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Abstract

We introduce and analyze a random tree model associated to Hoppe’s urn. The tree is
built successively by adding nodes to the existing tree when starting with the single root node.
In each step a node is added to the tree as a child of an existing node where these parent
nodes are chosen randomly with probabilities proportional to their weights. The root node
has weight ϑ > 0, a given fixed parameter, all other nodes have weight 1. This resembles the
stochastic dynamic of Hoppe’s urn. For ϑ = 1 the resulting tree is the well-studied random
recursive tree. We analyze the height, internal path length and number of leaves of the Hoppe
tree with n nodes as well as the depth of the last inserted node asymptotically as n → ∞.
Mainly expectations, variances and asymptotic distributions of these parameters are derived.

AMS 2010 subject classifications. Primary 60F05, 60C05; secondary 60G42, 68R05.
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1 Introduction

We consider a random tree model associated and derived from Hoppe’s urn: In Hoppe’s urn, see
[9], there initially is one red ball. In each step one of the balls is drawn from the urn independently
with probabilities proportional to the weights of the balls. The red ball has weight ϑ > 0, all other
balls have weight 1. Here the parameter ϑ > 0 is given and fixed throughout the evolution of the
urn. When a ball is drawn it is placed back to the urn together with a ball of the same color
unless the ball drawn is the red ball. In this case the red ball is placed back together with a ball
of a new color not yet being present in the urn. This model has been introduced for deriving and
interpreting the Ewens sampling formula and is related to the infinite alleles model in population
genetics, the parameter ϑ > 0 modeling the mutation rate. The decomposition of the balls into
groups of the same color (neglecting the red ball) leads to a Chinese restaurant process, the (0, ϑ)
seating plan, see Pitman [13, page 61].

A random tree model, which we subsequently call Hoppe tree, is associated to the Hoppe urn
as follows: The balls in the urn are represented by nodes in the tree. Each node v is child of
node w in the tree if the ball corresponding to v was placed first in the urn together with the ball
corresponding to w when the w-ball was drawn. In other words the tree grows successively: In
each step a node is chosen independently and with probability proportional to the weights of the
nodes (the root having weight ϑ, all other nodes having weight 1) and a new node is added as
child of the chosen node. For ϑ = 1 this is a well-known and well-studied random tree model, the
random recursive tree, see, e.g., Smythe and Mahmoud [15].

The aim of the present note, which is based on the first author’s master’s thesis [10], is to
study asymptotic properties of the Hoppe tree as its size n tends to infinity. In particular we are

∗Email: {leckey, neiningr}@math.uni-frankfurt.de

1

ar
X

iv
:1

20
2.

24
39

v3
  [

m
at

h.
PR

] 
 5

 J
ul

 2
01

2



interested in the deviation from the random recursive tree model caused by the perturbation of

the root weight from ϑ = 1 to ϑ 6= 1. As characteristics of the tree we study the depth D
(ϑ)
n of

the n-th inserted node in the tree, defined as its distance to the root of the tree. Furthermore the

tree’s height H
(ϑ)
n is studied, which is the maximal depth max1≤i≤nD

(ϑ)
i , its internal path length

I
(ϑ)
n =

∑
1≤i≤nD

(ϑ)
i and the number of leaves of the tree. A node is a leaf if it has no child in

the tree. Our results show, that the perturbation of the root weight does typically not affect the
first order behavior of the quantities, an exception being the variance and limit law of the internal
path length. Hence, we give second order expansions to reveal the asymptotic dependence on ϑ.

The paper is organized as follows: In the second section the results on the four quantities
mentioned above are stated, the proofs being collected in the third section.
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2 Results

In this section the results on depth, height, internal path length and number of leaves are stated.
Throughout the parameter ϑ > 0 is arbitrary and fixed. All asymptotic statements as well as the
use of the Bachmann-Landau symbols are understood as n, the number of nodes in the Hoppe
tree, tends to infinity. Moreover, we use the digamma and trigamma functions Ψ = d

dx log Γ and

Ψ1 = d2

dx2 log Γ respectively. By the properties of the digamma and trigamma functions, see e.g.
[1, 6.3. and 6.4.], we have

n−2∑
i=1

1

ϑ+ i
= Ψ(ϑ+ n− 1)−Ψ(ϑ+ 1) = log n−Ψ(ϑ+ 1) + o(1),

∞∑
k=1

(
1

ϑ+ k

)2

= Ψ′(ϑ+ 1) = Ψ1(ϑ+ 1).

Depth of a node

For the depth D
(ϑ)
n we have a distributional representation as sum of independent Bernoulli vari-

ables:

Theorem 2.1. For the depth D
(ϑ)
n of the n-th node in a Hoppe tree we have for all n ≥ 2

D(ϑ)
n

d
= 1 +

n−2∑
i=1

Bi,

where B1, . . . Bn−2 are independent and P(Bi = 1) = 1− P(Bi = 0) = 1
ϑ+i for i = 1, . . . , n.

Asymptotic results can hence easily be obtained, e.g., the following. We denote by Π(λ) the
Poisson distribution with parameter λ > 0, by dTV the total variation distance between probability

measures, by
d−→ convergence in distribution and by N (0, 1) a real random variable with the

standard normal distribution.
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Corollary 2.2. The depth D
(ϑ)
n of the n-th node in a Hoppe tree satisfies

E[D(ϑ)
n ] = 1 +

n−2∑
i=1

1

ϑ+ i
= log n−Ψ(ϑ+ 1) + 1 + o(1),

Var(D(ϑ)
n ) =

n−2∑
i=1

1

ϑ+ i
−
n−2∑
i=1

(
1

ϑ+ i

)2

= log n−Ψ(ϑ+ 1)−Ψ1(ϑ+ 1) + o(1),

D
(ϑ)
n − E[D

(ϑ)
n ]√

Var(D
(ϑ)
n )

d−→ N (0, 1), (1)

dTV

(
L(D(ϑ)

n ),Π
(
E[D(ϑ)

n ]
))

= O
(

1

log n

)
.

Height of the Hoppe tree

The height H
(ϑ)
n of the Hoppe tree can be analyzed by drawing back to results on the height for

random recursive trees, see Addario-Berry and Ford [2], in particular they show that

Mn := E[H(1)
n ] = e log n− 3

2
log log n+O(1) (2)

as n→∞. We transfer their results to arbitrary ϑ > 0:

Theorem 2.3. For the height H
(ϑ)
n of a Hoppe tree with n nodes we have: For all α < 1

3e , β < 1
2e

there exist constants Cα, Cβ > 0 such that for all t > 0

P
(
H(ϑ)
n −Mn ≥ t

)
≤ Cβe−βt, P

(
H(ϑ)
n −Mn ≤ −t

)
≤ Cαe−αt.

The constant Cβ can be chosen independently of ϑ.

Corollary 2.4. The height H
(ϑ)
n of a Hoppe tree with n nodes satisfies

E[H(ϑ)
n ] = e log n− 3

2
log log n+O(1), Var(H(ϑ)

n ) = O(1).

Number of leaves

The number of leaves in a Hoppe tree is related to a two-color urn model. We obtain:

Theorem 2.5. Let L
(ϑ)
n be the number of leaves in a Hoppe tree with n ≥ 2 nodes. Then

E[L(ϑ)
n ] =

n

2
+
ϑ− 1

2
+O

(
1

n

)
,

Var(L(ϑ)
n ) =

n

12
+
ϑ− 1

12
+O

(
1

n

)
,

P(|Ln − E[Ln]| ≥ t) ≤ 2 exp

(
− 6t2

n+ ϑ+ 1

)
for all t > 0, n ≥ 1, (3)

L
(ϑ)
n − E[L

(ϑ)
n ]√

Var(L
(ϑ)
n )

d−→ N (0, 1).
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Internal path length

Moments of the internal path length can be obtained from our results on the depths of nodes.

Theorem 2.6. The internal path length I
(ϑ)
n of a Hoppe tree with n nodes satisfies

E[I(ϑ)n ] = (ϑ+ n− 1)

n−1∑
i=1

1

ϑ+ i
= n log n−Ψ(ϑ+ 1)n+ o(n),

Var(I(ϑ)n ) =

(
2

ϑ+ 1
−Ψ1(ϑ+ 1)

)
n2 + o(n2).

Moreover, (
I
(ϑ)
n − E[I

(ϑ)
n ]

ϑ+ n− 1

)
n≥1

is a zero-mean martingale.

The internal path length can be analyzed either via martingale methods or the recursive dis-
tributional decomposition explained in Figure 1 which allows to apply the contraction method.

Theorem 2.7. The internal path length I
(ϑ)
n of a Hoppe tree with n nodes satisfies

I
(ϑ)
n − n log n

n
→ X(ϑ)

for a non-degenerate random variable X(ϑ), where the convergence holds almost surely and in L2.
The distribution L(X(ϑ)) is the only integrable solution of the distributional fixed point equation

X(ϑ) d
= (1−B)X(ϑ) +BX̃(1) +B log(B) + (1−B) log(1−B) +B, (4)

where X(ϑ), X̃(1) and B are independent, B has the beta(1, ϑ) distribution and X̃(1) is distributed
as X(1). For ϑ 6= 1, the solution of (4) is even unique without integrability assumption.

Theorem 2.8. The limit distribution L(X(ϑ)) in Theorem 2.7 has a Lebesgue density fϑ, which is
in the Schwartz space on R, i.e., fϑ is infinitely differentiable and together with all its derivatives
rapidly decreasing.

3 Proofs

In the analysis of the tree below the random decomposition of the Hoppe tree shown in Figure
1 is used: The tree is decomposed into the subtree of the second inserted node (left dashed box)
and the remaining part of the tree (right dashed box). The stochastic dynamic of the Hoppe tree
with parameter ϑ implies that conditioned on the size Nn of the subtree of the second inserted
node this subtree is a random recursive tree, whereas the remaining part is a Hoppe tree with
parameter ϑ and size n−Nn. Moreover, conditional on Nn these two trees are independent. We
have the asymptotic behavior

Nn
n
→ B almost surely (n→∞) (5)

where B has the beta(1, ϑ) distribution having Lebesgue density x 7→ ϑ(1− x)ϑ−1, x ∈ [0, 1], see
Donnelly and Tavaré [6].
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Figure 1: A Hoppe tree with 11 nodes. The decomposition into the subtree rooted at node labelled
2 and the remaining part of the tree is indicated in dashed boxes.

Proof of Theorem 2.1. We calculate the depth of a node by counting its ancestors in the tree.

We have D
(ϑ)
n =

∑n−1
i=1 1Ai,n , where Ai,j denotes the event that node i is an ancestor of node j,

i < j. Cleary P(A1,n) = 1. Moreover, P(Ai,i+1) = 1
ϑ+i−1 for i ≥ 2 by definition of the Hoppe tree.

For general i < n let ξi,n be the number of descendants of node i in a Hoppe tree with n nodes,
i.e. the size of subtree rooted in i minus 1. By the dynamics of the Hoppe tree we have

P(Ai,n|ξi,n−1) =
1 + ξi,n−1
ϑ+ n− 2

. (6)

We calculate E[ξi,n−1] by the recursion

E[ξi,n−1] = E[ξi,n−2 + 1Ai,n−1
] = E[ξi,n−2] +

1 + E[ξi,n−2]

ϑ+ n− 3
.

This yields E[ξi,n−1] = ϑ+n−2
ϑ+i−1 − 1 and therefore, by equation (6),

P(Ai,n) =
1

ϑ+ i− 1
. (7)

It remains to show that A2,n, . . . , An−1,n are independent. Note that for i < j, Ai,j only depends
on where the nodes i + 1, . . . , j are inserted. Therefore, we get for all 2 ≤ k ≤ n − 2 and
2 ≤ i1 < . . . < ik ≤ n− 1 independence of Ai1,i2 , Ai2,i3 , . . . , Aik,n. Since

⋂k
j=1Aij ,n occurs if and

only if ij is an ancestor of ij+1 for every j ≤ k − 1 and ik is an ancestor of n we have

P

 k⋂
j=1

Aij ,n

 = P (Ai1,i2 ∩Ai2,i3 ∩ . . . ∩Aik,n)

= P(Ai1,i2) · P(Ai2,i3) · . . . · P(Aik,n)

=

k∏
j=1

P(Aij ,n),

where (7) is used in the last equation. With Bi = 1Ai+1,n and 1A1,n = 1 this yields the assertion.
For related reasoning in the analysis of the depth in other random tree models see Dobrow and

Smythe [5].
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Proof of Corollary 2.2. Theorem 2.1 implies expectation and variance of D
(ϑ)
n . Moreover, by

Lindeberg’s version of the central limit theorem (CLT) we obtain the CLT for D
(ϑ)
n in (1) and by

[3, Equation (1.23)] we get dTV(L(D
(ϑ)
n ),Π(E[D

(ϑ)
n ])) = O(1/ log n).

Proof of Theorem 2.3. Addario-Berry and Ford showed in [2, Corollary 1.3] that the expected
height Mn := E[H(1)] of a random recursive tree satisfies (2) and that for all c′ < 1

2e there exists
a constant C = C(c′) such that for all n ≥ 1 and t > 0

P(|H(1)
n −Mn| ≥ t) ≤ Ce−c

′t.

Recall that in a Hoppe tree with n ≥ 1 nodes and parameter ϑ > 0 by Nn the size of the subtree
rooted in node 2 is denoted and that this subtree, conditioned on its size, is a random recursive
tree.

By an obvious coupling argument between Hoppe trees for different parameters ϑ we have

H
(ϑ1)
n 4 H

(ϑ2)
n for all ϑ1 ≥ ϑ2, where 4 denotes stochastic domination. In the extremal case ϑ = 0

(for definition of the tree start with the root and one child) we obtain H
(ϑ)
n 4 H

(0)
n

d
= 1 +H

(1)
n−1 4

1 +H
(1)
n . Therefore, we get P

(
H

(ϑ)
n −Mn ≥ t

)
≤ Ĉe−c

′t, Ĉ = Cec
′
, using the result for random

recursive trees.
In order to prove the left tail inequality let H

(1)
Nn

be the height of the subtree rooted in node

2. From H
(ϑ)
n ≥ H

(1)
Nn

we obtain for all t > 0 and α > 0 (later we have to restrict to α as in the
Theorem)

P(H(ϑ)
n −Mn ≤ −t) ≤ P({H(1)

Nn
−Mn ≤ −t} ∩ {Nn ≥ e−αtn})

+P({H(1)
Nn
−Mn ≤ −t} ∩ {Nn < e−αtn}),

≤ P(H
(1)
de−αtne −Mn ≤ −t) + P(Nn < e−αtn).

Again, by using the result for random recursive trees and Mn − E[H
(1)
de−αtne] = eαt + O(1) we

obtain for α = c′/(1 + ec′) a constant C1 such that

P(H
(1)
de−αtne −Mn ≤ −t) ≤ C1e

−c′(1−eα)t = C1e
−αt.

Hence we have such an upper bound for all α < 1/(3e). To get an upper bound for P(Nn < e−αtn)
note that for all 1 ≤ k ≤ n− 1

P(Nn = k) =

(
n− 2

k − 1

)
ϑ(ϑ+ 1) · · · (ϑ+ n− (k + 2))(k − 1)!

(ϑ+ 1) · · · (ϑ+ n− 2)
.

This yields for all ε ∈ (0, 1) that

P(Nn ≤ εn) ≤ 3(ϑ+ 1)ε.

Therefore,
P(H(ϑ)

n −Mn ≤ −t) ≤ (C1 + 3(ϑ+ 1))e−αt.

This implies the assertion.

Proof of Corollary 2.4. By Theorem 2.3 we have

E[|H(ϑ)
n −Mn|] = O(1).

Consequently, E[H
(ϑ)
n ] = Mn +O(1) = e log n− 3

2 log log n+O(1).
Moreover, the tail bound from Theorem 2.3 implies

Var(H(ϑ)
n ) ≤ E[(H(ϑ)

n −Mn)2] = O(1).
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For the proof of the tail bound in Theorem 2.5 we use the following version of Azuma-
Hoeffding’s inequality with conditional ranges:

Proposition 3.1. Let W1, . . . ,Wn be a martingal difference sequence with respect to a filtration
(Fi)0≤i≤n with F0 = {∅,Ω}. Suppose that for every 1 ≤ i ≤ n there exists a constant ci ≥ 0 and
an Fi−1 measurable random variable Zi such that Zi ≤Wi ≤ Zi + ci almost surely. Then we have
for all t > 0

P

(∣∣∣∣∣
n∑
i=1

Wi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

Proof of Theorem 2.5. We have L
(ϑ)
n = L

(ϑ)
n−1 + Yn, where

Yn =

{
1, if the parent of node n was not a leaf at time n− 1,

0, otherwise.

Therefore, for n ≥ 2, almost surely

E[L
(ϑ)
n+1|L

(ϑ)
1 , . . . , L(ϑ)

n ] = L(ϑ)
n + 1− L

(ϑ)
n

ϑ+ n− 1
=
ϑ+ n− 2

ϑ+ n− 1
L(ϑ)
n + 1.

With

Xn = (ϑ+ n− 2)

(
L(ϑ)
n −

(
n− 1

2
+

ϑ(n− 1)

2(ϑ+ n− 2)

))
(8)

the sequence (Xn)n≥2 is a zero-mean martingale and

E[L(ϑ)
n ] =

n− 1

2
+

ϑ(n− 1)

2(ϑ+ n− 2)
=
ϑ+ n− 1

2
+O

(
1

n

)
.

With the representation

Xi −Xi−1 = (ϑ+ i− 2)(Yi − E[Yi]) + L
(ϑ)
i−1 − E[L

(ϑ)
i−1], i ≥ 3

we have Zi ≤ Xi − Xi−1 ≤ Zi + ϑ + i − 2 where Zi = L
(ϑ)
i−1 − E[L

(ϑ)
i−1] − (ϑ + i − 2)E[Yi]. By

Proposition 3.1 we have for all t > 0

P(|Xn| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=3(i+ ϑ− 2)2

)
.

Using that the sum in the denominator of the latter exponent is bounded by (n+ϑ−2)3/3 + (n+
ϑ− 2)2 and the scaling in (8) this implies the bound (3).

In order to compute Var(L
(ϑ)
n ) we have Xn = ϑ+n−2

ϑ+n−3Xn−1 + (ϑ+ n− 2)(Yn − E[Yn]). Hence,

E[X2
n] =

(
ϑ+ n− 2

ϑ+ n− 3

)2

E[X2
n−1] + 2

(ϑ+ n− 2)2

ϑ+ n− 3
E[Xn−1(Yn − E[Yn])]

+ (ϑ+ n− 2)2Var(Yn). (9)

Using E[Xn−1] = 0 we have

E[Xn−1(Yn − E[Yn])] = E[Xn−1E[Yn|L(ϑ)
1 , . . . , L

(ϑ)
n−1]] = E

[
Xn−1

(
1−

L
(ϑ)
n−1

ϑ+ n− 2

)]

= − 1

(ϑ+ n− 2)(ϑ+ n− 3)
E[X2

n−1].

7



Moreover, E[Yn] = 1− E[L(ϑ)
n−1]

ϑ+n−2 = 1
2 +O

(
1/n2

)
and Var(Yn) = 1

4 +O
(
1/n2

)
.

Solving (9) by the substitution Qn = ϑ+n−3
ϑ+n−2E[X2

n] yields

Var(L(ϑ)
n ) =

ϑ+ n− 1

12
+O

(
1

n

)
.

To obtain the CLT for L
(ϑ)
n the representation

L
(ϑ)
n − E[L

(ϑ)
n ]√

Var(L
(ϑ)
n )

=
Xn√

Var(Xn)

allows to apply a general martingale CLT, see, e.g., Hall and Heyde [8, Theorem 3.2]. It is sufficient
to show that

∆n,i :=
1√

Var(Xn)
(Xi −Xi−1), n ≥ 3, 3 ≤ i ≤ n,

satisfies

(a) max
3≤i≤n

|∆n,i|
P−→ 0, (b)

∑
3≤i≤n

∆2
n,i

P−→ 1, (c) max
n≥3

E
[

max
3≤i≤n

∆2
n,i

]
<∞.

For (a) and (c) we have |Xi −Xi−1| = |L(ϑ)
i − E[L

(ϑ)
i ] + (ϑ+ i− 3)(Yi − E[Yi])| ≤ ϑ+ 2n+ 3 for

i ≤ n and Var(Xn) = (ϑ + n − 1)2Var(L
(ϑ)
n ) ∼ n3

12 . Hence, |∆n,i| ≤ (2n+ ϑ+ 3)/
√

Var(Xn) a.s.,

which yields that maxi |∆n,i|
P→ 0 and that E

[
maxi ∆2

n,i

]
is bounded in n.

To compute
∑
i ∆2

n,i note that by (3) and the Borel-Cantelli Lemma we have (L
(ϑ)
n −E[L

(ϑ)
n ])/n→ 0

almost surely. Hence, for all n ≥ 3,

n∑
i=3

∆2
n,i =

1

Var(Xn)

n∑
i=3

(L
(ϑ)
i − E[L

(ϑ)
i ])2 +

2

Var(Xn)

n∑
i=3

(L
(ϑ)
i − E[L

(ϑ)
i ])(ϑ+ i− 3)(Yi − E[Yi])

+
1

Var(Xn)

n∑
i=3

(ϑ+ i− 3)2(Yi − E[Yi])
2. (10)

By (L
(ϑ)
n − E[L

(ϑ)
n ])/n→0, Var(Xn) ∼ n3

12 and the Cesàro mean we have for the first summand in
(10)

1

Var(Xn)

n∑
i=3

(L
(ϑ)
i − E[L

(ϑ)
i ])2 ≤ n3

Var(Xn)

1

n

n∑
i=3

(
L
(ϑ)
i − E[L

(ϑ)
i ]

i

)2

→ 0,

and for the second summand in (10)∣∣∣∣∣ 2

Var(Xn)

n∑
i=3

(L
(ϑ)
i − E[L

(ϑ)
i ])(ϑ+ i− 3)(Yi − E[Yi])

∣∣∣∣∣
≤ 2n2(ϑ+ n+ 3)

Var(Xn)

1

n

n∑
i=3

∣∣∣∣∣L(ϑ)
i − E[L

(ϑ)
i ]

i

∣∣∣∣∣→ 0.

Because E[Yi] = 1
2 + O

(
1
i2

)
we have (Yi − E[Yi])

2 = 1
4 + O

(
1
i2

)
a.s. and therefore for the last

summand in (10), a.s.

1

Var(Xn)

n∑
i=3

(ϑ+ i− 3)2(Yi − E[Yi])
2→1.

This implies
∑
i ∆2

n,i
P−→ 1.
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Proof of Theorem 2.6. For j ≥ 1 let Fj = σ(D
(ϑ)
1 , . . . , D

(ϑ)
j ). By the dynamics of the Hoppe

tree we have almost surely

E[D(ϑ)
n |Fn−1] =

ϑ

ϑ+ n− 2
(D

(ϑ)
1 + 1) +

n−1∑
i=2

1

ϑ+ n− 2
(D

(ϑ)
i + 1) = 1 +

1

ϑ+ n− 2
I
(ϑ)
n−1. (11)

Consequently, E[I
(ϑ)
n |Fn−1] = I

(ϑ)
n−1 + E[D

(ϑ)
n |Fn−1] = ϑ+n−1

ϑ+n−2I
(ϑ)
n−1 + 1 almost surely. Therefore,

Z(ϑ)
n :=

1

ϑ+ n− 1
I(ϑ)n −

n−1∑
i=1

1

ϑ+ i

is a zero-mean martingale and E[I
(ϑ)
n ] = (ϑ+ n− 1)

∑n−1
i=1

1
ϑ+i .

The calculations to obtain the expansion for the variance of I
(ϑ)
n can be done similarly to the

calculations in the proof of Theorem 2.5, for details we refer to the master’s thesis [10].

Proof of Theorem 2.7. To apply a martingale convergence theorem it is sufficient to have a

bound on the variance of the martingale uniformly in n. Hence, our expansion of Var(I
(ϑ)
n ) in

Theorem 2.6 is sufficient to imply almost sure and L2 convergence of the martingale there, which

also applies to the slightly different scaling of I
(ϑ)
n in Theorem 2.7. By our decomposition of the

Hoppe tree, see Figure 1, we obtain the recurrence

I(ϑ)n
d
= I

(ϑ)
n−Nn + Ĩ

(1)
Nn

+Nn,

where (I
(ϑ)
j )j≥1, (Ĩ

(1)
j )j≥1 and Nn are independent and (Ĩ

(1)
j )j≥1 is distributed as (I

(1)
j )j≥1. For

the scaling,

X(ϑ)
n :=

I
(ϑ)
n − n log n

n
(12)

we obtain

X(ϑ)
n

d
=
n−Nn
n

X
(ϑ)
n−Nn +

Nn
n
X̃

(1)
Nn

+
1

n

(
Nn log

(
Nn
n

)
+ (n−Nn) log

(
n−Nn
n

)
+Nn

)
, (13)

with independence and distributional conditions as in (12). This suggests that the limit X(ϑ) of

(X
(ϑ)
n )n≥1 should satisfy the recursive distributional equation

X(ϑ) d
= (1−B)X(ϑ) +BX̃(1) +B log(B) + (1−B) log(1−B) +B, (14)

where X(ϑ), X̃(1) and B are independent, and B has the beta(1, ϑ) distribution. Note that X̃(1)

is the limit distribution of the internal path length of the random recursive tree, that has been
obtained by martingale methods by Mahmoud [11] and by the contraction method by Dobrow and

Fill [4]. In particular, in [4] it is shown that (X
(1)
n )n≥1 converges to its limit X(1) in the minimal

`2 metric, i.e., weakly and with second moments. This allows us to write the recurrence (13) in
the form

X(ϑ)
n

d
= A(n)X

(ϑ)
n−Nn + b(n)

with coefficients

A(n) =
n−Nn
n

, b(n) =
Nn
n
X̃

(1)
Nn

+
1

n

(
Nn log

(
Nn
n

)
+ (n−Nn) log

(
n−Nn
n

)
+Nn

)
.

Hence we have convergence of the coefficients to the corresponding quantities in the recursive
distributional equation (14) in `1, `2, in fact in any `p, p ≥ 1. This allows to apply general
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convergence theorems in the framework of the contraction method, see Rösler [14, Theorem 3]
and Neininger and Rüschendorf [12, Theorem 4.1]. In particular, one can first apply Theorem 4.1

in [12] with the choice of s = 1 there: This implies convergence in distribution of X
(ϑ)
n to X(ϑ),

where X(ϑ) is the unique integrable solution of (14), and convergence of the expectations. With
this knowledge on the expectation, which, of course, is also covered by our explicit formula for

E[I
(ϑ)
n ], one can apply either Theorem 4.1 in [12] with the choice of s = 2 or Theorem 3 in [14] to

also obtain convergence of the second moments.
Alternatively to applying the contraction method we could as well use the almost sure conver-

gence of X
(ϑ)
n from the martingale argument together with the almost sure convergence of Nn/n

in (5) to argue that the limit X(ϑ) satisfies (14).

Proof of Theorem 2.8. For the characteristic function ϕϑ(t) := E[exp(itX(ϑ))] of X(ϑ), the
recursive distributional equation in Theorem 2.7 implies

|ϕϑ(t)| ≤
∫ 1

0

|ϕ1(xt)||ϕϑ((1− x)t)|ϑ(1− x)ϑ−1 dx, t ∈ R.

We can apply the techniques of Fill and Janson [7] to show that this relation together with an
initial bound on |ϕϑ| allows to show that |ϕϑ| is rapidly decreasing. The details are carried out in
the master’s thesis [10]. Since Fourier transform is an automorphism on the Schwartz space, this
implies the assertion.
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(51):1–29, 1994.

11

http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/24214
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/24214

	1 Introduction
	2 Results
	3 Proofs

