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A Note on the Approximation of Perpetuities
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We propose and analyze an algorithm to approximate distribution functions and densities of perpetuities. Our algo-
rithm refines an earlier approach based on iterating discretized versions of the fixed point equation that defines the
perpetuity. We significantly reduce the complexity of the earlier algorithm. Also one particular perpetuity arising in
the analysis of the selection algorithm Quickselect is studied in more detail. Our approach works well for distribution
functions. For densities we have weaker error bounds although computer experiments indicate that densities can also
be well approximated.
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1 Introduction
A perpetuity is a random variable X in R that satisfies the stochastic fixed-point equation

X
d= AX + b, (1)

where the symbol d= denotes that left and right hand side in (1) are identically distributed and where (A, b)
is a vector of random variables being independent ofX , whereas dependence betweenA and b is allowed.
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The term perpetuity originated in the context of insurance and financial mathematics, where X rep-
resents the value of a commitment to make regular payments, b representing the payment and A a dis-
count factor both being subject to random fluctuation; see, e.g. Goldie and Maller (2000) or Embrechts,
Klüppelberg, and Mikosch (1997, Section 8.4). However, perpetuities arise in various different contexts:
In discrete mathematics, they come up as the limit distributions of certain count statistics of decomposable
combinatorial structures such as random permutations or random integers. In these areas, perpetuities
often arise via relationships to the GEM and Poisson-Dirichlet distributions; see Arratia, Barbour, and
Tavaré (2003) for perpetuities, GEM and Poisson-Dirichlet distribution in the context of combinatorial
structures; see Donnelly and Grimmett (1993) for occurrences in probabilistic number theory.

In the probabilistic analysis of algorithms, perpetuities arise as limit distributions of certain cost mea-
sures of recursive algorithms such as the selection algorithm Quickselect, see e.g. Hwang and Tsai (2002)
or Mahmoud, Modarres, and Smythe (1995).

As perpetuities are given implicitly by their fixed-point characterization (1), properties of their distri-
butions are not directly amenable. Nevertheless various questions about perpetuities have already been
settled. Necessary and sufficient conditions on (A, b) for the fixed-point equation (1) to uniquely deter-
mine a probability distribution are discussed in Vervaat (1979) and Goldie and Maller (2000). The types
of distributions possible for perpetuities have been identified in Alsmeyer, Iksanov, and Rösler (2007).
Tail behavior of perpetuities has been studied for certain cases in Goldie and Grübel (1996).

In the present extended abstract, we are interested in the central region of the distributions. The aim is
to algorithmically approximate perpetuities, in particular their distribution functions and their Lebesgue
densities (if they exist).

For this, we apply and refine an approach proposed in Devroye and Neininger (2002) that was originally
designed for random variables X satisfying distributional fixed-point equations of the form

X
d=

K∑
r=1

ArX
(r) + b, (2)

where X(1), . . . , X(K), (A1, . . . , AK , b) are independent with X(r) being identically distributed as X for
r = 1, . . . ,K and random coefficients A1, . . . , AK , b, and K ≥ 2.

The case of perpetuities, i. e. K = 1, structurally differs from the cases K ≥ 2: The presence of more
than one independent copy of X on the right hand side in (2) often has a smoothing effect so that under
mild additional assumptions on (A1, . . . , AK , b) the existence of smooth Lebesgue densities ofX follows,
see Fill and Janson (2000) and Devroye and Neininger (2002). On the other hand, the case K = 1 often
leads to distributions L(X) that have no smooth Lebesgue density; an example is discussed in Section 7.

2 The general approach and organization of the paper
A random variable X satisfies the distributional identity (1) if and only if its distribution is a fixed-point
of the map T on the spaceM of probability distributions, given by

T :M→M, µ 7→ L(AY + b), (3)

where Y is independent of (A, b), and L(Y ) = µ. Under the conditions ‖A‖p < 1 and ‖b‖p < ∞ for
some p ≥ 1, which we assume throughout the paper, this map is a contraction on certain complete metric



A Note on the Approximation of Perpetuities 117

subspaces ofM. Hence, L(X) can be obtained as limit of iterations of T , starting with some distribution
µ0.

However, it is not generally possible to algorithmically compute the iterations of T exactly. We there-
fore use discrete approximations (A(n), b(n)) of (A, b), which become more accurate for increasing n, to
approximate T by a mapping T̃ (n), defined by

T̃ (n) :M→M, µ 7→ L
(
A(n)Y + b(n)

)
,

where again Y is independent of (A(n), b(n)) and L(Y ) = µ.
To allow for an efficient computation of the approximation, we impose a further discretization step 〈·〉n,

explained in more detail below, defining

T (n) :M→M, µ 7→ L
(〈
A(n)Y + b(n)

〉
n

)
,

where Y is independent of (A(n), b(n)) and L(Y ) = µ.
In Section 3, we give conditions for T (n)◦ T (n−1) ◦ · · · ◦ T (1)(µ0) to converge to the perpetuity given

as the solution of (1). To this aim, we derive a rate of convergence in the minimal Lp metric `p, defined
on the spaceMp of probability measures on R with finite absolute p-th moment by

`p(ν, µ) := inf
{∥∥V −W∥∥

p
: L(V ) = ν,L(W ) = µ

}
, for ν, µ ∈Mp, (4)

where ‖·‖p denotes the Lp-norm of random variables. To get an explicit error bound for the distribution
function, we then convert this into a rate of convergence in the Kolmogorov metric ρ, defined by

ρ(ν, µ) := sup
x∈R

∣∣Fν(x)− Fµ(x)
∣∣ ,

where Fν , Fµ denote the distribution functions of ν, µ ∈ Mp. This implies explicit rates of convergence
for distribution function and density, depending on the corresponding moduli of continuity of the fixed-
point.

For these moduli of continuity we find global bounds for perpetuities with b ≡ 1 in Section 6. For cases
with random b, these moduli of continuity have to be derived individually. One example, related to the
selection algorithm Quickselect, is worked out in detail in Section 7.

We analyze the complexity of our approach in Section 5. As a measure for the complexity of the
approximation, we use the number of steps needed to obtain an accuracy of order O(1/n). Although
we generally follow the approach in Devroye and Neininger (2002), we can improve the complexity
significantly by using different discretizations. For the approximation of the distribution function to an
accuracy of O(1/n) in a typical case, we obtain a complexity of O(n1+ε) for any ε > 0. In comparison,
the algorithm described in Devroye and Neininger (2002), which originally was designed for fixed-point
equations of type (2) with K ≥ 2, would lead to a complexity of O(n4+ε), if applied to our cases. For the
approximation of the density to an accuracy of order O(1/n), we obtain a complexity of O(n1+1/α+ε)
for any ε > 0 in the case of α-Hölder continuous densities, cf. Corollary 5.2.

Proofs are omitted throughout this extended abstract and can be found in Knape (2006).
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3 Discrete approximation
Recall that our basic assumption in equation (1) is that ‖A‖p < 1 and ‖b‖p < ∞ for some p ≥ 1. To
obtain an algorithmically computable approximation of the solution of the fixed-point equation (1), we
use an approximation of the sequence defined as follows: We replace (A, b) by a sequence of independent
discrete approximations (A(n), b(n)), converging to (A, b) in p-th mean for n → ∞. To reduce the
complexity, we introduce a further discretization step 〈·〉n, which reduces the number of values attained
by Xn:

X̃n := A(n)Xn−1 + b(n), Xn :=
〈
X̃n

〉
n
. (5)

In Section 5, explicit discretizations are given, but here we only assume that the discretizations A(n), b(n)

and 〈·〉n satisfy∥∥∥A(n) −A
∥∥∥
p
≤ RA(n),

∥∥∥b(n) − b
∥∥∥
p
≤ Rb(n),

∥∥∥〈X̃n

〉
n
− X̃n

∥∥∥
p
≤ RX(n), (6)

for some error functions RA, Rb and RX , which we specify later.
Furthermore, we assume that there exists some ξp < 1, such that for all n ≥ 1,∥∥∥A(n)

∥∥∥
p
≤ ξp, (7)

which in applications is easy to obtain under ‖A‖p < 1 and (6).

4 Convergence of the discrete approximations
By arguments similar to those used in Fill and Janson (2002) and Devroye and Neininger (2002) we obtain
the following rates for the convergence of the approximations Xn towards the fixed-point X . We use the
shorthand notation `p(X,Y ) := `p(L(X),L(Y )).

Lemma 4.1 Let (Xn) be defined by (5) and ξp as in (7). Then

`p(Xn, X) ≤ ξnp ‖X − EX‖p +
n−1∑
i=0

ξ ipR(n− i), (8)

where R(n) := RX(n) +RA(n) ‖X‖p +Rb(n) for the error functions in (6).

To make these estimates explicit we have to specify functions that bound RA(n), Rb(n), and RX(n).
We do so in two different ways, one representing a polynomial discretization of the corresponding random
variables and one representing an exponential discretization. Better asymptotic results are obtained by the
latter one.

Corollary 4.2 Let (Xn) be defined by (5) and ξp as in (7), and assume

RA(n) ≤ CA
1
nr
, Rb(n) ≤ Cb

1
nr
, RX(n) ≤ CX

1
nr
,
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for some r ≥ 1. Then, we have

`p(Xn, X) ≤ Cr
1
nr
,

where

Cr :=
r ‖X − EX‖p
er log

(
1/ξp

) +
r!
(
CX + Cb + CA ‖X‖p

)
(
1− ξp

)r+1 . (9)

Remark 4.3 In Corollary 4.2, we are merely interested in the order of magnitude of `p(Xn, X) without
a sharp estimate of the constant Cr. When evaluating the error in an explicit example, we directly use, cf.
Lemma 4.1,

`p(Xn, X) ≤ ξnp ‖X − EX‖p + (CX + CA ‖X‖p + Cb)
n−1∑
i=0

ξ ip
(n− i)r

(10)

to obtain sharper estimates.

Corollary 4.4 Let (Xn) be defined by (5) and ξp as in (7), and assume

RA(n) ≤ CA
1
γn
, Rb(n) ≤ Cb

1
γn
, RX(n) ≤ CX

1
γn
,

for some 1 < γ < 1/ξp. Then, we have

`p(Xn, X) ≤ Cγ
1
γn
,

where

Cγ := ‖X − EX‖p +

(
CX + Cb + CA ‖X‖p

)
1− ξpγ

. (11)

Lemma 4.5 Let Xn and Cr be as in Corollary 4.2 and X have a bounded density fX . Then, the distance
in the Kolmogorov metric can be bounded by

ρ(Xn, X) ≤
(
Cr (p+ 1)1/p ‖fX‖∞

)p/(p+1)

n−rp/(p+1).

Similarly, for Xn and Cγ as in Corollary 4.4, we have

ρ(Xn, X) ≤
(
Cγ (p+ 1)1/p ‖fX‖∞

)p/(p+1)

γpn/(p+1).

Remark 4.6 In some cases, we can give a similar bound, although the density of X is not bounded or no
explicit bound is known. Instead, it is sufficient to have a polynomial bound for the modulus of continuity
of the distribution function FX of X , cf. Knape (2006).
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To approximate the density of the fixed-point, we define

fn(x) =
Fn(x+ δn)− Fn(x− δn)

2δn
, (12)

where Fn is the distribution function of Xn. For this approximation we can give a rate of convergence,
depending on the modulus of continuity of the density of the fixed-point, which is defined by

∆fX
(δ) := sup

u,v∈R
|u−v|≤δ

∣∣fX(u)− fX(v)
∣∣ .

Lemma 4.7 Let X have a density fX with modulus of continuity ∆fX
and let (Xn) be defined by (5).

Then, for fn defined by (12) and all δn > 0,∥∥fn − fX∥∥∞ ≤ 1
δn

ρ(Xn, X) + ∆fX
(δn) .

Corollary 4.8 Let X have a bounded density fX , which is Hölder continuous with exponent α ∈ (0, 1].
For polynomial discretization, i. e. Xn and Cr as in Corollary 4.2, and fn defined by (12) with

δn := Ln−rp/((α+1)(p+1))

with an L > 0, we have

‖fn − fX‖∞ ≤
((

Cr (p+ 1)1/p ‖fX‖∞
)p/(p+1)

/L+ cLα
)
n−αrp/((α+1)(p+1)).

For exponential discretization, i. e. Xn and Cγ as in Corollary 4.4, and fn defined by (12) with

δn := Lγ−pn/((α+1)(p+1)),

with an L > 0, we obtain

‖fn − fX‖∞ ≤
((

Cγ (p+ 1)1/p ‖fX‖∞
)p/(p+1)

/L+ cLα
)
γαpn/((α+1)(p+1)).

Remark 4.9 If X is bounded and bounds for the density fX and its modulus of continuity are known
explicitly, the last result is strong enough to allow, in principle, perfect simulation using von Neumann’s
rejection method; see Devroye (2001) for the case of infinitely divisible perpetuities with approximation
of densities by Fourier inversion, Devroye, Fill, and Neininger (2000) for the case of the Quicksort limit
distribution and Devroye and Neininger (2002) for more general fixed-point equations of type (2).

5 Algorithm and Complexity
In this section, we will give an algorithm for an approximation satisfying the assumptions in the last
section for many important cases. We assume that the distributions of A and b are given by Skorohod
representations, i. e. by measurable functions ϕ,ψ : [0, 1]→R, such that

A = ϕ(U) and b = ψ(U), (13)
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where U is uniformly distributed on [0, 1]. Furthermore, we assume that ‖ϕ‖∞ ≤ 1 and that both func-
tions are Lipschitz continuous and can be evaluated in constant time. Now we define the discretization
〈·〉n by

〈Y 〉n := bs(n)Y c/s(n), (14)

where s(n) can be either polynomial, i. e. s(n) = nr or exponential, s(n) = γn. Defining

A(n) := ϕ(〈U〉n) and

b(n) := ψ(〈U〉n) ,

the conditions on ϕ and ψ ensure that Corollary 4.2 and 4.4 can be applied.
We keep the distribution of Xn in an array An, where An[k] := P[Xn = k/s(n)] for k ∈ Z. Note

however, that as A and b are bounded, An[k] = 0 at least for |k| > Qn, where Qn can be computed
recursively as Qn = ‖A‖∞Qn−1 + ‖b‖∞ and Q0 = ‖X0‖∞= E[X]. The core of the implementation is
the following update procedure:

procedure UPDATE(An−1,An)
for i← 0 to s(n)− 1 do

for j ←− s(n− 1)Qn−1 to s(n− 1)Qn−1 − 1 do

u ← i

s(n)

k ←
⌊
s(n)

(
ϕ(u)

j

s(n− 1)
+ ψ(u)

)⌋
An[k]← An[k] +

1
s(n)

An−1[j]

end for
end for

end procedure
The complete code for polynomial discretization for the example in Section 7, implemented in C++, can
be found in Knape (2006).

To approximate the density as in (12) with δn = d/s(n) for some d ∈ N, we compute a new array Dn
by setting

Dn[k] =
s(n)
2d

k+d∑
j=k−d+1

An[j].

To measure the complexity of our algorithm, we estimate the number of steps needed to approximate
the distribution function and the density up to an accuracy of O(1/n). For the case that X has a bounded
density fX which is Hölder continuous, we give asymptotic bounds for polynomial as well as for expo-
nential discretization. We assume the general condition (13).

Lemma 5.1 Assume that X has a bounded density fX , which is Hölder continuous with exponent α ∈
(0, 1]. Using polynomial discretization with exponent r, cf. Corollary 4.2, we can approximate the dis-
tribution function of X to an accuracy of O(1/n) in time O(n(2+2/r)(p+1)/p) and the density fX to the
same accuracy in time O(n2(1+1/α)(r+1)(p+1)/(rp)).
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Using exponential discretization with parameter γ as in Corollary 4.4, approximation to the same
accuracy takes timeO(n(p+1)/p log n) for the distribution function ofX . The density can be approximated
to the same accuracy in time O(n(1+1/α)(p+1)/p log n).

Corollary 5.2 Assume that X has a bounded density fX , which is Hölder continuous with exponent
α ∈ (0, 1]. Then, using exponential discretization as in Corollary 4.4, approximation to an accuracy of
O(1/n) takes time O(n1+ε) for the distribution function and time O(n1+1/α+ε) for the density of X for
all ε > 0.

6 A simple class of perpetuities
In order to make the bounds of Section 4 explicit in applications, we need to bound the absolute value and
modulus of continuity of the density of the fixed-point. For a simple class of fixed-point equations, we
give universal bounds in this section. For more complicated cases, bounds have to be derived individually,
which we work out for one example in Section 7.

For fixed-point equations of the form

X
d= AX + 1 with A ≥ 0, (15)

where A and X are independent, we can bound the density and modulus of continuity of X using the
corresponding values of A.

Lemma 6.1 Let X satisfy fixed-point equation (15) and A have a density fA. Then X has a density fX
satisfying

fX(u) =
∫ ∞

1

1
x
fA

(
u− 1
x

)
fX(x)dx, for u ≥ 1, (16)

and fX(u) = 0 otherwise.

Corollary 6.2 Let A have a bounded density fA. Then X has a density fX satisfying

‖fX‖∞ ≤ ‖fA‖∞ .

Corollary 6.3 Let A have a density fA, and ∆fA
be its modulus of continuity. Then the modulus of

continuity ∆fX
of fX satisfies

∆fX
(δ) ≤ ∆fA

(δ) δ > 0.

This result is only useful if the density of A is continuous, but we can extend it to many practical
examples, where fA has jumps at points in a countable set IA. We use the jump function of fA, defined
by

JfA
(s) = fA(s)− lim

x↑s
fA(x), s > 0

and a modification of fA where we remove all jumps,

f̄A := fA −
∑

s∈IA\{0}

JfA
(s)1[s,∞).

Since X ≥ 1, we now denote by ∆fX
the modulus of continuity of the restriction of fX to (1,∞).
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Lemma 6.4 Let A have a bounded càdlàg density fA. Then, for all δ > 0,

∆fX
(δ) ≤ ∆f̄A

(δ) + ‖fX‖∞
∑

s∈IA\{0}

|JfA
(s)| δ
s

.

7 Example: Number of key exchanges in Quickselect
In this section, we apply our algorithm to the fixed-point equation

X
d= UX + U(1− U), (17)

where U and X are independent and U is uniformly distributed on [0, 1]. This equation appears in the
analysis of the selection algorithm Quickselect. The asymptotic distribution of the number of key ex-
changes executed by Quickselect when acting on a random equiprobable permutation of length n and
selecting an element of rank k = o(n) can be characterized by the above fixed-point equation, see Hwang
and Tsai (2002).

We use our algorithm to get a discrete approximation of the fixed point. The plot of a histogram,
generated with n = 80, r = 3, can be found in Figure 1.
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Fig. 1: Histogram of an approximation of X with X d
= UX + U(1− U).

In the following, we specify how the bounds in Section 4 can be made explicit for this example.
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Lemma 7.1 Let X be a solution of (17). Then, we have 0 ≤ X ≤ 1 almost surely, and the moments are
recursively given by E

[
X0
]

= 1 and

E
[
Xk
]

= (k + 1)! (k − 1)!
k−1∑
j=0

E
[
Xj
]

j!(2k − j + 1)!
, k ≥ 1,

in particular, E[X] = 1/3.

Lemma 7.2 Let X be a solution of (17). Then, for all κ ∈ N and ε > 0,

P[X ≥ 1− ε] ≤ 2(κ2−κ)/4 εκ/2.

Lemma 7.3 Let X be a solution of (17). Then X has a Lebesgue density f satisfying f(t) = 0 for t < 0
or t > 1 and

f(t) = 2
∫ t

pt

g(x, t)f(x)dx+
∫ 1

t

g(x, t)f(x)dx for t ∈ [0, 1], (18)

where
pt := 2

√
t− 1, g(x, t) :=

1√
(1 + x)2 − 4t

.

Remark 7.4 For t = 0, equation (18) implies

f(0) = E
[

1
1 +X

]
= 0.759947956 . . .

In order to use Lemma 4.5 to bound the deviation of our approximation, we need an explicit bound for
the density of X . We derive a rather rough bound here and will see later, that we can use the resulting
bound for our approximation to improve it.

Lemma 7.5 Let f be the density of X as in Lemma 7.3. Then

‖f‖∞ ≤ 18.

Lemma 7.6 Let f be the density ofX as in Lemma 7.3. Then f is Hölder continuous on [0, 1] with Hölder
exponent 1

2 : ∣∣f(t)− f(s)
∣∣ ≤ 9 ‖f‖∞

√
t− s, for 0 ≤ s < t ≤ 1. (19)

Remark 7.7 The latter Lemma cannot be substantially improved, as in t = 1/4, the density f(t) is not
Hölder continuous with Hölder exponent 1/2 + ε for any ε > 0.

Explicit error bounds
We can now combine the bounds for the density and its modulus of continuity with Lemma 4.5 and
Lemma 4.7 to bound the deviation of an approximation from the solution of the fixed-point equation.

To approximate the density f we set

fn(x) :=


f(0) for 0 ≤ x ≤ δn,
Fn(x+ δn)− Fn(x− δn)

2δn
for δn < x ≤ 1,

0 otherwise,



A Note on the Approximation of Perpetuities 125

where Fn is the distribution function of Xn and f(0) is given in Remark 7.4.
With r = 3, cf. Corollary 4.2, and n = 80 we obtain:

Corollary 7.8 We have ρ(X80, X) ≤ 1.162 · 10−4, and ‖f80 − f‖∞≤ 0.931. Furthermore, we can
improve the bound of Lemma 7.5 and get ‖f‖∞≤ 3.561.

Remark 7.9 Using the realistic (but yet unproven) bound of ‖f‖∞ ≤ 2.7 we would obtain ρ(X80, X) ≤
8.9809 · 10−5 (p = 13) and ‖f80 − f‖∞ ≤ 0.7101. Hence, our approach works well for the distribution
function. However, we cannot show strong error bounds for the approximation of densities with our
arguments.

In Table 1, the resulting error bounds for several possible discretizations with similar running time can
be found.

Discret. N ρ(XN , X) opt. p s(N)
n 22000 0.00178 14 22000
n2 430 0.00025 16 184900
n3 80 0.00012 13 512000
n4 30 0.00050 3 810000

1.5n 35 0.00070 3 1456110
1.7n 27 0.00187 2 1667712

Tab. 1: Bounds for ρ(Xn, X) for comparable total running times. The discretizations are according to Corollaries
4.2 and 4.4, and s(N) denotes the number of atoms of the discrete approximation.

In Knape (2006, Section 4), the algorithm is applied to several other fixed-point equations for which
the solutions are more or less explicitly known and the actual error can be evaluated. It appears that the
error bounds in Section 4 are rather loose and that the approximation is much better than indicated by our
bounds.
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