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Abstract. We consider the random fragmentation process introduced by Kol-

mogorov, where a particle having some mass is broken into pieces and the mass is

distributed among the pieces at random in such a way that the proportions of the

mass shared among different daughters are specified by some given probability

distribution (the dislocation law); this is repeated recursively for all pieces. More

precisely, we consider a version where the fragmentation stops when the mass of

a fragment is below some given threshold, and we study the associated random

tree. Dean and Majumdar found a phase transition for this process: the number

of fragmentations is asymptotically normal for some dislocation laws but not for

others, depending on the position of roots of a certain characteristic equation.

This parallels the behaviour of discrete analogues with various random trees that

have been studied in computer science. We give rigorous proofs of this phase

transition, and add further details.

The proof uses the contraction method. We extend some previous results for

recursive sequences of random variables to families of random variables with a

continuous parameter; we believe that this extension has independent interest.

1. The problem and result

Consider the following fragmentation process, introduced by Kolmogorov [28], see
also Bertoin [3, Chapter 1] and the references in [3, Section 1.6]. Fix b ≥ 2 and the
law for a random vector V = (V1, . . . , Vb); this is commonly called the dislocation
law. We assume throughout the paper that 0 ≤ Vj ≤ 1, j = 1, . . . , b, and

b∑

j=1

Vj = 1, (1.1)

i.e., that (V1, . . . , Vb) belongs to the standard simplex. For simplicity we also assume
that each Vj < 1 a.s. We allow Vj = 0, but note that, a.s., 0 < Vj < 1 for at least
one j. (The case (1.1) is called conservative. The non-conservative case, not treated
here, is known to be quite different.)

Starting with an object of mass x ≥ 1, we break it into b pieces with masses
V1x, . . . , Vbx. Continue recursively with each piece of mass ≥ 1, using new (inde-
pendent) copies of the random vector (V1, . . . , Vb) each time. The process terminates
a.s. after a finite number of steps, leaving a finite set of fragments of masses < 1.
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As said above, this model has been studied by many authors, with or without
our stopping rule and often without assuming (1.1). The model can be embedded
in continuous time (this is immaterial for our purpose), see Bertoin [3, Chapter 1];
in particular, [3, Section 1.4.4] uses the same stopping rule as we do (in a more
general situation than ours). Different stopping rules are treated by Gnedin and
Yakubovich [19] and Krapivsky, Grosse and Ben-Naim [30; 29].

We let N(x) be the random number of fragmentation events, i.e., the number of
pieces of mass ≥ 1 that appear during the process; further, let Ne(x) be the final
number of fragments, i.e., the number of pieces of mass < 1 that appear. Dean
and Majumdar [12] found (without giving a rigorous proof) that the asymptotic
behaviour of N(x) as x →∞ depends on the position of the roots of a certain
characteristic equation; the main purpose of this paper is to give a precise version
of this in Theorem 1.3 below. Some special cases have earlier been studied by other
authors, see Section 7.

It is natural to consider the fragmentation process as a tree, with the root rep-
resenting the original object, its children representing the pieces of the first frag-
mentation, and so on. It is then convenient to let the fragmentation go on for ever,
although we ignore what happens to pieces smaller than 1. Let us mark each node
with the mass of the corresponding object.

We thus consider the infinite rooted b-ary tree Tb, whose nodes are labelled with
the strings J = j1 · · · jk with ji ∈ {1, . . . , b} and k ≥ 0. Let B∗ denote the set of all
such strings, and let (V (J)

1 , . . . , V
(J)
b ), J ∈ B∗, be independent copies of V. Then

node J = j1 · · · jk gets the mass x
∏k

i=1 V
(j1···ji−1)
ji

. Thus N(x) is the number of
nodes with mass ≥ 1, i.e.

N(x) =
∑

J∈B∗
1{

x
Qk

i=1 V
(j1···ji−1)

ji
≥1

}. (1.2)

By the recursive construction of the fragmentation process, we have N(x) = 0
for 0 ≤ x < 1 and

N(x) d= 1 +
b∑

j=1

N (j)(Vjx), x ≥ 1, (1.3)

where N (j)(·) are copies of the process N(·), independent of each other and of
(V1, . . . , Vb).

We define the fragmentation tree T (x) to be the subtree of T (∞) = Tb consisting
of all nodes with mass ≥ 1. Thus N(x) = |T (x)|, the number of nodes in T (x).
More precisely, using standard terminology for trees, we call these nodes internal
nodes of T (x), and we say that a node in T (∞) is an external node of T (x) if it
has label < 1 but its parent is an internal node of T (x).

Thus N(x) is the number of internal nodes, and Ne(x) is the number of external
nodes. Since each internal node has b internal or external children, we have, for
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x ≥ 1, N(x)+Ne(x) = 1+bN(x), or Ne(x) = (b−1)N(x)+1. Hence the results for
N(x) immediately yield similar results for Ne(x) and the total number of external
and internal nodes N(x) + Ne(x) too.

In this paper we thus study the size of the fragmentation tree T (x). Of course,
it is interesting to study other properties too, such as height, path length, profile,
. . .

Remark 1.1. It is obviously equivalent to instead start with mass 1, so node
J = j1 · · · jk gets the mass

∏k
i=1 V

(j1···ji−1)
ji

, and then keep all nodes with mass
≥ ε = 1/x, now considering asymptotics as ε → 0. This formulation (used for
example by Bertoin [3, Section 1.4.4]) is sometimes more convenient, for example,
it allows us to define T (x) for all x ≥ 0 simultaneously, using the same V

(J)
j ; this

defines (T (x))x≥0 as an increasing stochastic process of trees. Nevertheless, for our
purposes we prefer the formulation above, mainly because of the connection with
the discrete models discussed in Remark 9.3.

Remark 1.2. We assume for convenience that each object is split into the same
number b of parts. Our method applies also to some case of a random number of
parts. Indeed, if the number of parts is bounded, we can use the results below
with b large enough, setting the non-existing Vj := 0. It seems possible to extend
the proofs below with minor modifications to the cases when the number of parts
b = ∞ or b is random and unbounded (under suitable assumptions), but we have
not pursued this and we leave this extension to the reader.

Note that N(x) makes sense also for b = ∞, while Ne(x) = ∞ in this case.

Our main result is Theorem 1.3 below on the asymptotic distribution of N(x),
together with the corresponding estimates for mean and variance given in Theo-
rem 3.1.

We define (with 0z := 0), at least for Re z ≥ 0,

φ(z) :=
b∑

j=1

EV z
j , (1.4)

and note that φ(z) is bounded and analytic in the open right half-plane {z : Re z >

0}. More precisely, there exists a ∈ [−∞, 0) such that (1.4) converges for real z > a

but not for z < a; then φ(z) is analytic in {z : Re z > a}. In some cases, φ may be
extended to a meromorphic function in a larger domain. (For several examples of
this, see Section 7.)

Since we assume (1.1), clearly φ(1) = 1. Since further 0 ≤ Vj < 1 a.s., the
function φ(z) is decreasing for real z > 0; hence φ(z) > 1 when 0 < z < 1 and
φ(z) < 1 for 1 < z < ∞. Further, |φ(z)| ≤ ∑

j E |V z
j | = φ(Re z), so |φ(z)| < 1 when

Re z > 1.
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A crucial role is played by the solutions to the characteristic equation

φ(λ) = 1. (1.5)

By the comments above, λ = 1 is one root, and Reλ ≤ 1 for every root λ; fur-
thermore, there is no real root in (0, 1). Let, for any δ ∈ [−∞,∞) such that φ is
analytic, or at least meromorphic, in {z : Re z > δ}, M(δ) be the number of roots
λ of (1.5) with Reλ > δ.

We further define

α := −φ′(1) =
b∑

j=1

E(−Vj ln Vj), (1.6)

the expected entropy of (V1, . . . , Vb).
We need a (weak) regularity condition on the distribution of (V1, . . . , Vb). We

find the following convenient, although it can be weakened to Condition B(δ) in
Section 2 for suitable δ. For examples where this regularity and Theorem 1.3 fail,
see Example 8.1.

Condition A. Each Vj has a distribution that is absolutely continuous on (0, 1),
although a point mass at 0 is allowed.

Note that there is no condition on the joint distribution. In one case, however, we
need also a condition including the joint distribution. (Note that both conditions
are satisfied if V has a density on the standard simplex, i.e. if (V1, . . . , Vb−1) has a
density.)

Condition A′. The support of the distribution of V on the standard simplex has
an interior point.

If Condition A holds, then, by Lemmas 2.2 and 2.1 below, the number M(δ) of
roots of φ(λ) = 1 in {λ : Reλ > δ} is finite for every δ > 0. We may thus order
the roots with Reλ > 0 as λ1, λ2, . . . , λM(0) with decreasing real parts: λ1 = 1 >

Reλ2 ≥ Reλ3 ≥ . . . ; we will assume this in the sequel. If λ1 = 1 is the only root
with Reλ > 0, we set λ2 = −∞ for convenience.

We let MC denote the space of probability measures on C, and let

MC
2 (γ) := {η ∈MC :

∫
|z|2 dη(z) < ∞, and

∫
z dη(z) = γ}, γ ∈ C.

We let T denote the map (assuming λ2 6= −∞)

T : MC →MC, η 7→ L
(

b∑

r=1

V λ2
r Z(r)

)
, (1.7)

where (V1, . . . , Vb), Z(1), . . . , Z(b) are independent and L(Z(r)) = η for r = 1, . . . , b.
Note that T maps MC

2 (γ) into itself for each γ, since λ2 satisfies φ(λ2) = 1.
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We state our main result. The constant α > 0 is defined in (1.6) above and β is
given explicitly in Theorem 3.1. The `2 distance between distributions is defined in
Section 4.

Theorem 1.3. Suppose that Condition A holds. Then we have:

(i) If Reλ2 < 1/2 then EN(x) = α−1x + o(
√

x), VarN(x) ∼ βx with β > 0
and

N(x)− α−1x√
x

d→ N (0, β).

(ii) If Reλ2 = 1/2 and each root λi with Reλi = 1/2 is a simple root of
φ(λ) = 1, and further Condition A′ too holds, then EN(x) = α−1x+O(

√
x),

Var(N(x)) ∼ βx ln x with β > 0 and

N(x)− α−1x√
x lnx

d→ N (0, β).

(iii) If Re λ2 > 1/2, and λ2 and λ3 = λ2 are the only roots of (1.5) with this real
part, and these roots are simple, then EN(x) = α−1x + Re(γxλ2) + O(xκ),
for some γ and κ with γ ∈ C \ {0} and 1/2 < κ < Reλ2, and

`2

(
N(x)− α−1x

xRe λ2
, Re

(
Ξei Im λ2 ln x

))
= O

(
xκ−Re λ2

)
,

for some complex random variable Ξ. Furthermore, L(Ξ) is the unique fixed
point of T in MC

2 (γ).

Remark 1.4. In case (iii), the normalized N(x) thus does not converge in distrib-
ution; instead we have an asymptotic periodicity in log x of the distribution. This
type of asymptotic periodicity is common for properties of some types of random
trees, see for example Chern and Hwang [10], Chauvin and Pouyanne [8], Fill and
Kapur [16], Janson [22, Example 7.8 and Remark 3.20] and Janson [24, Examples
4.4 and 4.5].

The trichotomy in the theorem is very similar to the situation for multi-type
branching processes and generalized Pólya urns, see [22], in particular Theorems
3.22–3.24 there; in that case, the λi are the eigenvalues of a certain matrix.

Remark 1.5. We can regard our process as a general (age-dependent) branching
process [21, Chapter 6], provided we make a logarithmic change of time as in Sec-
tion 3. (This approach has been used in related problems by for example Gnedin and
Yakubovich [19].) Indeed, there are two versions. For internal nodes, the individuals
in the branching process live for ever, and give birth at times − lnV1, . . . ,− ln Vb.
For external nodes, we have a splitting process where each individual when it dies
gives birth to new particles with life lengths − lnV1, . . . ,− ln Vb. For both ver-
sions, we obtain a supercritical branching process with Malthusian parameter 1,
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but the identity (1.1) causes the asymptotics for moments and distributions to be
quite different from typical supercritical branching processes; the reason is that
the intrinsic martingale [3, Section 1.2.2] degenerates to a constant, unlike in the
non-conservative case (such as, e.g., in [2; 4; 19]).

Remark 1.6. Distributions that are fixed points of (1.7) can sometimes be found
explicitly. For example, if λ2 in (1.7) is real, then the stable distributions of index
1/λ2 are examples of fixed points of T . Note, however, that in our case, λ2 is
never real. Moreover, the fixed points we are interested in have finite variance,
and are thus quite different from stable distributions. Other examples with explicit
solutions are given in, e.g., Gnedin and Yakubovich [19] (in this case, generalized
Mittag-Leffler distributions).

For the related Quicksort fixed point equation, Fill and Janson [15] found a
complete characterization of the set of fixed points; in that case, all fixed points are
formed by combining certain stable distributions with the unique fixed point with
mean 0 and finite variance.

Remark 1.7. Condition A′ is needed only in part (ii), and is needed only to exclude
the possibility that for each root λi of (1.5) with Reλi = 1/2,

b∑

j=1

V λi
j = 1 a.s. (1.8)

This is easily seen to be impossible if Condition A′ holds, and even otherwise it
seems highly unlikely for any particular example, but it seems possible to construct
examples satisfying Condition A where V is concentrated on a curve, say, such that
(1.8) holds.

We will prove the statements on mean and variance, with further refinements,
in Section 3. To prove convergence in distribution, we will use a continuous time
version of the contraction method. We develop a general theorem, that we find to
be of independent interest, in Section 5. This theorem is applied to our problem in
Section 6. Some examples are given in Sections 7 and 8.

Remark 1.8. As an alternative to using the random vector V to describe the
fragmentation process, one can use the point process

∑
j δVj on [0, 1]. Let η be the

intensity of this process; thus η is a measure on [0, 1]. In this formulation, φ is the
Mellin transform of the measure η; further µ and ν in Section 3 equal the measures
η and its size biased version sη(ds) after the change of variable s = e−x.

Acknowledgements. This research was initiated and largely done during confer-
ences in Oberwolfach, Frankfurt and Vienna in August and September 2004. We
thank Luc Devroye, Jim Fill, Alexander Gnedin, Allan Gut and Hsien-Kuei Hwang
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2. Further preliminaries

We define (again with 0z := 0)

ψ(z, w) := Cov




b∑

j=1

V z
j ,

b∑

j=1

V w
j


 = E




b∑

j=1

V z
j

b∑

k=1

V w
k


− φ(z)φ(w). (2.1)

In particular, ψ(z, z̄) = E
∣∣∑b

j=1 V z
j − φ(z)

∣∣2 ≥ 0, with equality only if
∑b

j=1 V z
j =

φ(z) a.s.
For Re z, Rew ≥ 0, we have |V z

j |, |V w
j | ≤ 1 and thus |ψ(z, w)| ≤ 2b2.

We say that V is lattice if there exists a number R > 1 such that every Vj ∈
{R−n}n≥0 ∪ {0} a.s.; otherwise V is non-lattice. Basic Fourier analysis applied to
the probability measure ν defined in (3.16) shows that V is non-lattice if and only
if λ = 1 is the only root of (1.5) with Reλ = 1. (Otherwise, there is an infinite
number of roots with Reλ = 1.) We will assume this, and more, below.

We introduce a family of regularity conditions that are weaker than Condition A.

Condition B(δ). (Here δ is a real number with δ ≥ 0.)

lim sup
t→∞

|φ(δ + it)| < 1.

Lemma 2.1. If Condition B(δ) holds for some δ ≥ 0, then Condition B(δ′) holds
for every δ′ > δ as well; moreover

lim sup
Re z≥δ

Im z→∞

|φ(z)| < 1.

Proof. Choose first ε > 0 such that lim supt→∞ |φ(δ + it)| < 1 − 2ε, and then A

such that |φ(δ + it)| ≤ 1− 2ε if t ≥ A, and thus also if t ≤ −A. Recall further that
|φ(δ + it)| ≤ b for all t. Since φ(z) is analytic, and thus harmonic, in the half-plane
Hδ := {z : Re z > δ} and bounded and continuous in Hδ, φ is given by the Poisson
integral of its boundary values [18, Lemma 3.4]:

φ(x + iy) =
∫ ∞

−∞
Px−δ(y − t)φ(δ + it) dt, x > δ, (2.2)

where Px(y) = x/(π(x2 + y2)), the Poisson kernel for the right half-plane. Let
ω(x + iy) :=

∫ A
−A Px−δ(y− t) dt, the harmonic measure of [δ− iA, δ + iA]; then (2.2)

implies

|φ(x + iy)| ≤
∫ ∞

−∞
Px−δ(y − t)|φ(δ + it)| dt ≤ bω(x + iy) + 1− 2ε. (2.3)

It is well-known, and easy to see, that the set B := {z ∈ Hδ : ω(z) > ε/b} is
bounded; in fact, it is the intersection of Hδ and a circular disc [18, p. 13]. Thus,
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A1 := sup{Im z : z ∈ B} < ∞, and if Rex ≥ δ and |y| > A1, then ω(z) ≤ ε/b and
(2.3) yields |φ(x + iy)| ≤ 1− ε. ¤

Lemma 2.2. If Condition A holds, then Condition B(δ) holds for every δ ≥ 0.

This is given in [2, Lemma 2] and included here for completeness.

Proof. We have EV it
j = E

(
eit ln Vj1{Vj>0}

)
, the Fourier transform of the distribution

of lnVj (ignoring any point mass at 0), so by Condition A and the Riemann–
Lebesgue lemma, EV it

j → 0 as t →∞ for every j, and thus φ(it) → 0 as t →∞.
Hence, Condition B(0) holds, and the result follows by Lemma 2.1. ¤

Lemma 2.3. If Condition B(δ) holds for some δ > 0, then there is only a finite
number of roots to φ(λ) = 1 with Re λ ≥ δ.

Proof. By Lemma 2.1, all such roots satisfy | Im λ| ≤ C for some C < ∞. Fur-
thermore, all roots satisfy Reλ ≤ 1, so if further Reλ ≥ δ, λ belongs to a compact
rectangle K in the open right half-plane. Since, φ(z)−1 is analytic and non-constant
in this half-plane, it has only a finite number of roots in K. ¤

In particular, by the comments above, Condition B(δ) with δ ≤ 1 implies that V
is non-lattice.

3. Mean and variance

We let Λ denote the set of solutions to the characteristic equation (1.5), i.e.

Λ := {λ : φ(λ) = 1}; (3.1)

we further define its subsets

Λ(s) := {z ∈ Λ : Re(z) = s}. (3.2)

In general, φ(λ) is defined only for Reλ ≥ 0, and we consider only such λ in (3.1).
However, in cases where φ extends to a meromorphic function in a larger domain
(for example, when φ is rational), we may include such λ too in Λ; this makes no
difference in Theorem 3.1. (In Theorem 3.4, we include all roots in the complex
plane.) We will use Λ(s) only for s ≥ 0, where there is no ambiguity.

Let m(x) := EN(x) and σ2(x) := VarN(x). We will show the following asymp-
totics.

Theorem 3.1. Assume that Condition B(δ) holds with 0 ≤ δ < 1, and let
λ1, . . . , λM(δ) be the elements of {λ ∈ Λ : Reλ > δ}, ordered so that λ1 = 1 >

Reλ2 ≥ Re λ3 ≥ · · · . (If M(δ) = 1, let λ2 = −∞.) Then, as x →∞:

(i) m(x) ∼ α−1x.
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(ii) If further φ′(λi) 6= 0 for i = 1, . . . , M(δ), i.e., each λi is a simple root of
φ(λ) = 1, then, more precisely, for every δ′ > δ,

m(x) = α−1x +
M(δ)∑

i=2

1
−λiφ′(λi)

xλi + O(xδ′). (3.3)

(iii) If δ < 1/2 and Reλ2 < 1/2 (including the case M(δ) = 1), then σ2(x) ∼
βx, with

β = α−1 1
2π

∫ ∞

−∞

ψ(1/2 + iu, 1/2− iu)
|1/2 + iu|2|1− φ(1/2 + iu)|2 du ∈ (0,∞). (3.4)

(iv) If δ < 1/2 = Reλ2, and each λi with Reλi = 1/2 is a simple root of
φ(λ) = 1, then σ2(x) = βx ln x + o(x lnx), with

β =
∑

λ∈Λ(1/2)

1
α|λφ′(λ)|2 ψ(λ, λ) ≥ 0. (3.5)

If, moreover, Condition A′ holds (or, more generally, for some λi ∈ Λ(1/2),
(1.8) does not hold), then β > 0.

(v) If Reλ2 > 1/2, and each λi with Reλi = Reλ2 is a simple root of φ(λ) = 1,
then

σ2(x) =
∑

λi,λk∈Λ(Re λ2)

1
λiλkφ′(λi)φ′(λk)

(
1− φ(λi + λk)

)ψ(λi, λk)xλi+λk + o
(
x2Re λ2

)
.

Remark 3.2. It follows from the proof that for (i) we do not need Condition B(δ);
it is enough that V is non-lattice.

Remark 3.3. The case when some φ′(λi) = 0 is similar; now terms xλi ln x (and
possibly xλi lnd x, d ≥ 2) will appear in (3.3). We leave the details to the reader.

If φ is a rational function, then (3.3) can be improved to an exact formula.
Furthermore, in case (iii) of Theorem 3.1 we then can give an alternative formula
for β.

Theorem 3.4. Assume that φ is a rational function, and let λ1, . . . , λM be the roots
of φ(λ) = 1 in the complex plane, with λ1 = 1. Suppose further that all these roots
are simple.

(i) Then

m(x) =
M∑

i=1

1
−λiφ′(λi)

xλi − 1
φ(0)− 1

, x ≥ 1. (3.6)

(ii) Assume further that Reλi < 1/2 for i = 2, . . . , M , and that Vj > 0 a.s. for
every j. Define, for notational convenience, λ0 := 0, a0 := −1/(b − 1) and
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ai := −1/(λiφ
′(λi)) for i = 1, . . . , M . Then σ2(x) ∼ βx, with

β = α−1
∑

i,k 6=1

aiak

1− λi − λk

( b∑

j,l=1

EV λi
j V λk

l (Vj ∧ Vl)1−λi−λk − 2φ(1− λk) + 1
)

− 2α−2
M∑

i=2

ai

λi

( b∑

j,l=1

E(V λi
j V 1−λi

l − Vl)1{Vl≤Vj} − φ(1− λi) + 1
)

− 2α−2a0

( b∑

j,l=1

EVl(lnVj − ln Vl)1{Vl<Vj} − α
)

+ α−3
( b∑

j,l=1

E(Vj ∧ Vl)− 1
)
− α−1.

The proof of these theorems will occupy the remainder of this section. We first
show that all moments of N(x) are finite.

Lemma 3.5. For every m ≥ 1 and x ≥ 0, EN(x)m < ∞. Furthermore,
sup0≤y≤x EN(y)m < ∞.

Proof. For a string J = j1 · · · jk ∈ B∗ we denote by |J | = k the depth of the
corresponding node in Tb. Note that we have |{J ∈ B∗ : 0 ≤ |J | ≤ k}| ≤ bk+1.
Hence, if N(x) > bk+1 for some k ≥ 0 then by (1.2) there exists a J = j1 · · · jk ∈ B∗
with x

∏k
i=1 V

(j1···ji−1)
ji

≥ 1. Markov’s inequality implies that for all q ≥ 1

P(N(x) > bk+1) ≤ P

 ⋃

J∈B∗:|J |=k

{
k∏

i=1

V
(j1···ji−1)
ji

≥ 1/x

}


≤
∑

J∈B∗:|J |=k

P

(
k∏

i=1

V
(j1···ji−1)
ji

≥ 1/x

)

≤
∑

J∈B∗:|J |=k

xq E
k∏

i=1

(
V

(j1···ji−1)
ji

)q

= xqφ(q)k.

Hence, for all y ≥ b we obtain with k = blogb yc − 1 and φ(q) ≤ 1 that

P(N(x) > y) ≤ xqφ(q)k ≤ xqφ(q)logb y−2 =
xq

φ(q)2
ylogb φ(q). (3.7)

We have φ(q) → 0 as q → ∞ since Vj < 1 a.s. and by dominated convergence.
Hence, for all m ≥ 1 there exists a q > 0 with logb φ(q) < −m. The tail bound (3.7)
thus implies EN(x)m < ∞ for all m ≥ 1 and all x ≥ 0.

The final statement follows because 0 ≤ N(y) ≤ N(x) when 0 ≤ y ≤ x. ¤
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We find it convenient to switch from multiplicative to additive notion. We there-
fore define

Xj := − ln Vj ∈ (0,∞], j = 1, . . . , b,

N∗(t) := N(et), −∞ ≤ t < ∞.

The definition (1.2) and the recursive equation (1.3) thus translate to

N∗(t) =
∑

J∈B∗
1{Pk

i=1 X
(j1···ji−1)

ji
≤t

}, (3.8)

N∗(t)
d= 1 +

b∑

j=1

N
(j)
∗ (t−Xj), t ≥ 0, (3.9)

where N
(j)
∗ (·) are independent copies of the process N∗(·), and N∗(t) = 0 for −∞ ≤

t < 0. Further define

m∗(t) := EN∗(t) = m(et),

σ2
∗(t) := VarN∗(t) = σ2(et).

Thus m∗(t) = σ2∗(t) = 0 for t < 0. Taking expectations in (3.9) we find

m∗(t) = 1 + E
b∑

j=1

m∗(t−Xj), t ≥ 0. (3.10)

Let µj be the distribution of Xj on (0,∞); this is a measure of mass 1−P(Vj = 0);
let further µ :=

∑b
j=1 µj . Then (3.10) can be written as

m∗(t) = 1 +
b∑

j=1

µj ∗m∗(t) = 1 + µ ∗m∗(t), t ≥ 0, (3.11)

where µ ∗ f(t) =
∫∞
0 f(t− x) dµ(x). This is the standard renewal equation, except

that µ is not a probability measure.
Similarly, conditioning on X1, . . . , Xb, for t ≥ 0,

E
(
(N∗(t)−m∗(t))2 | X1, . . . , Xb

)

= E
([ b∑

j=1

N
(j)
∗ (t−Xj) + 1−m∗(t)

]2 ∣∣∣ X1, . . . , Xb

)

= Var
( b∑

j=1

N
(j)
∗ (t−Xj) + 1−m∗(t)

∣∣∣ X1, . . . , Xb

)

+
( b∑

j=1

m∗(t−Xj) + 1−m∗(t)
)2

=
b∑

j=1

σ2
∗(t−Xj) +

( b∑

j=1

m∗(t−Xj)−m∗(t) + 1
)2

.
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Taking the expectation we obtain

σ2
∗(t) = E

b∑

j=1

σ2
∗(t−Xj) + h(t) = µ ∗ σ2

∗(t) + h(t), t ≥ 0, (3.12)

where, recalling (3.10),

h(t) := E
( b∑

j=1

m∗(t−Xj)−m∗(t) + 1
)2

= E
( b∑

j=1

m∗(t−Xj)−m∗(t)
)2

+ 2
(
E

b∑

j=1

m∗(t−Xj)−m∗(t)
)

+ 1

= E
( b∑

j=1

m∗(t−Xj)−m∗(t)
)2
− 1. (3.13)

Both (3.11) and (3.12) are instances of the general renewal equation (3.14) below,
and from renewal theory we get the following result. We say that a function on [0,∞)
is locally bounded if it is bounded on every finite interval.

Lemma 3.6. Assume that V is non-lattice. Let f be a locally bounded measurable
function on [0,∞). Then the renewal equation

F = f + µ ∗ F (3.14)

has a unique locally bounded solution F on [0,∞). We have the following asymp-
totical results, as t →∞,

(i) If f is a.e. continuous and
∫∞
0 f∗(t) dt < ∞, where f∗(t) :=

supu≥t e−u|f(u)|, then F (t) = (γ + o(1))et, with γ = α−1
∫∞
0 f(t)e−t dt.

(ii) If f(t) = et, then F (t) ∼ α−1tet.
(iii) If f(t) = eλt with Reλ = 1 and Imλ 6= 0, then F (t) = o

(
tet

)
.

(iv) If f(t) = eλt with Reλ > 1, then F (t) ∼ (
1− φ(λ)

)−1
eλt.

Proof. For a function f on (0,∞) and z ∈ C, we define, when the integral exists,
the Laplace transform f̃(z) :=

∫∞
0 e−ztf(t) dt. Similarly, the Laplace transform of

µ is

µ̃(z) :=
∫ ∞

0
e−tz dµ(t) =

b∑

j=1

E e−zXj =
b∑

j=1

EV z
j = φ(z), (3.15)

at least for Re z ≥ 0. (Using the original variable ln t, the Laplace transforms
become Mellin transforms, cf. Remark 1.8.)

Since µ is not a probability measure, we define another (“conjugate” or “tilted”)
measure ν on [0,∞) by

dν(u) = e−u dµ(u). (3.16)
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Then ν is a probability measure because, by (1.1),

ν[0,∞) =
∫ ∞

0
e−u dµ(u) =

b∑

j=1

∫ ∞

0
e−u dµj(u) =

b∑

j=1

E e−Xj =
b∑

j=1

EVj = 1.

Further, the mean of the distribution ν is

E ν =
∫ ∞

0
u dν(u) =

∫ ∞

0
ue−u dµ(u) =

b∑

j=1

E
(
Xje

−Xj
)

=
b∑

j=1

E
(
(− lnVj)Vj

)
= α

(3.17)
and the Laplace transform is, for Re z ≥ 0, recalling (3.15),

ν̃(z) :=
∫ ∞

0
e−zu dν(u) =

∫ ∞

0
e−u−zu dµ(u) = µ̃(z + 1) = φ(z + 1). (3.18)

Let g(t) := e−tf(t) and G(t) := e−tF (t). Then (3.14) translates to

G(t) = e−tF (t) = e−tf(t) +
∫ ∞

0
e−tF (t− u) dµ(u)

= g(t) +
∫ ∞

0
G(t− u)e−u dµ(u) = g(t) + ν ∗G(t).

In other words, G satisfies the renewal equation for the probability measure ν, so
we can use standard results from renewal theory.

First, it is well known that the equation G = g + ν ∗ G has a unique locally
bounded solution which is given by G =

∑∞
n=0 ν∗n ∗ g, and thus F =

∑∞
n=0 µ∗n ∗ f ;

see e.g. [1, Theorem IV.2.4] (which also applies directly to F ). If we let Y1, Y2, . . .

be i.i.d. random variables with the distribution ν, and let Sn :=
∑n

1 Yi, this can be
written as

G(t) =
∞∑

n=0

E
(
g(t− Sn)1{Sn≤t}

)
= E

∑

Sn≤t

g(t− Sn). (3.19)

Under the assumptions of (i), f∗ is non-increasing and integrable; further,
sup f∗ ≤ sup[0,1] |f | + f∗(1) < ∞, so f∗ is bounded too. Hence [1, Proposition
IV.4.1(v),(iv)] shows that f∗ and g are directly Riemann integrable. The key renewal
theorem [1, Theorem IV.4.3] and (3.17) now yield G(t) → α−1

∫∞
0 g(u) du = γ,

which proves (i).
In case (ii) we have g(t) = 1, and thus G(t) ∼ α−1t by the elementary renewal

theorem [1, IV.(1.5) and Theorem 2.4].
For (iii), g(t) = e(λ−1)t = eibt for some real b 6= 0. The solution to (3.14) may

be written [1, Theorem IV.2.4] G(t) =
∫ t
0 g(t − u) dU(u), where U is the locally

bounded solution to U = 1+ν ∗U (i.e., U = G for case (ii)). Since, in analogy with
(3.17),

∫
u2 dν(u) =

∑
j E

(
(lnVj)2Vj

)
< ∞, the distribution ν has finite variance,

and the renewal theorem has the sharper version [14, Theorem XI.3.1]

U(t) = α−1t + c + R(t),
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where c is a certain constant (
∫

u2 dν(u)/2α2) and R(t) → 0 as t →∞. Hence,
using integration by parts for one term,

G(t) =
∫ t

0
eib(t−u)α−1 du + ceibt +

∫ t

0
eib(t−u) dR(u)

= O(1) + R(t)−R(0)eibt + ib
∫ t

0
eib(t−u)R(u) du = o(t).

For (iv), we have by (3.19) with g(t) = e(λ−1)t, using dominated convergence and
(3.18),

e−λtF (t) = e(1−λ)tG(t) =
∞∑

n=0

E
(
e(1−λ)t+(λ−1)(t−Sn)1{t≤Sn}

)

→
∞∑

n=0

E
(
e−(λ−1)Sn

)
=

∞∑

n=0

E
(
e−(λ−1)Y1

)n =
∞∑

n=0

ν̃(λ− 1)n

=
∞∑

n=0

φ(λ)n =
(
1− φ(λ)

)−1
.

¤

Proof of Theorem 3.1. We first apply Lemma 3.6(i) to (3.11), with f(t) = 1 for
t ≥ 0, and obtain γ = α−1 and m∗(t) ∼ α−1et, which proves Theorem 3.1(i).

To obtain more refined asymptotics, we use Laplace transforms. Let H(t) :=
1{t≥0} (the Heaviside function), and note that H̃(z) =

∫∞
0 e−tz dt = 1/z, Re z > 0.

Since the Laplace transform converts convolutions to products, the renewal equation
(3.11) yields m̃∗(z) = H̃(z) + µ̃(z)m̃∗(z), and thus

m̃∗(z) =
H̃(z)

1− µ̃(z)
=

1
z(1− φ(z))

, (3.20)

for z such that the transforms exist. By the estimate m∗(t) ∼ α−1et above, m∗(t) =
O(et) and thus m̃∗(z) exists for Re z > 1. Consequently, (3.20) holds for Re z > 1,
and can be used to extend m̃∗(z) to a meromorphic function for Re z > 0.

We want to invert the Laplace transform in (3.20). This is simple if φ is rational,
yielding (3.6). (Note that φ(0) = E |{j : Vj > 0}| > 1.) In general, there are
difficulties to doing this directly, because m̃∗(z) is not integrable along a vertical
line Re z = s; it decreases too slowly as | Im z| → ∞. We therefore regularize. Let
ε > 0, and let Hε := H ∗ ε−11[0,ε]; thus

Hε(t) =





0, t < 0,

1− t/ε, 0 ≤ t < ε,

1, t ≥ ε.

Let m∗ε =
∑∞

n=0 µ∗n ∗Hε be the locally bounded solution to m∗ε = Hε + µ ∗m∗ε.
Note that Hε(t) ≤ H(t) ≤ Hε(t + ε), and thus

m∗ε(t) ≤ m∗(t) ≤ m∗ε(t + ε). (3.21)
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We have

H̃ε(z) = H̃(z)ε−1

∫ ε

0
e−zt dt =

1− e−εz

εz2
, Re z > 0,

and we find, arguing as for (3.20) above,

m̃∗ε(z) =
H̃ε(z)

1− µ̃(z)
=

1− e−εz

εz2(1− φ(z))
,

first for Re z > 1, and then for Re z > 0, extending m̃∗ε to a meromorphic function
in this domain. This function decreases (using Condition B(δ) and Lemma 2.1) as
| Im z|−2 on vertical lines Re z = s ≥ δ, and is thus integrable there. Hence, the
Laplace inversion formula (a Fourier inversion) shows that for any s > 1 and t ≥ 0,

m∗ε(t) =
1

2πi

∫ s+i∞

s−i∞
etzm̃∗ε(z) dz. (3.22)

We may, increasing δ a little if necessary, assume that φ(z) = 1 has no roots with
Re z = δ; in cases (iii), (iv) and (v) we may similarly assume that each λ ∈ Λ
with Reλ > δ has φ′(λ) 6= 0. It is then easy to show, using Condition B(δ) and
Lemma 2.1, that we may shift the line of integration in (3.22) to Re z = δ and
obtain, for 0 < ε ≤ 1,

m∗ε(t) =
1

2πi

∫ δ+i∞

δ−i∞
etzm̃∗ε(z) dz +

M(δ)∑

i=1

Resz=λi

(
etzm̃∗ε(z)

)

= O

(
etδ

∫ δ+i∞

δ−i∞
min

( 1
|z| ,

ε

|z|2
)
|dz|

)
+

M(δ)∑

i=1

etλi

−λiφ′(λi)
1− e−ελi

ελi

=
M(δ)∑

i=1

etλi

−λiφ′(λi)
(
1 + O(ε)

)
+ O

(
etδ

(
1 + ln

1
ε

))
.

Now choosing ε := e−t we obtain

m∗ε(t) =
M(δ)∑

i=1

etλi

−λiφ′(λi)
+ O(1) + O

(
etδ(1 + t)

)
, t ≥ 0.

Replacing t by t + ε, we obtain the same estimate for m∗ε(t + ε), and thus (3.21)
yields

m∗(t) =
M(δ)∑

i=1

etλi

−λiφ′(λi)
+ O

(
etδ′), t ≥ 0, (3.23)

which yields Theorem 3.1(ii). (Recall that −λ1φ
′(λ1) = −φ′(1) = α.)

For the estimates of the variance, we use Lemma 3.6 and (3.12). It is easily seen
(by dominated convergence) that h in (3.13) is a.e. continuous. Choose δ′ > δ with
δ < δ′ < ReλM(δ); in case (iii) with M(δ) = 1, let further δ′ < 1/2.
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Note that then (3.23) trivially holds for t < 0 too. Hence,

b∑

j=1

m∗(t−Xj)−m∗(t) =
M(δ)∑

i=1

∑b
j=1 e(t−Xj)λi − etλi

−λiφ′(λi)
+ O

(
etδ′)

=
M(δ)∑

i=2

etλi

−λiφ′(λi)




b∑

j=1

V λi
j − 1


 + O

(
etδ′),

where we use the fact that λ1 = 1 and thus
∑b

j=1 V λ1
j − 1 =

∑b
j=1 Vj − 1 = 0.

Consequently, by (3.13) and (2.1), letting σ2 := Reλ2 > δ′ if M(δ) ≥ 2, and
σ2 := δ′ if M(δ) = 1,

h(t) =
M(δ)∑

i=2

M(δ)∑

k=2

e(λi+λk)t

λiλkφ′(λi)φ′(λk)
ψ(λi, λk) + O

(
et(δ′+σ2)

)
. (3.24)

For Theorem 3.1(iii), (3.24) yields h(t) = O
(
e2σ2t

)
with σ2 < 1/2, and

Lemma 3.6(i) applies to (3.12), yielding σ2∗(t) ∼ γet. We postpone the calcula-
tion of β = γ, verifying (3.4), to Lemma 3.7.

For Theorem 3.1(iv) and (v), we treat the terms in (3.24) separately, using
linearity; for the error term we also use monotonicity and comparison with the
case f(t) = et(δ′+σ2). In order to solve (3.12), we thus consider (3.14), with
f(t) replaced by the individual terms in (3.24), and apply Lemma 3.6, letting
t := lnx. For (iv), i.e. Reλ2 = 1/2, a term in (3.24) with Reλk = Reλi = 1/2
and λk = λi, and thus λi + λk = 1, yields by Lemma 3.6(ii) a contribution
(αλiλkφ

′(λi)φ′(λk))−1ψ(λi, λk)tet = α−1|λiφ
′(λi)|−2ψ(λi, λi)tet. The contributions

of all other terms in (3.24) are o(tet), by Lemma 3.6(iii) (the other cases with
Reλk = Reλi = 1/2) and Lemma 3.6(iii) (the remaining cases).

Similarly, for (v), the leading terms come from the cases Reλk = Reλi = Reλ2

and Lemma 3.6(iv).
Furthermore, by (3.5), β = 0 in (iv) only if for every λi ∈ Λ(1/2), we have

ψ(λi, λ̄i) = E |∑j V λi
j − φ(λi)|2 = 0, and thus, since φ(λi) = 1, (1.8) holds. ¤

Lemma 3.7. Under the assumptions of Theorem 3.1(iii), with h(t) as in (3.13),
∫ ∞

0
h(t)e−t dt =

1
2π

∫ ∞

−∞

ψ(1/2 + iu, 1/2− iu)
|1/2 + iu|2|1− φ(1/2 + iu)|2 du > 0. (3.25)

Proof. Write f(t) :=
(
m∗(t) − α−1et

)
e−t/2, −∞ < t < ∞. Thus, by (3.23),

f(t) = O
(
e−(1/2−σ2)t

)
for t ≥ 0 and f(t) = −α−1et/2 = O

(
e−|t|/2

)
for t < 0.

In particular, f ∈ L2(−∞,∞). Furthermore, the (two-sided) Laplace transform
f̃(z) :=

∫∞
−∞ f(t)e−tz dt is analytic for −(1/2− σ2) < Re z < 1/2.

Define further f1(t) := f(t)et/2 = m∗(t) − α−1et and f2(t) := f1(t)1{t≥0}. Then
f2(t) = O

(
eσ2t

)
, and thus the Laplace transform f̃2(z) is analytic for Re z > σ2.
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For Re z > 1 we have, by (3.20),

f̃2(z) =
∫ ∞

0
e−tz

(
m∗(t)−α−1et

)
dt = m̃∗(z)−α−1(z−1)−1 =

1
z(1− φ(z)

− 1
α(z − 1)

;

by analytic continuation, this formula holds for Re z > σ2. Consequently, for σ2 <

Re z < 1,

f̃1(z) = f̃2(z) +
∫ 0

−∞
e−tz(−α−1et) dt = f̃2(z)− α−1(1− z)−1 =

1
z(1− φ(z)

.

Since f̃(z) = f̃1(z + 1/2), we find the Fourier transform

f̂(u) :=
∫ ∞

0
e−iutf(t) dt = f̃(iu) = f̃1(1

2 + iu) =
1

(1
2 + iu)(1− φ(1

2 + iu))
. (3.26)

Next, since
∑

j e−Xj =
∑

j Vj = 1,

b∑

j=1

m∗(t−Xj)−m∗(t) =
b∑

j=1

f1(t−Xj)− f1(t) + α−1
b∑

j=1

et−Xj − α−1et

=
b∑

j=1

f1(t−Xj)− f1(t),

so by (3.13), and defining Ψ(w, y) :=
∫∞
−∞ f(t− w)f(t− y) dt,

∫ ∞

0
h(t)e−t dt + 1 =

∫ ∞

0

(
h(t) + 1

)
e−t dt = E

∫ ∞

−∞

( b∑

j=1

f1(t−Xj)− f1(t)
)2

e−t dt

= E
∫ ∞

−∞

∣∣∣
b∑

j=1

e−Xj/2f(t−Xj)− f(t)
∣∣∣
2
dt

= E
b∑

j,k=1

e−Xj/2−Xk/2Ψ(Xj , Xk)− 2E
b∑

j=1

e−Xj/2Ψ(Xj , 0) + Ψ(0, 0).

By Parseval’s relation and f = f ,

Ψ(w, y) =
1
2π

∫ ∞

−∞
e−iuwf̂(u)e−iuyf̂(u) du =

1
2π

∫ ∞

−∞
|f̂(u)|2eiu(y−w) du.
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Hence,

∫ ∞

0
h(t)e−t dt + 1 = E

1
2π

∫ ∞

−∞
|f̂(u)|2

( b∑

j,k=1

e−Xj/2−Xk/2+iu(Xk−Xj)

−
b∑

j=1

e−Xj/2+iuXj −
b∑

k=1

e−Xk/2−iuXk + 1
)

du

= E
1
2π

∫ ∞

−∞
|f̂(u)|2 E

∣∣∣
b∑

j=1

V
1/2−iu
j − 1

∣∣∣
2
du

= E
1
2π

∫ ∞

−∞
|f̂(u)|2(ψ(1/2 + iu, 1/2− iu) + |φ(1/2 + iu)− 1|2) du.

Using (3.26),

E
1
2π

∫ ∞

−∞
|f̂(u)|2|φ(1/2 + iu)− 1|2 du =

∫ ∞

−∞

du

|1/2 + iu|2 =
∫ ∞

−∞

du
1
4 + u2

= 2π,

and (3.25) follows by (3.26).
Since ψ(z, z̄) ≥ 0, and by dominated convergence is continuous for Re z ≥ 0,

it follows from (3.4) that β = 0 only if for every z with Re z = 1/2, ψ(z, z̄) =
E |∑j V z

j − φ(z)|2 = 0, and thus

b∑

j=1

V
1/2+iu
j = φ(1/2 + iu) (3.27)

a.s., for every real u. Considering first rational u, we see that a.s. (3.27) holds for
all real u.

However, for any realization (V1, . . . , Vb) and ε > 0, the Kronecker–Weyl theorem
shows that (1, . . . , 1) is a cluster point of (exp(iu log V1), . . . , exp(iu log Vb)) as u →
∞ (even with u ∈ N); thus it is possible to find arbitrarily large u with ReV iu

j ≥
(1 − ε) and thus ReV

1/2+iu
j ≥ (1 − ε)V 1/2

j for j = 1, . . . , b. Hence, (3.27) implies
that lim supu→∞ |φ(1

2 + iu)| ≥ φ(1/2) ≥ 1. This contradicts Condition B(δ) and
Lemma 2.1. Hence β > 0. ¤

Proof of Theorem 3.4. (i): As remarked above, (3.6) follows by inverting the
Laplace transform in (3.20), using a partial fraction expansion.

(ii): Note first that φ(z) → 0 as z → +∞ (by dominated convergence); hence,
φ being rational and thus continuous at ∞, φ(∞) = 0 and φ(z) → 0 as |z| → ∞.
Consequently, Condition B(δ) holds for every δ. We thus see that the conditions of
Theorem 3.1(iii) are satisfied, and from the proof above we see that, with h given
by (3.13),

β = α−1

∫ ∞

0
h(t)e−t dt = α−1

∫ ∞

1
h(lnx)x−2 dx.
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We have, by (3.6), m(x) =
∑M

i=0 aix
λi1{x≥1} and thus

m∗(lnx−Xj) = m(xe−Xj ) = m(xVj) =
M∑

i=0

ai(xVj)λi1{x≥V −1
j }.

Hence, letting V0 := 1, ε0 = −1 and εj = 1 for j ≥ 1, and recalling (1.1),

H(x) :=
b∑

j=1

m∗(lnx−Xj)−m∗(lnx) =
M∑

i=0

aix
λi

( b∑

j=1

V λi
j 1{x≥V −1

j } − 1{x≥1}
)

=
∑

i6=1

aix
λi

b∑

j=0

V λi
j εj1{x≥V −1

j } − a1x
b∑

j=1

Vj1{1≤x<V −1
j }.

By (3.13), this leads to
∫ ∞

1
h(lnx)x−2 dx + 1 =

∫ ∞

1
EH(x)2x−2 dx = E

∫ ∞

1
H(x)2x−2 dx

= E
∑

i,k 6=1

aiak

b∑

j,l=0

εjεlV
λi
j V λk

l

∫ ∞

V −1
j ∨V −1

l

xλi+λk−2 dx

− 2E
∑

i 6=1

a1ai

b∑

j=0

b∑

l=1

εjV
λi
j Vl

∫ V −1
l

V −1
j

xλi−1 dx1{V −1
j ≤V −1

l }

+ E a2
1

b∑

j,l=1

VjVl

∫ V −1
j ∧V −1

l

1
dx

and the result follows by straightforward calculations, noting that a1 = α−1. ¤

4. Zolotarev metric and minimal Ls metric

In this section we collect properties of the minimal Ls metric and the Zolotarev
metric that are used subsequently.

We denote by Md the space of probability measures on Rd. The minimal Ls

metric `s, s > 0, is defined on the subspace Md
s ⊂Md of probability measures with

finite absolute moment of order s by

`s(µ, ν) := inf
{
‖X − Y ‖s∧1

s : X
d= µ, Y

d= ν
}

, µ, ν ∈Md
s ,

where ‖X‖s := (E |X|s)1/s denotes the Ls norm of X. The infimum is taken over
all random vectors of X, Y on a joint probability space with the given marginal
distributions µ and ν. (In other words, over all couplings (X,Y ) of µ and ν.) We
will also use the notation `s(X,Y ) := `s(L(X),L(Y )).

For s ≥ 1 and γ ∈ Rd, we denote by Md
s(γ) ⊂ Md

s the subspace of probability
measures with expectation γ. The pairs (Md

s , `s), s > 0, and (Md
s(γ), `s), s ≥ 1,

are complete metric spaces and convergence in `s is equivalent to weak convergence
plus convergence of the absolute moments of order s.
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Random vectors (X, Y ) with X
d= µ, Y

d= ν, and `s(µ, ν) = ‖X−Y ‖s∧1
s are called

optimal couplings of (µ, ν). Such optimal couplings exist for all µ, ν ∈ Md
s . These

properties can be found in Dall’Aglio [11], Major [32], Bickel and Freedman [5],
and Rachev [34]. Similar properties hold for probability measures on Cd (because
Cd ∼= R2d), where we use corresponding notations.

The Zolotarev metric ζs, s > 0 is defined by

ζs(X, Y ) := ζ(L(X),L(Y )) := sup
f∈Fs

|E(f(X)− f(Y ))| (4.1)

where s = m + α with 0 < α ≤ 1, m = dse − 1 ≥ 0 is an integer, and

Fs := {f ∈ Cm(Rd,R) : ‖f (m)(x)− f (m)(y)‖ ≤ ‖x− y‖α},

where Cm(Rd,R) denotes the space of m times continuously differentiable functions
f on Rd and f (m) their mth derivative.

The expression ζs(X,Y ) is finite if X and Y have finite absolute moments of
order s and all mixed moments of orders 1, . . . ,m of X and Y coincide.

The metric ζs is an ideal metric of order s, i.e., we have for Z independent of
(X, Y ) and any d× d square matrix A

ζs(X + Z, Y + Z) ≤ ζs(X,Y ), ζs(AX,AY ) ≤ ‖A‖s
op ζs(X, Y ),

where ‖A‖op := sup‖u‖=1 ‖Au‖ denotes the operator norm of the matrix. Conver-
gence in ζs implies weak convergence. For general reference and properties of ζs we
refer to Zolotarev [38; 39] and Rachev [34].

5. General contraction theorems in continuous time

In this section we extend a general contraction theorem for recursive sequences
(Yn)n≥0 of d-dimensional vectors as developed in Neininger and Rüschendorf [33] to
families (Yt)t≥0 of d-dimensional vectors with continuous parameter t ∈ [0,∞). (For
future applications, and since the proof is the same except for some minor notational
differences, we state the result for random vectors. The reader may concentrate on
the one-dimensional case, which is the only case needed in the rest of the paper.)
We assume that we have

Yt
d=

K∑

r=1

Ar(t)Y
(r)

T
(t)
r

+ bt, t ≥ τ0, (5.1)

where K is a positive integer, τ0 ≥ 0, and T (t) = (T (t)
1 , . . . , T

(t)
K ) is a vector of ran-

dom indices T
(t)
r ∈ [0, t], the Ar(t) are random d × d matrices for r = 1, . . . ,K

and bt is a random d-dimensional vector; further, (Y (1)
t )t≥0, . . . , (Y

(K)
t )t≥0 and

(A1(t), . . . , AK(t), bt, T
(t))t≥0 are mutually independent families of random vari-

ables, and for each t ≥ 0, Yt and Y
(r)
t are identically distributed for all r = 1, . . . ,K.
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We assume that all Yt as well as Ar(t), bt and T (t) are defined on some proba-
bility space (Ω,F , µ), and that they are measurable functions of (t, ω). (This is a
technicality to ensure that the sum in (5.1) is well-defined. Note, however, that the
joint distribution of Yt for different t is irrelevant.)

We introduce the normalized random vectors

Xt := C
−1/2
t (Yt −Mt), t ≥ 0, (5.2)

where Mt ∈ Rd and Ct is a symmetric, positive definite square matrix. We assume
that Mt and Ct are measurable functions of t; further restrictions on Mt and Ct will
be given in Convention C. The recurrence (5.1) implies a recurrence for Xt,

Xt
d=

K∑

r=1

A(t)
r X

(r)

T
(t)
r

+ b(t), t ≥ τ0, (5.3)

with independence relations as in (5.1) and

A(t)
r = C

−1/2
t Ar(t)C

1/2

T
(t)
r

, b(t) = C
−1/2
t

(
bt −Mt +

K∑

r=1

(
Ar(t)MT

(t)
r

)
)

. (5.4)

As for the case with integer indexed vectors we establish a transfer theorem of the
following form: Appropriate convergence of the coefficients A

(t)
r → A∗r, b(t) → b∗

implies weak convergence of the quantities Xt to a limit X. The distribution L(X)
of X is a fixed point of the limiting equation obtained from (5.3) by letting formally
t →∞:

X
d=

K∑

r=1

A∗rX
(r) + b∗, (5.5)

where (A∗1, . . . , A
∗
K , b∗), X(1), . . . , X(K) are independent and X(r) d= X for r =

1, . . . ,K. To formalize this we introduce the map T on the space Md of proba-
bility measures on Rd by

T : Md →Md, η 7→ L
(

K∑

r=1

A∗rZ
(r) + b∗

)
, (5.6)

where (A∗1, . . . , A
∗
K , b∗), Z(1), . . . , Z(K) are independent and L(Z(r)) = η for r =

1, . . . ,K. Then X is a solution of (5.5) if and only if L(X) is a fixed point of T .
We make use of Zolotarev’s metric ζs with 0 < s ≤ 3. To ensure finiteness of the

metric subsequently we make the following assumptions about the scaling imposed
in (5.2):

Convention C. For 1 < s ≤ 3 we assume that Mt = EYt. For 2 < s ≤ 3 we assume
that Cov(Yt) is positive definite for all t ≥ τ1 with a τ1 ≥ τ0 and that Ct = Idd for
0 ≤ t < τ1 and Ct = Cov(Yt) for t ≥ τ1.
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This convention implies that Xt is centered for 1 < s ≤ 3 and has Idd as its
covariance matrix for 2 < s ≤ 3 and t ≥ τ1. (For 0 < s ≤ 1, Convention C is void.)

Theorem 5.1. Let 0 < s ≤ 3 and let (Yt)t≥0 be a process of random vectors satis-
fying (5.1) such that ‖Yt‖s < ∞ for every t. Denote by Xt the rescaled quantities
in (5.2), assuming Convention C. Assume that ‖A(t)

r ‖s < ∞, ‖b(t)‖s < ∞ and
sup0≤u≤t ‖Xu‖s < ∞ for every t ≥ 0, and

(
A

(t)
1 , . . . , A

(t)
K , b(t)

)
`s−→ (A∗1, . . . , A

∗
K , b∗) , (5.7)

E
K∑

r=1

‖A∗r‖s
op < 1, (5.8)

E
[
1n

T
(t)
r ≤τ

o
∥∥∥A(t)

r

∥∥∥
s

op

]
→ 0 (5.9)

for every τ > 0 and r = 1, . . . , K. Then Xt converges in distribution to a limit X,
and

ζs(Xt, X) → 0, t →∞, (5.10)

where L(X) is the unique fixed point of T given in (5.6) subject to ‖X‖s < ∞ and



EX = 0 for 1 < s ≤ 2,

EX = 0, Cov(X) = Idd for 2 < s ≤ 3.
(5.11)

Proof. This proof is a continuous extension of the proof of Theorem 4.1 in Neininger
and Rüschendorf [33] for the discrete time case. The existence and uniqueness of
the fixed point of T subject to (5.11) is obtained as follows: For 1 < s ≤ 3 equation
(5.3) implies E b(t) = 0 for all t > 0, thus by (5.7) we obtain E b∗ = 0. For 2 < s ≤ 3
equation (5.3) implies that for all t ≥ τ1

Idd = Cov(Xt)

= E
[
b(t)(b(t))tr

]
+ E

[
K∑

r=1

(
1{T (t)

r <τ1}A
(t)
r C̃

T
(t)
r

(A(t)
r )tr + 1{T (t)

r ≥τ1}A
(t)
r (A(t)

r )tr
)]

,

where btr denotes the transpose of a vector or matrix and C̃t := Cov(Xt); recall
that C̃t = Id when t ≥ τ1.

By (5.7), (5.9) and Hölder’s inequality this implies

E
[
b∗(b∗)tr

]
+ E

[
K∑

r=1

A∗r(A
∗
r)

tr

]
= Idd.

Now, Corollary 3.4 in [33] implies existence and uniqueness of the fixed-point.
Since

E
K∑

r=1

‖A(t)
r ‖s

op → E
K∑

r=1

‖A∗r‖s
op = ξ < 1 (5.12)
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there exist ξ+ ∈ (ξ, 1) and τ2 > τ1 such that for all t ≥ τ2 we have

E
K∑

r=1

‖A(t)
r ‖s

op ≤ ξ+ < 1. (5.13)

Now, we introduce the quantity

Qt :=
K∑

r=1

A(t)
r

(
1n

T
(t)
r <τ2

oX(r)

T
(t)
r

+ 1n
T

(t)
r ≥τ2

oX(r)

)
+ b(t), t ≥ τ1, (5.14)

where (A(t)
1 , . . . , A

(t)
K , b(t), T (t)), X(1), . . . , X(K), (X(1)

t ), . . . , (X(K)
t ) are independent

with X(r) ∼ X and X
(r)
t ∼ Xt for r = 1, . . . , K and t ≥ 0. Comparing with (5.3)

we obtain that Qt is centered for 1 < s ≤ 3 and has the covariance matrix Idd for
2 < s ≤ 3 and t ≥ τ1. Hence, ζs distances between Xt, Qt and X are finite for all
t ≥ τ1. The triangle inequality implies

∆(t) := ζs(Xt, X) ≤ ζs(Xt, Qt) + ζs(Qt, X). (5.15)

As in the proof for the discrete case we obtain ζs(Qt, X) → 0 as t → 0, where we
use that sup0≤t≤τ2 ‖Xt‖s < ∞.

The first summand of (5.15) requires a continuous analog of the estimate in the
discrete case. Using the properties of the ζs metric, we obtain, for t ≥ τ1,

ζs(Xt, Qt) ≤ E
K∑

r=1

1n
T

(t)
r ≥τ2

o
∥∥∥A(t)

r

∥∥∥
s

op
∆(T (t)

r ), (5.16)

and, with (5.15), and rt := ζs(Qt, X) it follows

∆(t) ≤ E
K∑

r=1

1n
T

(t)
r ≥τ2

o
∥∥∥A(t)

r

∥∥∥
s

op
∆(T (t)

r ) + rt. (5.17)

Now, we obtain ∆(t) → 0 in two steps, first showing that (∆(t))t≥0 is bounded and
then, using the bound, that ∆(t) → 0.

For the first step we introduce

∆∗(t) := sup
τ2≤u≤t

∆(u). (5.18)

We have ∆∗(t) < ∞ for all t ≥ τ2, since, for τ2 ≤ u ≤ t, we have ζs(Xu, X) ≤
Cs(‖X‖s

s + ‖Xu‖s
s) ≤ Cs(‖X‖s

s + supτ2≤u≤t ‖Xu‖s
s) < ∞ with a constant Cs > 0,

using [38, Lemma 2]. By definition, ∆∗ is monotonically increasing. With R :=
supt≥τ2 rt < ∞ we obtain for τ2 ≤ u ≤ t, from (5.17), (5.18) and (5.13),

∆(u) ≤ E
K∑

r=1

1n
T

(u)
r ≥τ2

o
∥∥∥A(u)

r

∥∥∥
s

op
∆∗(u) + R

≤ ξ+∆∗(t) + R.
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Hence, we obtain ∆∗(t) ≤ ξ+∆∗(t) + R, thus ∆∗(t) ≤ R/(1− ξ+). This implies

∆∗(∞) := sup
t≥τ2

∆(t) ≤ R

1− ξ+
< ∞. (5.19)

For the second step we denote L := lim supt→∞∆(t). For every ε > 0 there exists
a τ3 > τ2 such that we have ∆(t) ≤ L+ε for all t ≥ τ3. Thus, from (5.17) we obtain

∆(t) ≤ E
K∑

r=1

1n
τ2≤T

(t)
r <τ3

o
∥∥∥A(t)

r

∥∥∥
s

op
∆∗(∞) + E

K∑

r=1

1n
T

(t)
r ≥τ3

o
∥∥∥A(t)

r

∥∥∥
s

op
(L + ε) + rt

and letting t →∞ we obtain by (5.9) and (5.12)

L ≤ ξ(L + ε).

If L > 0, this is a contradiction for 0 < ε < L(1− ξ)/ξ. Hence, we have L = 0. This
proves (5.10). Finally, recall that convergence in ζs implies weak convergence. ¤

As a corollary we formulate a univariate central limit theorem that corresponds
to Neininger and Rüschendorf [33, Corollary 5.2] for the discrete time case. For this
we assume that there are expansions, as t →∞,

EYt = f(t) + o(g1/2(t)), Var(Yt) = g(t) + o(g(t)) (5.20)

with functions f : [0,∞) → R, g : [0,∞) → [0,∞), with

sup
u≤t

|f(u)| < ∞ for every t > 0, lim
t→∞ g(t) = ∞, sup

u≤t
g(u) = O(g(t)). (5.21)

Thus, for some constant C ≥ 1, g(u) ≤ Cg(t) when 0 ≤ u ≤ t.
Then the following central limit law holds:

Corollary 5.2. Let 2 < s ≤ 3 and let Yt, t ≥ 0, be given s-integrable, univariate
random variables satisfying (5.1) with Ar(t) = 1 for all r = 1, . . . , K and t ≥ 0.
Assume that supu≤t E |Yu|s < ∞ for every t, and that the mean and variance of Yt

satisfy (5.20) with (5.21). If, as t →∞,



√
g(T (t)

1 )
g(t)

, . . . ,

√
g(T (t)

K )
g(t)


 `s−→ (A∗1, . . . , A

∗
K), (5.22)

1
g1/2(t)

(
bt − f(t) +

K∑

r=1

f(T (t)
r )

)
`s−→ 0, (5.23)

and furthermore
K∑

r=1

(A∗r)
2 = 1 a.s., P

(
K⋃

r=1

{A∗r = 1}
)

< 1, (5.24)

then
Yt − f(t)
g1/2(t)

d→ N (0, 1). (5.25)
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Proof. We begin by replacing g(t) by max(g(t), 1); by (5.21), this does not affect
g(t) for large t, and it is easy to see that (5.20), (5.21), (5.22), (5.23) still hold. We
may thus assume that g(t) ≥ 1 for every t.

Denote Mt := EYt and σ2
t := Var(Yt). By (5.20), σ2

t /g(t) → 1. (All unspecified
limits are as t →∞.) Choose τ1 ≥ τ0 such that 1

4g(t) ≤ σ2
t ≤ 4g(t) for t ≥ τ1. Let,

as in Convention C, Ct := 1 for t < τ1 and Ct := σ2
t for t ≥ τ1, and write σ̃t := C

1/2
t

and ε(t) := σ̃t/g(t)1/2−1 =
(
Ct/g(t)

)1/2−1. For t ≥ τ1, ε(t) =
(
VarYt/g(t)

)1/2−1,
so by (5.20),

ε(t) → 0 as t →∞. (5.26)

Further, Ct/g(t) = 1/g(t) ≤ 1 for t < τ1, while Ct/g(t) = σ2
t /g(t) ≤ 4 for t ≥ τ1.

Hence |ε(t)| ≤ 1 for all t. With (5.4) and Ar(t) = 1 we have, for t ≥ τ1,

A(t)
r =

σ̃
T

(t)
r

σt
=

(1 + ε(T (t)
r ))g(T (t)

r )1/2

σt
, (5.27)

b(t) = σ−1
t

(
bt −Mt +

K∑

r=1

M
T

(t)
r

)
. (5.28)

Since g(T (t)
r ) ≤ Cg(t) by (5.21), we have, for t ≥ τ1,∥∥∥∥∥A(t)
r − g(T (t)

r )1/2

σt

∥∥∥∥∥
s

=

∥∥∥∥∥ε(T (t)
r )

g(T (t)
r )1/2

σt

∥∥∥∥∥
s

≤ sup
u≤t

∣∣∣∣∣ε(u)
g(u)1/2

σt

∣∣∣∣∣ . (5.29)

For any δ > 0, there exists, by (5.26), τ(δ) ≥ τ1 such that |ε(t)| ≤ δ when t ≥ τ(δ).
Thus, if τ(δ) ≤ u ≤ t, then

∣∣∣∣∣ε(u)
g(u)1/2

σt

∣∣∣∣∣ ≤ δ
Cg(t)1/2

σt
≤ 2Cδ.

On the other hand, if u ≤ τ(δ), then
∣∣∣∣∣ε(u)

g(u)1/2

σt

∣∣∣∣∣ ≤
Cg(τ(δ))1/2

σt
→ 0

as t →∞. Hence, supu≤t |ε(u)g(u)1/2/σt| ≤ 2Cδ for sufficiently large t. Since δ > 0
is arbitrary, it follows that the right hand side of (5.29) tends to 0 as t →∞, and
thus (5.29) yields ∥∥∥∥∥A(t)

r − g(T (t)
r )1/2

σt

∥∥∥∥∥
s

→ 0. (5.30)

Since g(t)1/2/σt → 1, (5.22) yields g(T (t)
r )1/2/σt

`s−→ A∗r , which combined with (5.30)
yields A

(t)
r

`s−→ A∗r, jointly for r = 1, . . . , k.
Next, for any ε > 0, there exists by (5.20) τε ≥ τ1 such that |Mt−f(t)| ≤ εg(t)1/2

if t ≥ τε. Consequently, if T
(t)
r ≥ τε, then

|M
T

(t)
r
− f(T (t)

r )| ≤ εg(T (t)
r )1/2 ≤ Cεg(t)1/2.
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Since supu≤τε
|Mu| and supu≤τε

|f(u)| are finite, the same estimate holds for T
(t)
r <

τε too, provided t is large. Consequently, |M
T

(t)
r
− f(T (t)

r )|/g(t)1/2 ≤ Cε if t is large

enough. It follows that ‖M
T

(t)
r
− f(T (t)

r )‖s/g(t)1/2 → 0 as t →∞, so by (5.28),

(5.23) and (5.20), b(t) `s−→ 0.
We apply Theorem 5.1 with 2 < s ≤ 3; we have shown that (5.7) holds with b∗ =

0. The two assumptions in (5.24) and s > 2 ensure that we have E
∑K

r=1 |A∗r|s < 1.
Finally, by (5.30), for every τ and r,

∥∥∥∥1nT
(t)
r ≤τ

oA(t)
r

∥∥∥∥
s

≤
∥∥∥∥∥1
n

T
(t)
r ≤τ

o g(T (t)
r )1/2

σt

∥∥∥∥∥
s

+

∥∥∥∥∥A(t)
r − g(T (t)

r )1/2

σt

∥∥∥∥∥
s

≤ Cg(τ)1/2

σt
+ o(1) → 0.

Now, Theorem 5.1 implies (Yt − Mt)/σt
d→ X, where L(X) is characterized by

‖X‖s < ∞, EX = 0, Var(X) = 1, and

X
d=

K∑

r=1

A∗rX
(r), (5.31)

with assumptions as in (5.5). Since
∑K

r=1(A
∗
r)

2 = 1 this is solved by L(X) = N (0, 1).
Consequently,

Yt −Mt

σt

d→ N (0, 1),

which, in view of (5.20), implies the assertion. ¤

The following theorem covers cases where the previous central limit theorem of
Corollary 5.2 fails due to the appearance of periodic behavior. For this we assume
that there is an expansion of the mean, as t →∞,

EYt = f(t) + Re(γtλ) + o(tσ), (5.32)

with a function f : [0,∞) → R, γ ∈ C \ {0}, and λ ∈ C with σ := Re(λ) > 0. We
denote

A(t)
r :=

(
T

(t)
r

t

)λ

, r = 1, . . . , K, (5.33)

b(t) :=
1
tσ

(
bt − f(t) +

K∑

r=1

f(T (t)
r )

)
. (5.34)

Note that A
(t)
r in general is complex, while b(t) is real.

Theorem 5.3. Let Yt, t ≥ 0, be given square-integrable, univariate random vari-
ables satisfying (5.1) with Ar(t) = 1 for all r = 1, . . . , K and t ≥ 0. Assume that
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supu≤t E |Yu|2 < ∞ for every t > 0 and that the mean of Yt satisfies (5.32) with
λ = σ + iτ and σ > 0, and some locally bounded function f(t). If, as t →∞,

(A(t)
1 , . . . , A

(t)
K ) `2−→ (A∗1, . . . , A

∗
K) and ‖b(t)‖2 → 0, (5.35)

and furthermore

E
K∑

r=1

|A∗r|2 < 1, (5.36)

then, as t →∞,

`2

(
Yt − f(t)

tσ
, Re

(
Xeiτ ln t

))
→ 0, (5.37)

where L(X) is the unique fixed point in MC
2 (γ) of

T : MC →MC, η 7→ L
(

K∑

r=1

A∗rZ
(r)

)
, (5.38)

where (A∗1, . . . , A
∗
K), Z(1), . . . , Z(K) are independent and L(Z(r)) = η for r =

1, . . . ,K.

Proof. We extend an approach based on the contraction method from Fill and Kapur
[16]. We may assume that τ0 ≥ 1.

First, for technical convenience we show that we further may assume Yt = 0 and
f(t) = 0 for 0 ≤ t ≤ 1. Let (Y (r)∗

t )t, r = 1, . . . , K, be another set of copies of (Yt)t,
independent of each other and of everything else. We may replace Y

(r)
t in (5.1)

by Y
(r)
t 1{t≥1} + Y

(r)∗
t 1{t<1}, which has the same distribution and independence

properties. Hence Y
(r)
t 1{t≥1} satisfies (5.1) (for t ≥ τ0 ≥ 1) with bt replaced by

b̃t := bt +
∑

r Y
(r)∗
T

(t)
r

1{T (t)
r <1}. This replaces b(t) by b̃(t) with
∣∣∣b̃(t) − b(t)

∣∣∣ ≤ t−σ
∑

r

∣∣∣Y (r)∗
T

(t)
r

∣∣∣1{T (t)
r <1}

so ‖b̃(t) − b(t)‖2 = O(t−σ) and (5.35) still holds. We may thus consider Y
(r)
t 1{t≥1}

instead, and thus we may assume that Y
(r)
t = 0 when t < 1. Similarly, we may

assume that f(t) = 0 for t < 1, changing b(t) by O(t−σ).
With Xt := (Yt − f(t))/tσ for t > 0 and X0 := 0 we obtain

Xt
d=

K∑

r=1

(
T

(t)
r

t

)σ

X
(r)

T
(t)
r

+ b(t), t ≥ τ0, (5.39)

with b(t) as given in (5.34).
Next we prove that the restriction of T defined in (5.38) to MC

2 (γ)
maps into MC

2 (γ) and is Lipschitz in `2 with Lipschitz constant bounded by(
E

∑K
r=1 |A∗r|2

)1/2
< 1.
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Note that (5.36) implies ‖A∗r‖2 < ∞ for all r = 1, . . . , K. This implies that T (η)
has a finite second moment for all η ∈ MC

2 . Next we claim that
∑K

r=1 EA∗r = 1.
This implies that T (η) has mean γ for all η ∈ MC

2 (γ). To prove
∑K

r=1 EA∗r = 1,
note that (5.32) implies EXt = Re(γtiτ ) + o(1) as t →∞. On the other hand, the
right hand side of (5.39) has mean, using E b(t) → 0,

K∑

r=1

E

[(
T

(t)
r

t

)σ

Re
(
γ(T (t)

r )iτ
)
]

+ o(1) = Re

(
γ

K∑

r=1

E
(T (t)

r )λ

tσ

)
+ o(1)

= Re


γtiτ

K∑

r=1

E

(
T

(t)
r

t

)λ

 + o(1)

= Re

(
γtiτ

K∑

r=1

EA∗r

)
+ o(1),

where we also used that E(T (t)
r /t)λ → EA∗r, see (5.35). Hence, together we obtain,

as t →∞,

Re(γtiτ ) + o(1) = Re

(
γtiτ

K∑

r=1

EA∗r

)
+ o(1). (5.40)

Thus, γ 6= 0 yields
∑K

r=1 EA∗r = 1. For the bound on the Lipschitz constant in `2 of
T restricted to MC

2 see Rösler and Rüschendorf [36, Lemma 1] and Fill and Kapur
[16]: For µ, ν ∈MC

2 choose (Z(1),W (1)), . . . , (Z(K),W (K)) as identically distributed
vectors of optimal couplings of µ and ν and such that (Z(1),W (1)), . . . , (Z(K),W (K)),
(A∗1, . . . , A

∗
K) are independent. Then we have

`2
2(T (µ), T (ν)) = `2

2

(
K∑

r=1

A∗rZ
(r),

K∑

r=1

A∗rW
(r)

)

≤ E
∣∣∣∣∣

K∑

r=1

A∗r(Z
(r) −W (r))

∣∣∣∣∣

2

= E




K∑

r=1

|A∗r|2|Z(r) −W (r)|2 +
∑

r 6=s

A∗r(Z
(r) −W (r))A∗s(Z(s) −W (s))




= E
K∑

r=1

|A∗r|2`2
2(µ, ν) + 0

=
K∑

r=1

E |A∗r|2`2
2(µ, ν).

Altogether we obtain that T has a unique fixed point L(X) in MC
2 (γ).
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The fixed point property of L(X) implies

1
tσ

Re
(
tλX

)
d=

1
tσ

Re

(
K∑

r=1

tλA∗rX
(r)

)
. (5.41)

where (A∗1, . . . , A
∗
K), X(1), . . . , X(b) are independent and L(X(r)) = L(X) for r =

1, . . . ,K. We may assume, e.g. by taking optimal couplings, that ‖A(t)
r −A∗r‖2 → 0

as t →∞. We choose X
(r)
t as optimal couplings to Re(tiτX(r)) (with the right

distribution, i.e. the distribution of Xt) for t ≥ 0 and r = 1, . . . , K. Clearly, we may
assume that, as required, X

(r)
t , r = 1, . . . , K, are independent of each other and of

(T (t), bt)t.
We denote, for t > 0,

∆(t) := `2

(
Yt − f(t)

tσ
, Re

(
Xeiτ ln t

))
= `2

(
Xt,

1
tσ

Re
(
tλX

))
.

Using (5.39) and (5.41) we obtain, for t ≥ τ0,

∆(t) = `2

(
K∑

r=1

(
T

(t)
r

t

)σ

X
(r)

T
(t)
r

+ b(t),
1
tσ

Re

(
K∑

r=1

tλA∗rX
(r)

))

≤
∥∥∥∥∥

K∑

r=1

((
T

(t)
r

t

)σ

X
(r)

T
(t)
r

− 1
tσ

Re
(
tλA∗rX

(r)
))∥∥∥∥∥

2

+
∥∥∥b(t)

∥∥∥
2

≤
∥∥∥∥∥

K∑

r=1

((
T

(t)
r

t

)σ

X
(r)

T
(t)
r

− 1
tσ

Re
(
(T (t)

r )λX(r)
))∥∥∥∥∥

2

+
∥∥∥b(t)

∥∥∥
2

+

∥∥∥∥∥
K∑

r=1

(
1
tσ

Re
(
(T (t)

r )λX(r)
)
− 1

tσ
Re

(
tλA∗rX

(r)
))∥∥∥∥∥

2

. (5.42)

By (5.35) and (5.33) the second and third of the three latter summands tend to
zero as t →∞. We abbreviate

W (t)
r :=

(
T

(t)
r

t

)σ

X
(r)

T
(t)
r

− 1
tσ

Re
(
(T (t)

r )λX(r)
)

. (5.43)

Hence, (5.42) implies

∆(t) ≤

E

(
K∑

r=1

W (t)
r

)2



1/2

+ o(1)

=


E

K∑

r=1

(W (t)
r )2 + E

K∑

r,s=1
r 6=s

W (t)
r W (t)

s




1/2

+ o(1). (5.44)



30 SVANTE JANSON AND RALPH NEININGER

By the definition of ∆(t) and the fact that
(
X

(r)
t , Re(tiτX(r))

)
are optimal couplings

for all t > 0 and r = 1, . . . , K we obtain

E(W (t)
r )2 = E




(
T

(t)
r

t

)2σ

∆2(T (t)
r )


 . (5.45)

From (5.32) we obtain

EXt =
1
tσ

Re(γtλ) + R(t), t > 0,

with R(t) → 0 as t →∞. Since EX(r) = γ and by the independence conditions we
obtain EW

(t)
r = E[(T (t)

r /t)σR(T (t)
r )] and, for r 6= s,

E[W (t)
r W (t)

s ] = E

[(
T

(t)
r

t

T
(t)
s

t

)σ

R(T (t)
r )R(T (t)

s )

]
.

Splitting the latter integral into the events {T (t)
r ≤ t1 or T

(t)
s ≤ t1} and {T (t)

r >

t1 and T
(t)
s > t1} for some t1 > 0 we obtain, for every t1 > 0,

∣∣∣E[W (t)
r W (t)

s ]
∣∣∣ ≤

(
t1
t

)σ

‖R‖2
∞ + sup

u≥t1

R2(u),

where ‖R‖∞ := supt |R(t)| < ∞. From this we obtain first, letting t →∞,
lim supt→∞

∣∣∣E[W (t)
r W

(t)
s ]

∣∣∣ ≤ supu≥t1 R2(u), and then, letting t1 →∞,

E[W (t)
r W (t)

s ] → 0 as t →∞. (5.46)

Now, (5.44), (5.45), and (5.46) imply, for t > τ0,

∆(t) ≤

E




K∑

r=1

(
T

(t)
r

t

)2σ

∆2(T (t)
r )


 + R1(t)




1/2

+ R2(t), (5.47)

with R1(t), R2(t) → 0 as t →∞.
We first show that ‖∆‖∞ < ∞. Define ∆∗(t) := sup0<u≤t ∆(u). By the assump-

tions sup0≤u≤t E |Yu|2 < ∞ and sup0≤u≤t |f(u)| < ∞, together with Yu = 0 and
f(u) = 0 for u ≤ 1, we have ∆∗(t) < ∞ for all t > 0. Let t1 ≥ τ0 be such that
|R1(t)| < 1 and |R2(t)| < 1 for t ≥ t1. Then with (5.47) we obtain, for t ≥ t1,

∆(t) ≤

E




K∑

r=1

(
T

(t)
r

t

)2σ

(∆∗)2(t)


 + 1




1/2

+ 1.

By (5.33), (5.35) and (5.36) there exists a t2 ≥ t1 such that for all t ≥ t2 we have
E

∑K
r=1(T

(t)
r /t)2σ ≤ ξ < 1. Thus, for all t ≥ t2 we obtain, with

√
a + b ≤ √

a +
√

b

for a, b ≥ 0,
∆(t) ≤

√
ξ∆∗(t) + 2,

and thus
∆∗(t) ≤

√
ξ∆∗(t) + 2 + ∆∗(t2),
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which implies ‖∆‖∞ ≤ (
2 + ∆∗(t2)

)
/(1−√ξ) < ∞.

In a second step we show that ∆(t) → 0 as t →∞. For this we assume that
L := lim supt→∞∆(t) > 0. Let ε > 0. There exists a t3 ≥ t2 such that for all t ≥ t3

we have ∆(t) ≤ L + ε. Then (5.47) implies

∆(t)

≤

E




K∑

r=1

(
T

(t)
r

t

)2σ (
1{T (t)

r <t3} + 1{T (t)
r ≥t3}

)
∆2(T (t)

r )


 + R1(t)




1/2

+ R2(t)

≤
(

K∑

r=1

(
t3
t

)2σ

‖∆‖2
∞ + ξ(L + ε)2 + R1(t)

)1/2

+ R2(t).

Hence, t →∞ implies

L ≤
√

ξ(L + ε),

which if L > 0 is a contradiction if we choose ε small enough. Consequently, we
have L = 0 yielding the assertion. ¤

Remark 5.1. Note, that `2 convergence implies convergence of second moments.
Hence in the situation of Theorem 5.3 we also obtain the first order asymptotic
term of the expansion of VarYt:

VarYt ∼ t2σ Var
(
Re

(
Xeiτ ln t

))
= 1

2 t2σ
(
E |X − γ|2 + Re

(
e2iτ ln t E(X − γ)2

))
.

6. Proof of Theorem 1.3

In this section we prove Theorem 1.3. The statements on mean and variance of
N(x) are proved in Section 3. It remains to identify the asymptotic distribution of
N(x) Note that recurrence (1.3) for N(x) is covered by the general recurrence for
Yt in (5.1) by making the choices d = 1, K = b, τ0 = 1, Ar(t) = 1, T

(t)
r = Vrt and

bt = 1 for all r = 1, . . . ,K and t ≥ τ0.
We consider the three cases (i) – (iii) appearing in Theorem 1.3 separately:

Case (i): Theorem 3.1 yields EN(x) = α−1x + o(
√

x) and Var(N(x)) ∼ βx with
β > 0. We apply Corollary 5.2 with the choices f(t) = α−1t and g(t) = βt. The
conditions (5.20) and (5.21) are satisfied. We have supu≤t E |Yu|s < ∞ for s = 3 by
Lemma 3.5. Condition (5.22) is satisfied with A∗r =

√
Vr for r = 1, . . . , K, condition

(5.23) is trivially satisfied, and we have (5.24). Hence, Corollary 5.2 applies and
yields

N(x)− α−1x√
βx

d→ N (0, 1),

which is the assertion.
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Case (ii): Theorem 3.1 yields EN(x) = α−1x + O(
√

x) and Var(N(x)) ∼ βx ln x

with β > 0. We apply Corollary 5.2 with the choices f(t) = α−1t and g(t) = βt ln t.
Now we have g(T (t)

r )/g(t) = Vr + Vr ln(Vr)/ ln t, hence we obtain, since x 7→ x ln x

is bounded on [0, 1],



√
g(T (t)

1 )
g(t)

, . . . ,

√
g(T (t)

K )
g(t)


 `3−→ (A∗1, . . . , A

∗
K),

with A∗r =
√

Vr for r = 1, . . . , K. All conditions of Corollary 5.2 are satisfied as in
case (i) and we obtain

N(x)− α−1x√
βx ln x

d→ N (0, 1).

Case (iii): Theorem 3.1 yields EN(x) = α−1x+Re(γxλ2)+o(xσ), where σ = Reλ2,
which verifies (5.32) (with λ = λ2). We apply Theorem 5.3 with f(x) = α−1x. We
have A

(t)
r = (T (t)

r /t)λ2 = V λ2
r for all t ≥ 1 and r = 1, . . . , K, so A∗r = V λ2

r . Further,
bt = 1 and f(t) =

∑K
r=1 f(T (t)

r ), so b(t) = t−σ and ‖b(t)‖2 = t−σ → 0 as t → ∞.
Finally, E

∑K
r=1 |A∗r|2 = E

∑K
r=1 V 2σ

r < 1 since σ > 1/2. Thus all conditions of
Theorem 5.3 are satisfied and we obtain

`2

(
N(x)− α−1x

xRe λ2
,Re

(
Ξei Im λ2 ln x

)) → 0

as x → ∞. This completes the proof except for the explicit rate of convergence in
Theorem 1.3(iii).

Now, we give a refined version of the proof of Theorem 5.3 for the special recur-
rence (1.3) which yields also the stated rate of convergence.

The restriction of T defined in (1.7) to MC
2 (ν) is Lipschitz in `2 with Lipschitz

constant bounded by
(
E

∑b
r=1 V

2 Re(λ2)
r

)1/2; cf. the first part of the proof of Theorem
5.3. From σ = Re λ2 > 1/2 we obtain that T has a unique fixed point L(Ξ) in
MC

2 (ν).
For Xt := N(t)− α−1t we obtain with (1.3)

Xt
d=

b∑

r=1

X
(r)
Vrt + 1, (6.1)

where X
(r)
t are independent distributional copies of Xt also independent of

(V1, . . . , Vb). With the fixed point property of Ξ we have

tσ Re
(
Ξeiτ ln x

)
= Re(tλ2Ξ) d= Re

(
b∑

r=1

(Vrt)λ2Ξ(r)

)
,

where (V1, . . . , Vb), Ξ(1), . . . , Ξ(b) are independent and L(Ξ(r)) = L(Ξ) for r =
1, . . . , b. We choose X

(r)
t as optimal couplings to Re(tλ2Ξ(r)) for t ≥ 0 and
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r = 1, . . . , b and denote ∆(t) := `2(Xt, Re(tλ2Ξ)). Note that in the definition of
Xt we did not rescale by tσ, hence we have to show ∆(t) = O(tκ).

With W
(t)
r := X

(r)
Vrt − Re((Vrt)λ2Ξ(r)) we obtain, for t ≥ 1,

∆(t) = `2

(
b∑

r=1

X
(r)
Vrt + 1,

b∑

r=1

Re
(
(Vrt)λ2Ξ(r)

))

≤
{
E

(
b∑

r=1

W (t)
r

)2}1/2

+ 1

=

{
b∑

r=1

E(W (t)
r )2 +

b∑

r,s=1
r 6=s

E[W (t)
r W (t)

s ]

}1/2

+ 1.

Conditioning on (V1, . . . , Vb) yields E(W (t)
r )2 = E∆2(Vrt). From EN(t) = α−1t +

Re(γtλ2) + O(tκ) and EΞ = γ we obtain EW
(t)
r = O(tκ). Since W

(t)
r and W

(t)
s are

independent for r 6= s conditionally on (V1, . . . , Vb), it follows that

∆(t) ≤
{

b∑

r=1

E∆2(Vrt) + O
(
t2κ

)
}1/2

+ 1, t ≥ 1. (6.2)

Now, we show that ∆(t)/tκ = O(1). Note that this implies the assertion. We denote

Ψ∗(t) := sup
1≤u≤t

∆(u)
uκ

.

Then, (6.2) implies, that for appropriate R > 0

Ψ∗(t) ≤
{

b∑

r=1

EV 2κ
r (Ψ∗)2(t) + R

}1/2

+ 1, t ≥ 1,

and, with
√

a + b ≤ √
a +

√
b for a, b ≥ 0 and ξ = E

∑b
r=1 V 2κ

r < 1 this implies

Ψ∗(t) ≤
√

R + 1
1−√ξ

< ∞.

The assertion follows.

7. Examples

Example 7.1 (Random splitting of intervals). Sibuya and Itoh [37] studied the
tree defined by random splitting of intervals, with uniformly distributed splitting
points; this is the case b = 2 and V = (U, 1 − U), with U ∼ U(0, 1). (See also
Brennan and Durrett [6, 7]; Kakutani [27] for other properties of such splittings.)

We have

φ(z) = EUz + E(1− U)z = 2
∫ 1

0
uz du =

2
1 + z

, Re z > −1,
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which is a rational function. The characteristic equation (1.5) is 2/(1 + λ) = 1,
and has the single root λ = 1. Thus Theorem 1.3(i) applies and shows asymptotic
normality, as shown by Sibuya and Itoh [37]. Further, α = −φ′(1) = 1/2, so
Theorem 3.1(ii) yields EN(x) = m(x) = 2x+O(xδ) for every δ > 0. More precisely,
Theorem 3.4 yields

EN(x) = m(x) = 2x− 1, x ≥ 1,

which also can be shown directly from (1.2) or from (3.11) [37].
For the asymptotic variance, we obtain from Theorem 3.4(ii), since M = 1 and

a0 = −1, using symmetry,

β = α−1
(
E

(
U + 2U ∧ (1− U) + 1− U

)− 2 + 1
)

+ 2α−2
(
2E

(
U(ln(1− U)− lnU)1{U<1−U}

))− 2α−1

+ α−3
(
2E

(
U ∧ (1− U)

))− α−1

= 20E
(
U ∧ (1− U)

)
+ 16

∫ 1/2

0
u
(
ln(1− u)− ln(u)

)
du− 6

= 8 ln 2− 5 ≈ 0.545177.

This can also be obtained from Theorem 3.1(iii); we have

ψ(z, w) = E
(
(U z + (1− U)z)(Uw + (1− U)w)

)
− φ(z)φ(w)

=
2

1 + z + w
+ 2B(z + 1, w + 1)− 4

(1 + z)(1 + w)

=
2

1 + z + w
+ 2

Γ(z + 1)Γ(w + 1)
Γ(z + w + 2)

− 4
(1 + z)(1 + w)

and thus

ψ(1/2 + iu, 1/2− iu) = 1 + Γ(3/2 + iu)Γ(3/2− iu)− 4
|3/2 + iu|2

= 1 + |1/2 + iu|2 π

coshπu
− 4
|3/2 + iu|2 ,

and, since 1− φ(z) = (z − 1)/(z + 1),

β =
1
π

∫ ∞

−∞

(
1 +

π

coshπu
|1/2 + iu|2 − 4

|3/2 + iu|2
) |3/2 + iu|2
|1/2 + iu|4 du,

which can be integrated (with some effort) to yield 8 ln 2− 5.
Consequently, by Theorem 1.3, we recover the limit theorem by [37]:

N(x)− 2x√
x

d→ N (0, 8 ln 2− 5).
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Example 7.2 (m-ary splitting of intervals). We can generalize Example 7.1 by
splitting each interval into m parts, where m ≥ 2 is fixed, using m− 1 independent,
uniformly distributed cut points in each interval. This has been studied by Dean
and Majumdar [12].

We have b = m, and V1, . . . , Vm have the same distribution with density (m −
1)(1− x)b−2, 0 < x < 1. Hence,

φ(z) = mEV z
1 = m(m− 1)

∫ 1

0
xz(1− x)z dx = m(m− 1)B(z + 1,m− 1)

=
Γ(z + 1)m!
Γ(m + z)

=
m!

(z + 1) · · · (z + m− 1)
.

The characteristic equation φ(z) = 1 becomes Γ(z + m)/Γ(z + 1) = m!, or

(z + 1) · · · (z + m− 1) = m!. (7.1)

The same equation appears in the analysis of m-ary search trees. It is shown by
Mahmoud and Pittel [31] and Fill and Kapur [17] that if m ≤ 26, then Reλ2 < 1/2,
and thus (i) applies, but if m ≥ 27, then Reλ2 > 1/2, see also, e.g., Chauvin and
Pouyanne [8] and Chern and Hwang [10]. Theorem 3.4 yields an exact formula for
EN(x) (although it is hardly useful except when m is small). It further leads to a
formula for the asymptotic variance, provided m ≤ 26.

We have, with ψ(z) := Γ′(z)/Γ(z) and Hz := ψ(z +1)−ψ(1) (for integer z, these
are the harmonic numbers)

α = −φ′(1) = ψ(m + 1)− ψ(2) = Hm − 1.

Example 7.3 (Random splitting of multidimensional intervals). Another general-
ization is to consider d-dimensional intervals, where an interval is split into 2d subin-
tervals by d hyperplanes orthogonal to the coordinate axis and passing through a
random, uniformly distributed point. This too has been studied by Dean and Ma-
jumdar [12].

We have b = 2d. V1, . . . , Vb have the same distribution, Vj
d= U1 · · ·Ud, where

Uk ∼ U(0, 1) are i.i.d. Hence,

φ(z) = 2d EV z
1 = 2d

(
EUz

1

)d =
( 2

1 + z

)d
.

Again, φ is rational. The characteristic equation may be written
(
(1 + λ)/2

)d = 1,
with the roots

Λ = {2e2πik/d − 1 : 0 ≤ k ≤ d− 1}.
Thus σ2 := Reλ2 = 2 cos 2π

d − 1, and the condition Reλ2 < 1/2 is equivalent to
cos(2π/d) < 3/4, which holds for d ≤ 8, while Reλ2 > 1/2 for d ≥ 9. This justifies
the claims in Dean and Majumdar [12].
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The same characteristic equation, and the same phase transition, appears for
quad trees, see Chern, Fuchs and Hwang [9].

We further observe that α = −φ′(1) = d/2.

The random trees in these three examples have also been studied by [20], [25]
and [26], where the properties of a randomly selected branch are investigated. This
problem is quite different, and there is no phase transition. See also [23].

Example 7.4 (Random splitting of simplices). Consider d-dimensional simplices,
where a simplex is split into d + 1 new simplices by choosing a uniform random
point X in the interior and connecting it to the vertices of the original simplex;
each new simplex has as vertices X and d of the original d + 1 vertices.

It is easily seen that this is equivalent to d+1-ary splitting as in Example 7.2, see
[13, Lemma 3], so we have the same results as there, with m = d + 1. In particular,
N(x) is asymptotically normal if d ≤ 25.

Example 7.5 (Non-uniform splitting of intervals). Returning to binary splitting
of intervals, we can generalize Example 7.1 by taking another distribution for the
cut points; we thus have b = 2 and V = (V, 1 − V ), where V has any distribution
on (0, 1). An interesting case is when V has a beta distribution V ∼ B(a, a′) with
a, a′ > 0; then

EV z = B(a, a′)−1

∫ 1

0
xz+a−1(1−x)a′−1 dx =

B(a + z, a′)
B(a, a′)

=
Γ(z + a)

Γ(z + a + a′)
Γ(a + a′)

Γ(a)
;

E(1 − V )z is obtained by interchanging a and a′. In particular, if a and a′ are
integers, then φ is rational.

We consider two special cases.

(i) The symmetric case with a′ = a, V ∼ B(a, a). Then

φ(z) = 2
Γ(z + a)
Γ(z + 2a)

Γ(2a)
Γ(a)

=
Γ(z + a)
Γ(z + 2a)

Γ(1 + 2a)
Γ(1 + a)

.

We have α = −φ′(1) = H2a − Ha,with Hx as in Example 7.2. Numerical
solution of the characteristic equation seems to show that Reλ2 < 1/2 if
and only if a < a0, where a0 ≈ 59.547.

(ii) The case a′ = 1, V ∼ B(a, 1). Then

φ(z) =
Γ(z + a)

Γ(z + a + 1)
Γ(a + 1)

Γ(a)
+

Γ(z + 1)
Γ(z + a + 1)

Γ(a+1) =
a

z + a
+

Γ(z + 1)
Γ(z + a + 1)

Γ(a+1).

One finds α = Ha/(a+1). The characteristic equation φ(λ) = 1 is equivalent
to Γ(a + 1)Γ(λ + 1)/Γ(λ + a + 1) = λ/(λ + a) or

Γ(a + λ)
Γ(λ)

= Γ(a + 1).
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When a = m is an integer, this is the same as (7.1), so Reλ2 < 1/2 for integer
a if and only if a ≤ 26. In general, numerical solution of the characteristic
equation seems to show that Reλ2 < 1/2 if and only if a < a0, where
a0 ≈ 26.9.

8. Non-examples

In this section, we give a few examples where our theorems are not valid.

Example 8.1 (Lattice). In the lattice case, there exists R > 1 such that every
Vj ∈ {R−k : k ≥ 1} ∪ {0} a.s. In this case, φ is periodic with period 2πi/ lnR; in
particular, the characteristic equation (1.5) has infinitely many roots 1+2πin/ lnR

on {λ : Re λ = 1}, and thus Condition B(δ) fails. Indeed, it is obvious from (1.2)
that N(x) = N(Rm) when Rm ≤ x < Rm+1, so EN(x)/x oscillates and does not
converge as x →∞. The natural approach is to consider only x ∈ {Rm : m ≥ 0}.
It is then straightforward to prove an analogue of Theorem 3.1, using the lattice
versions of the renewal theory theorems that were used in Section 3. An analogue
of Theorem 1.3 then follows by the usual (discrete) contraction method, as in [33].
We leave the details to the reader.

Example 8.2 (Deterministic). If V = (V1, . . . , Vb) is deterministic, then so is N(x),
and it is meaningless to ask for an asymptotic distribution. However, it makes sense
to study the asymptotics of N(x) = m(x). (Clearly, σ2(x) = 0.)

If V is non-lattice, then N(x)/x → α by Theorem 3.1 and Remark 3.2. If V is
lattice, we consider, as in Example 8.1, only x = Rm, m ≥ 1.

We may assume that Vj > 0 for each j. By the Kronecker–Weyl theorem, for
every ε > 0, there exist arbitrarily large t such that |V it

j − 1| < ε for j = 1, . . . , b;
thus lim supt→∞ |φ(1+it)| = 1. Hence Condition B(1) does not hold, and therefore,
by Lemma 2.1, Condition B(δ) does not hold for any δ ≤ 1.

More precisely, if |V it
j −1| < ε for j = 1, . . . , b, let z0 = 1+it. Then |φ(z0)−1| < ε

and

|φ′(z0) + α| =
∣∣∣∣∣∣

b∑

j=1

ln Vj(V 1+it
j − Vj)

∣∣∣∣∣∣
≤ εα.

Since further |φ′′(z)| ≤ ∑
j | ln Vj |2 for Re z ≥ 0, it follows easily that if ε is small

enough, then φ(z) − 1 has a zero in the disc B := {z : |z − z0| < 2ε/α}. (Use the
Newton–Raphson method, or Rouché’s theorem and a comparison with the linear
function φ(z0) + (z− z0)φ′(z0).) It follows that there exists a sequence λn ∈ Λ with
Re λn → 1 and Imλn → +∞.

We give some concrete examples:
V = (1/2, 1/2) is lattice with R = 2 and N(2n) = 2n.
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V = (τ−1, τ−2) where τ = (1 +
√

5)/2 (the golden ratio) is lattice with R = τ

and N(τn) = Fn+3 − 1, n ≥ 0, as is easily proven by induction. (Fn denotes the
Fibonacci numbers.) Thus, N(τn) ∼ 5−1/2τn+3.

V = (1/3, 2/3) is non-lattice and thus N(x) ∼ α−1x, where α = 1
3 ln 3 +

2
3 ln(3/2) = ln 3− 2

3 ln 2.

9. Some related models

The basic model may be varied in various ways. We mention here some variations
that we find interesting. We do not consider these versions in the present paper; we
leave the possibility of extensions of our results as an open problem, hoping that
these remarks will be an inspiration for future research.

Remark 9.1. By our assumptions, the label of a node equals the sum of the labels
of its children. Another version would be to allow a (possibly random) loss at each
node. One important case is Rényi’s parking problem [35], where a node with label
x is interpreted as an interval of length x on a street, where cars of length 1 park at
random. Each car splits an interval of length x ≥ 1 into two free intervals with the
lengths U(x− 1) and (1−U)(x− 1), where U ∼ U(0, 1). An obvious generalization
is to split (x − 1) using an arbitrary random vector (V1, . . . , Vb). (The one-sided
version, where we study only one branch of the tree, is studied in [20], [23].)

Remark 9.2. Krapivsky, Ben-Naim and Grosse [29] have studied a fragmentation
process where fragmentation stops stochastically, with a probability p(x) of further
fragmentation that in general depends on the mass x of the fragment. Our process
is the case p(x) = 1{x≥1}. Another interesting case is p(x) = 1−e−x, see Remark 9.3
below. A different stochastic stopping rule is treated by Gnedin and Yakubovich
[19].

Remark 9.3. Our model is a continuous version of the split trees studied by De-
vroye [13], where the labels are integers (interpreted as numbers of balls to be
distributed in the corresponding subtree) and each label n is, except at the leaves,
randomly split according to a certain procedure into b integers summing to n− s0;
here s0 is a small positive integer (for example 1) that represents the number of balls
stored at the node. Typical examples are binary search trees, m-ary search trees
and quadtrees. We can regard the continuous model as an approximation of the
discrete, or conversely, and it is easy to guess that many properties will have similar
asymptotics for the two models. This has been observed in several examples by
various authors, see [12] and [9]. For example, the results for Example 7.2 parallel
those found for m-ary search trees by [31], [10], [17], [8] and others. Similarly, the
results in Example 7.3 parallel those found for quadtrees by [9].
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We study only the continuous version in this paper. It would be very interesting
to be able to rigorously transfer results from the continuous to the discrete version
(or conversely); we will, however, not attempt this here.

Note that for binary search trees, we have n random (uniformly distributed)
points in an interval, split the interval by the first of these points, and continue
recursively splitting each subinterval that contains at least one of the points. If we
scale the initial interval to have length n, then the probability that a subinterval
of length x contains at least one point is ≈ 1 − e−x. Thus it seems likely that
the binary search tree is well approximated by a fragmentation tree, with V as
in Example 7.1, with a fragmentation probability 1 − e−x as in Remark 9.2. The
same goes for random quadtrees and simplex trees corresponding to Examples 7.3
and 7.4.
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