j) is essential with respect to (Kt)t iff i
is essential with respect to (It)t and pi j > 0. Also any state l with pi j > 0 is accessible when starting
in I0 = i. Hence, one obtains that the infinite sum (iii) in Theorem 2 converges almost surely iff
E[log+ |Ri jt|] < ∞ for each essential pair (i, j), that is for each essential i and j with pi j > 0. Since we
defined µi j = δ0 for pi j = 0 this is equivalent to E[log+ |Ri|] < ∞ for every essential i. □

3.2. Property transfer: Proof of Theorem 3

Proposition 2. Let β > 0. If E[exp(β|Xlt|)] < ∞ for each accessible state l then the infinite sum
S =
∑∞

t=0 γ
tXKt ,t exists almost surely and it holds that E[exp(β|S |)] < ∞.

Proof. The infinite sum exists almost surely due to Proposition 1, as the existence of exponential
moments for each accessible state clearly yields the existence of the logarithmic moment. Using the
triangle inequality, that x 7→ exp(βx) is continuous non-decreasing and monotone convergence of
expectations yields

E[exp(β|S |)] ≤ lim
n→∞
E[exp(β

n∑
t=0

γt|XKt ,t|)].

Conditioning on (K0, . . . ,Kn) and using independence of (Kt)t and (Xlt)lt yields

E[exp(β
n∑

t=0

γt|XKtt|)] ≤ E
[ n∏

t=0

E
[
exp(β|Xlt|)γ

t]
|l=Kt

]
. (3.3)

For each t ∈ N0, we have γt ∈ (0, 1), and hence x 7→ x(γt) is a concave function on [0,∞). For each
accessible state l we have

E
[
exp(β|Xlt|)γ

t]
≤ E
[
exp(β|Xlt|)

]γt

< ∞.

Let c(β) = max
{
E[exp(β|Xl|)] | l ∈ [m] accessible}. We have c(β) < ∞. One can bound the right hand

side of (3.3) by
n∏

t=0

c(β)γ
t
= c(β)

∑n
t=0 γ

t
.
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Putting all together yields

E[exp(β|S |)] ≤ lim
n→∞

c(β)
∑n

t=0 γ
t
= c(β)1/(1−γ) < ∞.

□

Proof of Theorem 3. Consider Gi =
∑

t γ
tRIt ,It+1,t starting with I0 = i. With probability one (It, It+1)

realizes to a pair ( j, j′) with i→ j and p j j′ > 0.
1) We have P[|R j| ≤ K] =

∑
j′ p j j′P[|R j j′t| ≤ K]. Hence, if P[|R j| ≤ K] = 1 for all j with i → j, then

P[|R j j′t| ≤ K] = 1 for all ( j, j′) with i→ j and p j j′ > 0. This yields P[|RIt ,It+1,t| ≤ K|I0 = i] = 1 for every
t and hence |Gi| ≤

∑
t γ

t|RIt ,It+1,t| ≤ K/(1 − γ) almost surely.
2) Due to Theorem 2, we can consider the situation of Proposition 2 via l = (i, j), Xlt = Ri jt and

Kt = (It, It+1) having starting distribution P[K0 = (i, j)] = pi j. In this situation, a state l = (i′, j) is
accessible with respect to (Kt)t if and only if i→ i′ and pi′ j > 0. So, Gi has the same distribution as the
almost sure limit

∑∞
t=0 γ

tXKt ,t and one obtains E[exp(β|Gi|)] < ∞.
3) We have E[|R j|

p] =
∑

j′ p j j′E[|R j j′t|
p] hence E[|R j|

p] < ∞ for all j with i→ j implies E[|R j j′t|
p] <

∞ for all ( j, j′) with i → j and p j j′ > 0. Let ||R j j′t||p = E[|R j j′t|
p]1/p and K = max( j, j′) ||R j j′t||p where

the maximum runs over all relevant pairs ( j, j′), hence K < ∞. Let the Markov chain (It)t be started in
state I0 = i. Then Gi,T =

∑T
t=0 γ

tRIt ,It+1,t → Gi almost surely as T → ∞ and the process (It, It+1)t only
visits pairs ( j, j′) with ||R j j′t||p ≤ K < ∞. Since || · ||p is a norm, for T ′ > T

||Gi,T ′ −Gi,T ||p =
∥∥∥∥ T ′∑

t=T+1

γtRIt ,It+1,t

∥∥∥∥
p
≤

T ′∑
t=T+1

||γtRIt ,It+1,t||p ≤ K ·
T ′∑

t=T+1

γt → 0 as min{T,T ′} → ∞,

hence (Gi,T )T∈N is a Cauchy sequence with respect to || · ||p. The associated Lp-space is complete, hence
there is a random variable G̃i in Lp, that is ||G̃i||p < ∞, such that ||Gi,T − G̃i||p → 0. This mode of
convergence also implies Gi,T → G̃i in probability. The almost sure convergence Gi,T → Gi implies
that Gi,T → Gi in probability. Limits with respect to convergence in probability are almost surely
unique, hence G̃i = Gi with probability one and ||Gi||p = ||G̃i||p < ∞. □

3.3. Regularly varying tails: Proof of Theorem 4

Our second main theorem is the result about regular variation of fixed points of T , see Theorem 4.
As noted before, our proof makes use of the well-developed theory for multivariate fixed point equa-
tions

G d
= JG + R, G and (J,R) independent. (3.4)

In particular, a notion of regular variation for multivariate distributions, extending the one-
dimensional case, has been explored in the context of equations such as (3.4) under various assumptions
on the joint lawL(J,R) ∈P(Rd×d×Rd). Below, we use the coupling approach explained in Section 2.1
to apply some of the available results in proving Theorem 4.

First, we introduce the multivariate notion of regular variation in random vectors and state some
facts we use in the proof. We refer the reader to Appendix C in [16] for more details on the basic
properties of multivariate regular variation. Let R̄ = R ∪ {−∞,∞} be the extended real numbers and
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let R̄d
0 = R̄

d \ {0}. A Rd-valued random vector X is called regularly varying if there exists a non-null
Radon measure µ on R̄d

0, that does not charge infinite points, such that

lim
x→∞

P
[
x−1X ∈ C

]
P[|X| > x]

= µ(C) for every measurable µ-continuity set C ⊆ R̄d
0, (3.5)

note that | · | denotes the euclidean norm on Rd. The measure µ is called the limit measure of regular
variation of the random vector X. The following are well-known facts about regularly varying random
vectors, again we refer to Appendix C in [16]

• If µ is the limit measure of regular variation of a random vector X, then there is a unique α > 0,
called the index of regular variation, such that µ(tC) = t−αµ(C) for every µ-continuity set C and
t > 0.
• If (3.5) is satisfied with index of regular variation α > 0, then the set C = {x ∈ Rd| |x| > 1} is a
µ-continuity set, and hence, because {x−1X ∈ C} = {|X| > x}, it holds µ(C) = 1 and

x 7→ P[|X| > x]

is a regularly varying function with index −α. Further, the set {x ∈ Rd|wT x > 1} is a µ-continuity
set for each w ∈ Rd,
• X is regularly varying with index α > 0 if and only if there exists a distribution Ξ ∈ P(Sd−1) on

the unit sphere Sd−1 = {x ∈ Rd| |x| = 1} such that for every t > 0

P[|X| > tx, X
|X| ∈ · ]

P[|X| > x]
w
→ t−αΞ(·) as x→ ∞,

where
w
→ is weak convergence of finite measures.

The following theorem can be obtained easily as a special case of Theorem 4.4.24 in [16]; note that
the empty product of (random) matrices is the identity matrix.

Theorem 5. Let (R1, J1), . . . , (Rd, Jd) be a coupling, R = (R1, . . . ,Rd)T and J = (Ji j)i j with Ji j = γ1(Ji =

j), see Section 2.1. Suppose R is regularly varying with index α > 0 and limit measure µR. Then the
multivariate distributional fixed point equation (3.4) has a unique solution G which is regularly varying
with index α. In particular, with (J(s))s∈N0 being iid copies of J, it holds

lim
x→∞

P[x−1G ∈ C]
P[|R| > x]

=

∞∑
t=0

E
[
µR

({
x ∈ Rd

∣∣∣∣ (∏t−1

s=0
J(s)
)
x ∈ C

})]
(3.6)

for every µR-continuity set C and

P[|G| > x] ∼ c · P[|R| > x] as x→ ∞, (3.7)

where c > 0 equals the right hand side of (3.6) evaluated at C = {x ∈ Rd | |x| > 1}.

Proof. Since C = {x ∈ Rd | |x| > 1} is a µ-continuity set that satisfies P[|G| > x] = P[x−1|G| ∈ C]
the asymptotic expression (3.7) follows from (3.6). The remaining part of the theorem is a direct
consequence of Theorem 4.4.24 from [16] by noticing that the additional necessary assumptions stated
in that theorem, E[|J|α] < 1 and E[|J|α+δ] < ∞ for some α > 0 and δ > 0, are satisfied in our situation
of interest as Ji j = γ1(Ji = j) and hence |J| = γ < 1. □
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In Theorem 5, an arbitrary coupling (R1, J1), . . . , (Rd, Jd) is considered and the (multivariate) reg-
ular variation of R = (R1, . . . ,Rd)T , which is an assumption there, transfers over to the (multivari-
ate) regular variation of G = (G1, . . . ,Gd)T , whose marginal laws are the solutions to the distribu-
tional Bellman equations of interest in Theorem 4. Moreover, multivariate regular variation of G
can be used to show univariate regular variation of G1, . . . ,Gd by testing (3.5) on sets of the form
C = {x ∈ Rd | ± eT

j x > 1} with e j ∈ R
d being unit vectors. Note that Theorem 4 concerns solutions of

the distributional Bellman operator T . Hence, the result of that theorem only depends on the marginal
laws (L(R1, J1), . . . ,L(Rd, Jd)) and hence Theorem 5, which assumes presence of a coupling satisfying
certain properties, is not directly applicable there. However, as explained in Section 2.1, results about
coupled situations can become useful by choosing a convenient coupling L((R1, J1), . . . , (Rd, Jd)) that
makes certain arguments work out. In the following proof, this will be the case when an indepen-
dence coupling is considered: independence of R1, . . . ,Rd together with the assumptions of Theorem 4
implies that the random vector R = (R1, . . . ,Rd)T is regularly varying in the multivariate sense, so
Theorem 5 becomes applicable. We now present technical details:

Proof of Theorem 4. Let (R1, J1), . . . , (Rd, Jd) be independent. Let e j ∈ R
d be the j-th unit vector and

R = (R1, . . . ,Rd)T =

d∑
j=1

R j · e j,

that is, we express R as a sum of independent random vectors. In the following, we rely on well-
established results from the theory of (multivariate) regular variation which show that regular variation
is transferred to sums of independent random variables (vectors) each having this property.

First, we determine the asymptotic behavior of P[|R| > x] as x→ ∞: let i ∈ [d] be fixed. Only those
pairs (R j, J j) with i → j are relevant for the distribution of Gi, hence we assume w.l.o.g. that i → j
holds for all j, that is for every j ∈ [d] there exists constants q j ∈ [0, 1] and c j ∈ [0,∞) such that

lim
x→∞

P[R j > x]
x−αL(x)

= q jc j and lim
x→∞

P[R j < −x]
x−αL(x)

= (1 − q j)c j, (3.8)

where α > 0 and L is a slowly varying function. This implies for every j

c j = lim
x→∞

P[|R j| > x]
x−αL(x)

= lim
x→∞

P[R2
j > x2]

x−αL(x)
= lim

y→∞

P[R2
j > y]

y−α/2L̃(y)
with L̃(y) = L(

√
y).

The function L̃ is slowly varying which shows that R2
j is regularly varying with index α/2 in case

c j > 0 and P[R2
j > x] = o(x−α/2) as x → ∞ in case c j = 0. In such a situation, and since R2

1, . . . ,R
2
d

are independent by choice of coupling, standard results from the theory of regular variation apply, see
Section 1.3.1 in [29], and show

P[R2
1 + · · · + R2

d > y] ∼ P[R2
1 > y] + · · · + P[R2

d > y] as y→ ∞

and hence, by re-substituting x2 for y,

P[R2
1 + · · · + R2

d > x2] ∼ P[R2
1 > x2] + · · · + P[R2

d > x2] ∼ (c1 + · · · + cd)x−αL(x) as x→ ∞,
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that is
lim
x→∞

P[|R| > x]
x−αL(x)

= c1 + · · · + cd. (3.9)

Next, we give an argument to show that R is regularly varying with index α (in the multivariate sense):
let sgn(R j) ∈ {−1, 1} be the sign of R j, so that |R je j| = |R j| and R je j

|R je j |
= sgn(R j)e j in case R j , 0. If

c j > 0 then R je j is regularly varying at index α > 0 in the multivariate sense, the spectral measure
Ξ j ∈P(Sd−1) is given by

Ξ j = q jδe j + (1 − q j)δ−e j = lim
x→∞
P[sgn(R j)e j ∈ · ||R j| > x].

Applying standard arguments, see Lemma C.3.1 in [16], it is easily seen that R =
∑d

j=1 R je j (a sum of
independent random vectors) is regularly varying at index α. Let µR be the associated measure. We are
now able to apply Theorem 5 to the solution G = (G1, . . . ,Gd)T of the distributional equation (3.4).
First, we evaluate the limit measure µR at some sets of interest: Combining (3.8) and (3.9) yields for
every j ∈ [d]

µR
({

x ∈ Rd | eT
j x > 1

})
= lim

x→∞

P[R j > x]
P[|R| > x]

=
q jc j

c1 + · · · + cd
.

As in Theorem 5, let (J(s))s∈N0 be a sequence of iid copies of J. For every t ∈ N0 the entry of the random
matrix

∏t−1
s=0 J(s) at position (i, j) ∈ [d]2 equals γt · 1(Iit = j), where (Iit)i∈[d],t∈N0 are [d]-valued random

variables such that for every i ∈ [d] the sequence (Iit)t has the same law as (It)t under P[ · |I0 = i].
By Theorem 5 for every i ∈ [d] it holds that

lim
x→∞

P[Gi > x]
P[|R| > x]

=

∞∑
t=0

E
[
µR
({

x ∈ Rd
∣∣∣ eT

i

(∏t−1

s=0
J(s)
)
x > 1

})]
.

Using µR(tC) = t−αµR(C) for every t ∈ N0 it holds

E
[
µR
({

x ∈ Rd
∣∣∣ eT

i

(∏t−1

s=0
J(s)
)
x > 1

})]
= E
[
µR
({

x ∈ Rd
∣∣∣ γteT

Iit
x > 1

})]
= γαt

∑
j∈[d]

P[It = j|I0 = i]µR
({

x ∈ Rd | eT
j x > 1

})
= γαt

∑
j∈[d]

P[It = j|I0 = i]
q jc j

c1 + · · · + cd

and hence

lim
x→∞

P[Gi > x]
P[|R| > x]

=

∞∑
t=0

γαt
∑
j∈[d]

P[It = j|I0 = i]
q jc j

c1 + · · · + cd

=
1

1 − γα
∑
j∈[d]

P[IN = j|I0 = i]
q jc j

c1 + · · · + cd
,

where N ∼ Geo(γα) is independent of (It)t. With wi j = P[IN = j|I0 = i] and (3.9) we have

lim
x→∞

P[Gi > x]
x−αL(x)

=

∑
j∈[d] wi jq jc j

1 − γα
.
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The tail asymptotic of P[Gi<−x]
x−αL(x) can be calculated the same way using

µR
({

x ∈ Rd | eT
j x < −1

})
= lim

x→∞

P[R j < −x]
P[|R| > x]

=
(1 − q j)c j

c1 + · · · + cd
.

To see that Gi is regularly varying with index α note that P[|Gi| > x] = P[Gi > x] + P[Gi < −x] ∼
(
∑d

j=1 wi jc j)x−αL(x) is a regularly varying function of index α and the balance equation hold:

lim
x→∞

P[Gi > x]
P[|Gi| > x]

=

∑d
j=1 q jwi jc j∑d

j=1 wi jc j
and

lim
x→∞

P[Gi < −x]
P[|Gi| > x]

=

∑d
j=1(1 − q j)wi jc j∑d

j=1 wi jc j
= 1 −

∑d
j=1 q jwi jc j∑d

j=1 wi jc j
.

□
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