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A Gaussian limit process for optimal FIND algorithms
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Abstract

We consider versions of the FIND algorithm where the pivot element used is the me-
dian of a subset chosen uniformly at random from the data. For the median selection
we assume that subsamples of size asymptotic to ¢-n® are chosen, where 0 < a < %
¢ > 0 and n is the size of the data set to be split. We consider the complexity of FIND
as a process in the rank to be selected and measured by the number of key compar-
isons required. After normalization we show weak convergence of the complexity to
a centered Gaussian process as n — oo, which depends only on «. The proof relies
on a contraction argument for probability distributions on cadlag functions. We also
identify the covariance function of the Gaussian limit process and discuss path and
tail properties.
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1 Introduction

The FIND algorithm is a selection algorithm, also called Quickselect, to find an el-
ement of given rank ¢ in a set S of data, where the data set S is a subset of finite
cardinality |S| of some ordered set. We have ¢ € {1,2,...,|S|} and assume that the data
are distinct. The algorithm was introduced by Hoare [22].

FIND is a one-sided version of the well-known sorting algorithm Quicksort. It works
recursively by first choosing one element p € S, called the pivot element, and generat-
ing two subsets S and S~, where S := {s € S|s <p}and S5 :={s € S|s > p}. If
¢ = |S<| + 1 then the pivot element is the rank ¢ element to be selected and the algo-
rithm stops. Otherwise, if ¢ < |S.| it is recursively applied to S., if £ > |S<|+ 2 it is
recursively applied the S searching for rank ¢ — |S.| — 1. This is called the 3-version
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A Gaussian limit process for optimal FIND algorithms

of the algorithm, since the first partitioning step leads to three cases. A variant is the
2-version, where in the first partitioning step the sets S< := {s € S|s < p} and S are
generated. Note that we have p € Sc. We ignore the case where the pivot element is
the rank ¢ element and recursively apply the algorithm to the subset among S< and S
where the rank ¢ element is contained. Actually we will discuss both versions of the
algorithm.

This specifies the FIND algorithm except for the choice of the pivot element in the
partitioning step. It can be chosen as the first element of S, if S is given as a list (vector)
so that a first element is well-defined, it can as well be chosen uniformly at random from
S. In order to obtain better balanced subsets S< and S, respectively S< and S, one
may first choose a subset M of odd cardinality £ from S and use the median of M as
pivot element. This version is called the median-of-k FIND algorithm. Here k is fixed in
advance and constant until the algorithm has performed all recursive calls and stops.
A variant of FIND, which is discussed in the present paper, consists of letting k = k(n)
depend on n so that 1 < k(n) < n is odd and grows asymptotically as ¢ - n® where
c>0,0<a< % and n — oo. Note that in a recursive call on some S’ C S the subset
of S’ to choose the median from is of the size k(|S’|). These routines turn out to be
asymptotically optimal in a sense described below. First discussions of such versions
can be found in [20] and more systematically in [35].

The algorithmic motivation for this version is to obtain even more balanced sublists.
This results in algorithms which are efficient uniformly over the rank ¢, hence they
are reliable as universal algorithms to search for any rank 1 < ¢ < n. Note that one
could also adapt the algorithm to select particular ranks /. This is a different task; the
literature is reviewed below.

For our subsequent probabilistic analysis we assume that the data are random vari-
ables in the unit interval [0, 1], which are independent and identically distributed all
with the uniform distribution on [0,1]. Note that all our results also hold for any de-
terministic set of data as long as the subset to select the pivot element in each step is
chosen independently and uniformly from the set of data. In our probabilistic model
we also assume that the subset for the pivot selection is chosen independently from the
data.

As a measure for the complexity we consider the number of key comparisons re-
quired by the version of FIND. We denote by X,(f)([) and X (¢) the number of key
comparisons required when starting with a set of size n and selecting the element with
rank 1 < ¢ < n using the 2-version and 3-version respectively. Note that the choice of
c and a as well as the particular choice of the median selection algorithm to find the
pivot element within the subset are suppressed in the notation. A median of a set can
be found in time (i.e. number of key comparisons) linear in the size of the set. It will
later turn out that our results are independent of the choice of the median-selection
algorithm to find the pivot element within the random subset as long as mild assump-
tions are satisfied which are shared by standard median-selection algorithms (we could
in fact use FIND itself in this step). We denote the number of key comparisons needed
to find the pivot as the median of a subset of size k = k(n) by 7,, and assume for any
p > 1 that we have

ITnll, = O(k(n)), (n — o), (1.1)

where || X||, == E [|X|p}1/p denotes the L,-norm of a random variable X for 1 < p < oo.
The big-O notation as well as other Bachmann-Landau symbols are used here and later
on.

The rank parameter ¢ is subsequently also interpreted as a time parameter of a
stochastic process and we denote X\ := (X,,(LQ) (€))1<e<n and xP = ( ® (0)1<e<n- In
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Theorems 1.1 and 1.2 we state our main results about the asymptotic behavior of X,(f)
and Xy(LS). Subsequently, we consider all appearing stochastic processes in time ¢ € [0, 1]
with cadlag paths as random elements of the space (DJ0, 1], d) of cadlag functions on
[0, 1] with the Skorokhod metric dg, see Billingsley [3, Chapter 3.

Theorem 1.1. Consider the process X2 = (XT(LQ)(E))lgegn of the number of key com-

parisons needed by the 2-version of the median-of-k FIND algorithm with k = k(n) ~ c¢n®
with ¢ > 0 and o € (0, 3] and condition (1.1) for the pivot selection in the partitioning
step. Then we have, as n — oo, the weak convergence

(X,(f)(unj +1)—2n

d )
— Z in (D[0,1],ds),
nlia/z/ﬁ >te[0,1]

where Z = (Z;)icj0,1) is a centered Gaussian process depending on a with covariance
function specified in Theorem 2.4 below (and where we set by convention X,(Lz)(n—&— 1) :=
XP(n)).

Our main convergence result for the 3-version is the weak convergence of all finite

dimensional marginals, denoted by @), for the analogously normalized process to the
corresponding marginals of the Gaussian process of Theorem 1.1.

Theorem 1.2. Consider the process X\ = (X7(13)(£))1§@§n of the number of key com-

parisons needed by the 3-version of the median-of-k FIND algorithm with k = k(n) ~ c¢n®
with ¢ > 0 and « € (0, %] and condition (1.1) for the pivot selection in the partitioning

step. Then we have, as n — oo, convergence of the finite dimensional marginals,

(Xﬁf)(Lth +1) - 2n> sad
te[0,1]

ni-a/2/\/c

where Z = (Z;);c[0,1) is the centered Gaussian process of Theorem 1.1 (and where we
set by convention X (n+1):= xP (n)).

Some additional related results are stated in Corollary 3.6.
As observed by Griibel [20], for the worst-case behavior of any version of FIND, we
have

xP e
liminf sup )
n—oo 1<t<n n

> 2.

Moreover, Griubel [20, Theorem 5] notes that %sup1<4<n X,(LB) (¢) — 2 in probability for
any median-of-k FIND variant with k¥ = k(n) — oo and k = o(n/logn). Hence, the
algorithms investigated in the present work are asymptotically optimal with respect to
the worst-case behavior. The following theorem gives more precise information.

Theorem 1.3. As n — oo, with convergence of all moments, we have

X3Py -2
SUP1§£§1n ’ () n_> sup Z(t),
nl=a/2/\/c t€[0,1]

where Z(t) is the process of Theorem 1.1. The same result holds for the 2-version.

In the classical case of FIND (by classical we mean with a uniformly chosen pivot
element) a process convergence results for the number of key comparisons (as in The-
orems 1.1 and 1.2) has been obtained in the seminal paper of Griibel and Rosler [21].
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More precisely, if X,,(¢) denotes the number of key comparisons (in the 2-version) in
classical FIND then

(XWZHD) =5 (ZW)epy i (D[, 1], duk), (12
[0,1]

where Z = (Z (t))+e(0,1) satisfies the stochastic fixed point equation

(Z(t))seion 2 (1+ 10,0y (1) UZy (é) + (- )2 G‘_g))tem .

Here, Zo and Z; have the same distribution as Z, U is uniformly distributed on [0, 1],
and Zo, Zl, U are independent. In [21] also the difference between the 2-version and
3-version is discussed regarding weak convergence in (D[0,1],ds;) for the 2-version,
whereas for the 3-version such a convergence does not hold. A similar behavior appears
for our FIND algorithm as reflected in Theorems 1.1 and 1.2.

For the classical FIND Paulsen [41] studied variances and higher moments in the
setting of quantiles of [21]. Kodaj and Méri [31] investigated rates of convergence for
the marginals of the process. Hwang and Tsai [23] considered the case ¢ = 0, i.e. ranks
of the form ¢ = o(n) and found (among other things) that here the limit distribution is
the Dickman distribution. Note that this is the distribution of Z(0).

With respect to the one-dimensional marginals, Theorem 1.1 and Theorem 1.2 reveal
that, asymptotically, both first and second order behavior of the considered complexities
do not depend on ¢ € [0, 1]. This stands in sharp contrast to the results for classical FIND
(and median-of-k FIND with k > 1 fixed reviewed below), as the distribution of Z(t) in
(1.2) depends on t.

Historically the mathematical analysis of classical FIND was initiated with an aver-
age case analysis for fixed ranks ¢ by Knuth [30]. Variances were derived in Kirschen-
hofer and Prodinger [24].

For mathematical analysis of median-of-k versions of FIND with fixed k£ not depend-
ing on the size of the input we refer to Anderson and Brown [2], Kirschenhofer, Martinez
and Prodinger [25] and Gribel [20]. A broad survey, also covering median-of-k analysis
is given in Rosler [45].

A discussion of FIND versions with £ = k(n) depending on the size n of the list to
be split with respect to the worst-case behavior was given in Griibel [20]. Martinez
and Roura [35] give an average case analysis, where optimal choices for the tradeoff
between better balanced sublists versus additional cost for the median selection are
discussed. Note that another idea to adapt the FIND algorithm is to not choose the me-
dian of a subsample but to choose an element that may depend on the rank ¢ searched
for such that the sublist where the algorithm is recursively called may be small. This
is investigated in Martinez, Panario and Viola [36], see also Knof and Résler [29, pp.
151-153].

In various contributions also the number of key exchanges is studied which has
to be compared with the number of key comparisons for a more realistic measure of
complexity. Corresponding limit distributions can be found in Hwang and Tsai [23],
Knape and Neininger [26, Section 5], Mahmoud [32, 33] and Dadoun and Neininger [6].

Another model for the rank searched for is to consider a random rank chosen uni-
formly and independently from the data and algorithm. So called grand averages were
considered for key comparisons in Mahmoud, Modarres and Smythe [34], and, for a
different version of the partitioning stage using two pivot elements, in Wild, Nebel and
Mahmoud [51]. For the number of key exchanges under grand averages see [33, 6].
Yet another complexity measure is the worst case complexity with worst case over the
possible ranks, see Devroye [9].
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Tail bounds for the number of key comparisons for the classical FIND were studied
in Devroye [7] and Grubel [19].

A fundamentally different cost measure arises when a key comparison is weighted
by the number of bit comparisons needed to identify its result. The number of bit
comparisons was studied by Vallée et al. [50] and Fill and Nakama [16, 17], see also
Grabner and Prodinger [18].

Finally we mention studies of exact simulation from distributions appearing as limit
distributions in the analysis of FIND: Devroye [8], Fill and Huber [15], Devroye and
Fawzi [10], Devroye and James [11] and [4, 27, 6].

The techniques used to show convergence in Section 3 and to construct the limit
process Z in Section 2.1 are in the spirit of the contraction method. (We refer to Rosler
and Riischendorf [46] and Neininger and Riischendorf [38] for an introduction and sur-
vey of the contraction method for univariate and finite-dimensional quantities.) In the
last years a couple of general approaches have been developed to show process con-
vergences within the contraction method on different function spaces and in different
topologies, see Eickmeyer and Ruschendorf [14], Drmota, Janson and Neininger [12],
Knof and Rosler [29], Neininger and Sulzbach [40] and Ragab and Rosler [43], as well
as the PhD theses of Knof [28], Ragab [42] and Sulzbach [48].

The construction of the limit process Z that we present in Section 2.1 builds upon
ideas of Ragab and Rosler [43]. However, the convergence proof for Theorem 1.1 yields
weak convergence in (D[0, 1], ds;) which has to be compared with the convergence of
finite dimensional distributions shown for a related problem in [43]. Our approach
to convergence is almost entirely based on contraction arguments on the level of the
supremum norm of processes and very little (deformation of time) is needed in addition
to align jumps. Besides leading to comparatively strong results, we feel that the tech-
nique for convergence developed here is flexible and general to be easily applicable to
related recursive problems.

A similar version of the Quicksort algorithm consists in also choosing the pivot el-
ement in each step as a median of a random sub-sample of size k = k(n) ~ cn® with
n the size of the list to be split. We conjecture that such a Quicksort algorithm admits
a Gaussian limiting distribution for the normalized number of key comparisons. This
would be in contrast to the well-known non-Gaussian limiting distribution for classical
Quicksort, see [44].

Plan of the paper. The paper is organized as follows. In Section 2.1 the limit
process Z is constructed and in Section 2.2 identified as a centered Gaussian process
with explicitly given covariance function. Section 3 contains the asymptotic analysis
of the complexity of the median-of-k FIND leading to the proofs of Theorems 1.1 and
1.2. The organization of the proofs is outlined at the beginning of Section 3. In the
final Section 4 we present properties of the limit process Z. In Subsections 4.2 and
4.3 path properties of Z are discussed, Subsection 4.1 has a characterization and a tail
bound for the supremum of the limit process Z. The Appendix is devoted to the proofs
of two technical lemmata. The first, Lemma 5.1, allows the transfer of the results for
the 2-version in Theorem 1.1 to the 3-version in Theorem 1.2. The second, Lemma 4.3,
is needed in the study of the path variation of the limit process Z.

Acknowledgements: We thank the referees for their careful reading and construc-
tive remarks.
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2 Construction and characterization of the limit process

We first construct and characterize the limit process Z appearing in Theorems 1.1
and 1.2. In this and the following section we fix o € (0,1/2] and suppress the depen-
dence on « in the notation.

2.1 Construction

We consider the rooted complete infinite binary tree, where the root is labeled by
the empty word ¢ and left and right children of a node labeled ¥ are labeled by the
extended words 90 and 91 respectively. The set of labels is denoted by © := U° {0, 1}*.
The length |¢| of a label of a node is identical to the depth of the node in the rooted
complete infinite binary tree.

We denote the supremum norm on DJ[0,1] by || - ||. For a random variable X in
(D[0,1],ds) and 1 < p < oo we denote the L,-norm by || X ||, := (I [||X||?])'/?.

For u € [0, 1] we define linear operators

A, B, : D[0,1] — D0, 1]

as follows. For f € D0, 1] the cadlag functions 2, (f) and B,(f) are defined as

t 1—-1
i 1{t<u}f <u> , e l{tzu}f ( ) )

1—u

respectively. Furthermore, we define the step function sg: [0,1] — R by sg(t) =
141<1/2y — 1i4>1/2)- Hence, sg is a shifted version the sign function, and it is in D[0, 1].

For a given family {Ny |9 € ©} of independent random variables in R each with
the standard normal distribution we recursively define a family {Z” | € ©,n € Ny} of
random variables in (D[0, 1], ds) as follows: We set Zy := 0 for all ¥ € ©. Assume, the
Z}f are already defined for an n > 0 and all ¥y € ©. Then for all ¢ € © we set

1 1—a/2 1 1—a/2
zZ0 = (2> A (Z°) + (2) B1(Zy') + Ny - sg. (2.1)

We have the following asymptotic properties for the Z;f :
Lemma 2.1. Let {Z” |9 € ©,n € Ny} be a family as defined (2.1). Then, for each

¥ € ©, the sequence (Z,}f )n>0 converges almost surely uniformly and in the L,-norm for
all p € N to a limit cadlag process Z”. For all ¥ € © we have, almost surely,

1 1-a/2 1 1—a/2
zﬁ:<2) m;(z’”)+(2> %»

The family {Z” |9 € ©} is identically distributed and all moments of the || Z?| are finite.

(Z°) + Ny - sg. (2.2)

SIS

Proof. We first show by induction that for all ¥ € © and all n € IN; we have
E[||Z) 1 — Z3|7] <270, 2.3)

Forn=0andv € © we have E [||Z{ — ZJ|?] = E [|[Ng|?] = 1, so (2.3) is satisfied for n =
0. Now as induction hypothesis assume, that (2.3) is true for all ¥ € © with n replaced
by n — 1. Note that for a random variable X in D[0, 1] we have E [||X|]?] = E [||X?|] and
that for all f,g € D[0,1] we have A, (f)B.(g9) = 0 and ||, ()] = IB.(N)I = || f|l. With
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these properties, (2.1) and the induction hypothesis we obtain

1\ L-er2 2

1—a/2

2
B (1200~ 2017 < B ||(2) 2, (20— 70| +

1
2

:@%{E[Hzﬂo Zi P+ B (12 - 21T}

1 2—«
< <2> 9. 2—(1—(1)(71,—1) _ 2—(1—04)17,- (24)

From (2.3), using Markov’s inequality, we infer that sup,,~,, [|Z2, — Z’|| = 0 as n — oo
in probability and hence sup,,, ., 122 — ZgH — 0 as n — oo in probability by a simple
application of the triangle inequality. By monotonicity, the latter convergence is almost
sure. In other words, for each ¥ € ©, the sequence (Z?”),>¢ is almost surely a Cauchy

sequence with respect to the || - |-norm. Since (D[0,1],] - ||) is complete, there is a limit
random process Z” such that we have convergence almost surely uniformly.
Since the operators 2, and B, are continuous with respect to the || - [|-norm we

obtain (2.2) from (2.1) by letting n — co. By construction, {Z” |9 € O} is a family of
identically distributed random variables for each n € IN;. Hence we obtain that the Z?
are identically distributed. Finally, note that Zﬁ Zl9 + Zk 1 Zﬁ Z}f_l. Using (2.3)
and the triangle inequality for the || - [HZ}? |?] is bounded. The
same arguments applied to the decomposition Z2? =78 + 302, ZY) — Z)_, show that
E[|ZY — Z?|?] — 0. Similar arguments apply for higher moments. O

Definition 2.2. We write Z := Z¢, hence Z is a random process identically distributed
as the Z” in Lemma 2.1 and call it the limit process and its distribution the limit distri-
bution. Analogously we define Z,, := Z,.

Let M denote the set of probability measures on (D0, 1], d,;). We define the map
T: M — M by, for p € M,

T(p) =L ((;) 17(1/22[%()(0) + (;) o B (X1)+N- sg> : (2.5)

where £(Xy) = £(X1) = p, N has the standard normal distribution and Xy, X;, N are
independent. For 1 < p < oo, we further denote

My(DD0,1)) = { € MDD, 1| [ follPdu(z) < oo},
Let

o= — 2.6
Po =5+ (2.6)

We have the following characterization of the limit distribution £(Z) of Z:

Lemma 2.3. Let p > p,. The limit distribution £(Z) from Definition 2.2 is the unique
fixed-point of the restriction of T' to M, (D[0,1]).

Proof. 1t is clear that T'(M,(D[0,1])) € M,(D[0,1]). We endow M, (D[0,1]) with the
following metric d: For u,v € M,(DJ0,1]) let

dp,v) = inf {(B[IX = YIPD'P: £(X) = p £(Y) = v}
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To see that the restriction of T to M, (D]0, 1]) is a strict contraction with respect to d
let pu,v € M,(D[0,1]) be arbitrary, fix ¢ > 0 and choose random processes X and Y
with £(X) = p, L(Y) = v and (E[| X —Y||”])1/p < d(p,v) +e. Let (X', Y’) be a copy
of (X,Y) such that N, (X,Y), (X', Y’) are independent and N has the standard normal
distribution. Then a calculation similar to (2.4) implies

1\ PO-a/2)
rre s (3)  EIX-YPELX -y

< 217PU=2/2) (q( 1, v) + £)P.

With £ | 0 we obtain d(T(u), T(v)) < 2/P~(1=2/2) d(;,v). Hence, the restriction of T
to M, (D[0,1]) is a strict contraction and has at most one fixed point. This implies the
assertion. O

2.2 Characterization of the limit process

For ¥ € O let By be the set of real numbers in [0, 1] whose binary representation has
prefix J. Here, the binary expansion of t = ¢;t2... € [0,1) is uniquely determined by
the convention that we always use expansions such that for all £ € IN there exists ¢/ > k
with ¢, = 0. Note that we have the decomposition By = Byg U By;. The construction in
(2.1) with the Ny there implies representations for Z and Z,, from Definition 2.2, for all
t €[0,1] and n > 0:

1\ =a/2)- 19|
Z(t)= ) (2) (Liteaot — Litenany) No
VEO: |9|<n
1\ (1=e/2)- 19l
Z(t) =3 <2> (LteBooy — Litenony) No- (2.7)
9¥eO®

Thus, Z,, is constant on the intervals [:27", (i + 1)27") fori = 0,...,2" — 1. The ¥ € ©
with |¢| = n we denote in lexicographical order by wg, w1, ..., wsn_1. Then we have

1\ (—e/2)0n 21
2

Zaa(t) = Zult) = ( 2 (Yemen} = Henny) Vo

1\ (1—e/2)n 2ntl—1 4
= (2) Z 1{j2*<"+1)§t<(j+1)2*("+1)}(_1)ijL.7’/2J'
j=0

For u,v € [0,1] we denote their binary expansions by

oo o0
u = g w27t v= E ;27"
i=1 i=1

with w;,v; € {0,1}, again with the convention introduced above. Then we denote the
length of the longest joint prefix of u and v in their binary expansions by

j(uvv) :max{j Z 1: (ula"'auj) = (Ula'“avj)}v
with the conventions max ) := 0 and max IN := oo.

Theorem 2.4. The limit process Z from Definition 2.2 is a centered Gaussian process
with cadlag paths. For its covariance function o(s,t) := E [Z(t)Z(s)] we have

RIDFL _9pi(sit) 4 1 1\%2 @
o(s,t) = , K= < )

5 (2.8)

11—k
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with the convention k> := 0. Equivalently,
4—2K
1—k"

E[(Z(t) - Z(s))?] =970, = (2.9)

Proof. By induction we find that (Z,,),,>0 is a sequence of centered Gaussian processes.
Hence, Lemma 2.1 implies that Z is a centered Gaussian process. It remains to compute
the covariance function of Z. Comparing left and right hand side of equation (2.2) and
using that, by construction, Ny, Z°° and ZY! are independent, we find

Kko(2s,2t) + 1, if0<s,t<1/2,
o(s,t) =< ko(2s—1,2t—1)+1, if1/2<s,t<1,
-1, if0<s<1/2<t<1.

From this it follows, for s # ¢ that

‘ Jen-1
o(s,t) = —gID 4 Z K.
i=0

By the theorem of dominated convergence, right-continuity of Z and the fact that
E [|Z]]?] < oo it follows, that for any s € [0,1], ¢ — o(s,t) is right-continuous. This
finishes the proof of (2.8). The equivalence with (2.9) is obvious. O

Fork € Nlet 7, = {i27%:i=1,...,2" =1} and 2 = U, Zk be the set of dyadic
numbers on (0,1). For ¢ € [0,1) and a cadlag function f, we define f(t—) = limgs; f(s)
and Af(t) = f(t) — f(t—). Then, as Z is almost surely cadlag, the previous theorem also
implies

L(AZ(t)) = N (0,vx") (2.10)

for any t € 9 where i is minimal with t € %;. Here and subsequently, A'(u, 0?) denotes
the normal distribution with mean ; and variance o2.

Corollary 2.5. Almost surely, Z is continuous at t for allt ¢ 2. On the contrary, for any
t € 9, almost surely, Z is not continuous at t.

Proof. Let A be a set of measure one such that Z,, — Z uniformly on A. As Z, is
continuous at ¢ for all n if ¢t ¢ 2 it follows that Z is continuous at ¢ for all ¢t ¢ Z on A,
thus almost surely. For t € 2, discontinuity follows immediately from (2.10). O

More refined path properties are discussed in Sections 4.2 and 4.3. Simulations of
realizations of Z;( for & = 1/2 are presented below in Figure 1 to indicate the structure
of the paths of the limit process Z.

3 Analysis of the Quickselect process

Our asymptotic analysis to prove the functional limit laws for the processes in Theo-
rems 1.1 and 1.2 is organized as follows. In Section 3.1 we state a recurrence relation
on which the whole analysis is based. To apply ideas from the contraction method we
need to derive a distributional fixed point equation for a potential limit of the normalized
processes as captured by the map 7" in (2.5). For this, in Section 3.2 first the asymp-
totic behavior of the size I,, of S< is identified. Then in Section 3.3 a recurrence for
the normalized processes appearing in Theorem 1.1 is derived. The random quantities
are all embedded on one probability space and coupled in such a way that distances
can be bounded pointwise (with respect to randomness w) in the supremum norm on
D[0,1]. We keep the jumps of a couple of auxiliary processes exactly aligned to those
of Y,, in order to be able to bound distances by contraction arguments. The necessary
deformations in time to align with the jumps of the limit process Z are afterwards done
in Proposition 3.5.
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Figure 1: Simulations of two independent realizations of Z;y for o = 1/2.

3.1 Preliminaries

Our analysis is based on a recurrence for the distributions of the processes X,(LQ) =
(Xff) (€))1<e<n and x® = (Xff’) (£))1<e<n- Note that after the selection of the median
from the subset the k elements of the subset can already be assigned to the sets S, S
and S< respectively so that only n — k£ remaining elements need to be compared with
the pivot element. We denote the rank of the pivot element chosen in the first step by
1,,. We set Xé2) = XéB) := 0. Then we have X1(2) = XI(S) =0 and, forall n > 2,

XL (Lpoary X210+ 1por, ey X, (C- L) 4n—k+T) G

1<t<n
where T,,,1,, X(()?’),...,Xfffl, )A((g?’),...,)??(f_)l are independent and )?J(-?’) is distributed
as X;g) for 0 < 57 < n — 1. The stated independence is satisfied since in subsequent
partitioning steps all choices of subsets are made independently. For the 2-version we
have the same initial values as for the 3-version and, for all n > 2 that

XT(LQ) < (1{€<In+1}X§i) )+ 1{421n+1})?7(12—)1n (—IL)+n—k+ Tn) 1<t<n’ (3.2)
with conditions on independence and identical distributions analogous to the 3-version
in (3.1).

Recall that T}, is the number of key comparisons for the identification of the median
within the random subset and that we assume condition (1.1).

We choose ng large enough such that k(n) > 3 for all n > ng. This ensures that
I,, < nforall n > ng.

3.2 Asymptotics for the pivot and sublist sizes

For simplicity of representation, we assume ¢ = 1, i.e. k = k(n) ~ n® with a € (0,1/2]
for the remainder of the section. Elements in the presample of size k£ are chosen without
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replacement, thus the distribution of I,, is given by

i—1 n—i
P, —i) = ((k—l)/2) ((k—l)/Q)’ k+1 <i<n_ E (3.3)
() 2 2
Equivalently,
1 1 1
L(I,) =L (k;— + Bin (n — k, Beta (k—;, k;))) ,

where, here and subsequently, for n € IN,p € [0,1], Bin(n,p) denotes a random vari-
able with the binomial distribution for n trials with success probability p. Moreover, for
a, 8 > 0, Beta(a, 8) denotes a random variable with the beta distribution with parame-
ters a, .

Subsequently, let (M,),>1 be a sequence of random variables with the beta distri-
bution with parameters (k + 1)/2, (k +1)/2.

Lemma 3.1. We have

and, forn — oo,

1 d 1
a/2 _ - -
n (Mn 2) —>N<O,4).

Proof. The expressions for mean and variance follow by straightforward calculations.
For the limit theorem note that for the beta distribution and the binomial distribution
we have the following identity

P (Beta(a,b) < z) =P (Bin(a+b—1,2) > a) (3.4)

for all a,b € IN and = € (0,1). Applying this to M,, and using the central limit theorem,
e.d., in the version of de Moivre-Laplace implies the assertion. O

For the size I,, of the left sublist generated in the first partitioning step we have:

Lemma 3.2. We have

1 1 1
Bin) = "t Varr,) = (ko84 (g 1) )~ e

and

pl—a/2 4

In—n/2 i>/\/(0,1).

Proof. The first two moments follow from Lemma 3.1. Given M, let X, have the bi-
nomial distribution with parameters n — k, M,, and set I,, = % + X,. By Skorokhod’s
representation theorem, we may assume the existence of a sequence (F,,), where F,,
has the distribution of n®/2(M,, —1/2) such that F,, — N almost surely where N has the
normal A(0, 1) distribution. Let M,, = F,,n=%/? 4+ 1/2 and construct X,, and I,, such as
X, and I, but based on the M,,. Decomposition yields

I,—n/2  X,—M,n—k) /(n—kM,(1l—-M,))

nl—a/2 \/(TL — k)Mn(l — Mn) nl—a/2
nM, —n/2 kM, —k/2+1/2
nl—a/2 nl—a/2 :
EJP 19 (2014), paper 3. ejp.ejpecp.org
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By construction, the second summand of the latter display tends to N almost surely.
Moreover, the third summand tends to zero almost surely. By conditioning on (M,,) and
the fact that M,, — 1/2 almost surely, the first factor of the first summand converges
to a standard normal distribution by the central limit theorem for sums of independent
and uniformly bounded random variables. As the second factor of the first summand
tends to zero almost surely, the first summand converges to zero in probability. This

shows
I, —n/2
nl—a/2

in probability. O

- N, (n— )

More refined information about the distribution of M, is given in the Appendix.

3.3 Proof of Theorems 1.1 and 1.2
We first discuss the 2-version of the process and recall the normalization from The-
orem 1.1 which we denote by Y, := 0 and

_ XP(ltn] +1) —2n

nl—a/2 ’

Y, (1) : telo,1],n>1,
with the convention Xff)(n +1) := Xy(f)(n). Then, Y, := (Y,(t))eo,1) satisfies, as a
random variable in (D[0, 1], dsx), for n > ng that

I, 1—a/2 —I, 1—a/2 .
Yni() mmmnw(" ) B, (Ynffn)

n n
1
nl—a/2

+ (Tn —k+ 1{t<In/n}(2In — n) + 1{t21n/n}(n — 2In))

on (D[0, 1], dsx) with conditions on independence and distributional copies as in (3.1).

Now, we embed all the relevant random variables on one probability space such that
we have appropriate almost sure convergences. Throughout we use boldface charac-
ters to denote the embedded quantities. To be specific, by Skorokhod’s representation
theorem and Lemma 3.2, we can construct a set of independent and identically dis-
tributed random variates {(S?),,>,,, Ny, € O} such that Ny has the standard normal
distribution, S has the distribution of (21, — n)/n'~%/? and S? — Ny almost surely.
Moreover, by Lemma 3.2, we have

E[|S) — Ny|*] -0, n— oo

for any 1 < s < 2. Furthermore, note that £(I,,) = £(J?) where J? := S?.n'=*/2 /24 n /2,
We can further augment this set of random variables by another set {T?,n > ng, 9 € 6}
of independent random variables, independent of (S”),,>0, Ny, € ©, such that L(T?) =
L(T,). Let Y§ := 0 and {Y?|i < ng,9 € O} be a set of independent processes with
L(Y?) = L(Y;), also independent of the family of random variables defined above. For
n > ng, we define recursively

Y, = (J;’i)la/z Ay (Yﬁg) + (n - Jﬁ)laﬁ%m (Ygl,Jg)

n n n n
1

nl—a/2

+ (T = k4 Lgego yny (205 — 1) + Ly 30 7y (n — 2T70)) .

By construction, we have £(Y?) = £(V,,) for all n € IN, since the sequences (Y?), >
and (Y,),>0 satisfy the same distributional recurrence and have the same initial dis-
tributions for i = 0,...,n9 — 1. Subsequently, we use the sets {Z;f,n € Ny, ¥ € ©} and

EJP 19 (2014), paper 3. ejp.ejpecp.org
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{Z 19, ¥ € ©} as defined in (2.1) and Lemma 2.1 where the construction is executed using
the particular set of random variables {Ny,? € ©}. We denote the resulting random
variables by Z”.n € IN,9 € © and Z”, ¥ € O.

To start bounding distances between Y,, and Z,, we use two intermediate sequences
of stochastic processes QY and R? in (D[0, 1], d,). First, let QY := 0 forall ¥ € ©,i < ng
and, recursively for all n > ng,

Jv 1-a/2 _ 39 1—a/2
Q= () g (am)+ (") wa(aiy)
+ Lii<azmyNo = 1g>g9/ny No.

Second, RY := 0 orall ¥ € ©,i < ng and, recursively for all n > ny,

1-a/2 1-a/2
9 1 90 1 U1
RY = (5 2, (RYY) + > B, (RILy,) (3.5)

+ Licag/myNo = Li> g9 /0y No.

The proof of the functional limit law in Theorem 1.1 is organized by splitting the dif-
ference between Y|, and Z¢ into several intermediate differences involving the terms
defined above. As in Definition 2.2 we use the abbreviations Y,, := Y, Q, = Qf,
R, =R} and Z,, :=Z;,.

Proposition 3.3. Asn — oo, we have E [||Y,, — Q,[]?] — 0.
Proposition 3.4. Asn — oo, we have E [||Q,, — R,||?] — 0.
Proposition 3.5. Asn — oo, we have d,(R.,,Z,) — 0 in probability.

These three propositions immediately yield ds;(Y,,Z) — 0 in probability and thus
Theorem 1.1. From this Theorem 1.2 follows from Theorem 1.1 and Lemma 5.1. The
proof of Theorem 1.3 is given at the end of this section. Corollary 3.6 gives additional
information. Here, for the sake of completeness, we formulate with a general the pa-
rameter ¢ > 0 as in Theorem 1.1 and Theorem 1.2.

Corollary 3.6. Lett ¢ 9. Ift,, — t then Y, (t,) — Z(t) in probability with convergence
of all moments. Thus, for all (¢,,),>1 with ¢, € {1,...,n} and ¢, /n — t we have

(2)
X5 (fn) —2n 4 1
(3)

together with convergence of all moments. The same is true for the 3-version X, ’.
The rest of this section contains the proofs of our statements.

Proof of Proposition 3.3. By construction, we have

(Yn (t) - Qn (t))Q

(3 (e (v @) (M) (e (-, )

(T, —k)*
+ e + 1<, /ny(Sn — N)2 +1(t>3,/n} (Sn — N)2 (3.6)
T, — k
+ QW (Lpt<a,/n}(Sn = N) = 155, /0y (Sn — N)) (3.7)
T, — k
+2 (nl—"/Q + 15t<a,ny(Sn = N) =1y, /ny (Sn — N)) (3.8)
3, 1—a/2 —J, 1-a/2
() -+ () e (v )
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We now take the supremum over ¢ € [0,1] and the expectation on both sides. Then,
by construction, the summands in lines (3.6) and (3.7) vanish as n — oo. Using the
Cauchy-Schwarz inequality for the product in (3.8) and furthermore ||2,| = ||B.|| =1
we obtain altogether that

2]

n—1J 2—«
(12) v, -t

E[[Y, — Qul]

TN\ ]2
)y -al)
() e ot

I\ @ ]
n
en (E (n) Y5 - ag)

| i

+én, (3.9)

<E +E

n

n—J 2—«
(1) e, i

+E

where ¢,,,£,, — 0. Now, the arguments to infer E [||Y,, — Q,|?*] — 0 are standard in
the framework of the contraction method. In a first step, one shows that the sequence
A, =E[|[Y, — Q,|?] is bounded. To this end, assume that A,,, < C for all m < n with
C' > 1. Then, the last display implies

B2
e (B() (52 ) )

T (”_—‘]“)270‘} = 2=(1-9) « 1 we can deduce A,, < C for all

n

An<C(IE)

As lim,, o B [ (22)*7°

sufficiently large n. Then, one shows that limsup,,_,., A, = 0 as follows. Start with
denoting D = sup,,»o A, and 3 = limsup,,_, ., A,. Let 6 > 0 be arbitrary and ¢ large
enough such that A,, < S+ ¢ and E [(%)2_(1 + ("‘T‘I")Q_a} < 2-(0-a) L §foralln > /.

Moreover, we can assume n to be large enough to satisfy P({ < J, <n—-¥{) > 1—0.
Then, (3.9) implies

1/2
An < D5+ (B+6)(270" 16) +¢, (Dé +(B+06)(2~ 1) + 5)) +é

Taking the limit superior on both sides and then letting § | 0 shows 3 < 2=(1=®) 3, Thus,
B8 =0. O

Proof of Proposition 3.4. By definition, we have

1Qn — Ryl
< <(J:)1—a/2 B (;)1—01/2) g[% (RSO))
(570 )
+ <Jnn>1a/2 Q[JT (RS(? . Q(J(i) N (n_an>1a/2‘BJg (RSleJn _ Q&Jn) ‘

Let ¢!’ be the second moment of the first summand in the latter display. By construction,
we have |R,|| < ||Z,|| for all n € IN. Thus, Lemma 2.1 implies that the sequence
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E [|R.||?] is bounded. Using the Cauchy-Schwarz inequality, we infer that £/, — 0 as
n — oo. Yet another application of the Cauchy-Schwarz inequality shows

J 2—« 2
<p|(%) lat-mif e

n—J,\>®
(m2) s, i

_ _ 1/2
Jn 2—a 9 n— Jn 2—a 2
cva(e](%) e -me] e | (U2 et - mi))
+e
The result now follows by an argument similar to the proof of Proposition 3.3. O

Proof of Proposition 3.5. Let € > 0. By Lemma 2.1 there exists an n; € IN such that

P (sup \Z, —Z,,| > 5) <e.
n>ni
Let n > ni. When applying the recurrence (3.5) for R, iteratively n; times we obtain
a representation of R,, with at most 2™ summands. Each summand corresponds to
one of the 2™ sublists (some possibly being empty) generated by the algorithm in the
first n; recursive steps. Let A, denote the event that each of these 2™ sublists has
size at least ng. On A, the split into these first 2" sublists causes 2 — 1 points of
discontinuity of R,, which we denote by 0 < T} < T? < --. < T?"'~!. In fact, in general
R, has additional points of discontinuity caused by splits when further unfolding the
recurrence (3.5). Moreover, we denote the points of discontinuity of Z,,, by 7% = k/2™
fork=1,...,2™ — 1.
By Lemma 3.2 we have J? /n — 1/2 for each ¥ € © almost surely, hence

271 -1
P (An n () ATk -7k < 5}) =1, (n— o). (3.10)
k=1

To bound the Skorokhod distance between R,, and Z,, we define a deformation of time
as follows: On A4, let \, : [0,1] — [0, 1] be defined by A, (0) := 0, A\, (1) := 1, A\, (%) = T*
fork=1,...,2™ —1 and linear in between these points. Then, with id the identity ¢ — ¢
on [0,1] we have on the event in (3.10) that ||\, — id|| < e. This implies for all n > ny
that

2m1 1
() U1Zm = Zn, | <} N AL () {ITF = 7| < €} C {der(Rn, Z) < 2¢}.

m>n, k=1
To see this, note that on event on the left hand side, we have ||\, —id|| < e and
IRy 0 A = Zy|| < Ry 0 Xy = Ziny || + | Zny — Z || < 26
Thus, for all n sufficiently large, P (dsx (R, Z,) < 2e) > 1 — 2e. O

Proof of Corollary 3.6. Lett € [0,1] \ Z and (¢,,),>1 a sequence in [0,1] with ¢,, — ¢. By
Proposition 3.3 we have E [|Y,,(t,) — Qn(ts)]?] = 0 as n — co. Moreover, dg,(Qn, Z) —
0 in probability by Propositions 3.4 and 3.5. As Z is almost surely continuous at ¢, it
follows that Y, (¢t,) — Z(t) in probability. Based on the uniform boundedness of the
sequence E [||Y,]|?] a simple induction relying on its recursive definition shows that
sup,>1 E[|[Y,]™] < oo for all m € IN. This implies the result for the 2-version. The
statement about the 3-version follows from this and Lemma 5.1. O
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Proof of Theorem 1.3. Distributional convergence for the 2-version follows directly from
Theorem 1.1. The proof of Theorem 1.1 has also revealed that || Z|| has finite moments
of all orders and that the sequences (||Y,]||)»>1 and (||Q,]||)»>1 are both bounded in L,
for any 1 < p < oo. This shows the claim of Theorem 1.3 for the 2-version. An alter-
native approach which works for both the 2- and the 3-version relies on the contraction
method for max-type recurrences. This is based on the distributional recurrence

w, < max(Wy, 1, Wy_1,)+n—k+ Ty,

where W,, := sup;<,<, X,({Q’)(é) and (VNVn)nZO is an independent copy of (W, ),>1, both
independent of (I,,:T;L). The latter display allows to deduce Theorem 1.3 straightfor-
wardly from Theorem 4.6 in [47] together with the characterization of ||Z]| given in
Corollary 4.1. O

4 Further properties of the limit process

In this section we first study the supremum of the limit process and derive tail
bounds. Then path properties of the limit process Z are investigated. Here, first, the
variation of the limit process Z is studied. Then, we will endow the unit interval with an
alternative metric d,, such that Z has continuous paths with respect to d.. This allows
to study the modulus of continuity and Holder continuity properties. In Sections 4.1
and 4.3, we make use of general results about path continuity and the supremum of
Gaussian processes, see, e.g., Adler’s book [1], and of the explicit construction of the
limit process.

4.1 The supremum of the limit process

Let S}, = sup;e(o,1] Z () and §¥ = sup;c(o 1) Z”(t). By the uniform convergence stated
in Lemma 2.1 we have Sﬁ — SY almost surely. The first result concerns a max-type
recurrence for S, and characterizes the distribution of S as solution of a stochastic
fixed-point equation. To this end, let M(R) denote the set of probability measures on
the real line,

My(®) = { € M@®)| [Ja due) <o}, 1<p<oc,
and T* : M(R) — M(R) be defined, for u € M(R), by
T*(p) = L ((ml/ZXO +N)V (RY2X, — N)) :

where £(Xo) = £(X1) = p, N has the standard normal distribution and Xy, X;, N are
independent, and x = 2%~2 (as above).

Corollary 4.1. Let 9 € ©. We have
Sg—‘—l = (H1/2530+N19)\/(H1/2S:191 7N19)7 77,2 1’
SY = (k1257 + Ny) v (k12871 — Ny) almost surely. (4.1)

The distribution of SV is the unique fixed-point of the restriction of T* to M, (R) for any
p > p, with p,, given in (2.6).

Proof. The recurrence for SY and the almost sure identity for S” follow by construction
and Lemma 2.1. The characterization of £(S”) is a special case of Theorem 3.4 in
[39]. O
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It is a well-known phenomenon that the supremum of a Gaussian process resembles
a Gaussian random variable. This explains the following proposition.

Proposition 4.2. For the supremum S = sup;cp,1) 4 (t) of the limit process Z from
Definition 2.2 we have for any t > 0 that

P (S —E[S]| > ) < 2exp <_1;“t2) 4.2)

The same tail bounds are valid when S is replaced by .S, = sup,¢jq 1 Z,(t) for anyn € IN.
The constant in the exponent on the right hand side of (4.2) is asymptotically optimal
ast — oo Moreover, we have

V2 [ 2 1
mSE[S] < 1_9% Var(5) < 1—n

For a = 1/2, the first bound leads to E [S] € [1.968...,2.613...].

Proof. From Theorem 2.4 we have Var(Z(t)) = 1/(1 — ) for all ¢ € [0, 1]. The tail bound
(4.2) now follows from a variant of Borell’s inequality, see, e.g. Theorem 2.1 in [1]. For
t — oo, optimality of the constant in the exponent follows directly by replacing S by
Z(t). The corresponding bound on Var(S) can be deduced from Theorem 5.8 in [5]
since there, the assumption of path continuity can be relaxed to regularity. Both results
also apply to S,, for n € IN.

For the lower bound on E[S] note that there is a ¢, € [0,1] such that the terms
(L{tyeByor — litoeBy}) Ny in (2.7) are non-negative for all ¥ € ©. Hence, we obtain
E[S] > E[Z(t))] = E[|N|] Y, /2, which is the lower bound.

For the upper bound on E [S] we take squares and expectations on left and right
hand side of (4.1). This implies E [S?] < 2/(1 — 2x) and we obtain the bound from

E[S] < /E[57. O

4.2 Variation of paths

We have already seen that the constant p, defined in (2.6) is intimately linked to
the limit process Z. In this section, we will see that this connection extends to path
properties of Z, more precisely to its path variation. To formalize the main results
of the section we need some notation. For ¢ € (0,1], let II(¢) be the set of all finite
decompositions of the interval [0,t]. Elements 7 € II(t) we write as 7 = {71, 72,..., 7%}
with0 =7 < 73 < ... < 7, =t. We also denote |r| = k the size of 7. Moreover, we
abbreviate mesh(m) = max;_; . |r /-1 |7i+1 — 7;|. For a cadlag function f and p > 0,t €
(0, 1], we define

Vou(f):= sup > |f(7i1) = f(7)PP,

m€l(®) _q, n|-1

where V,,(f) := V,1(f). Let Ny be the set of discontinuity points of f. Then, we set
Woulf) = D AP,
SEN;N[0,t]

again with W, (f) := W, 1(f). Finally, we set

£ = i, > | |f(ris1) = F(m)IP, (4.3)
mesh(7w)—0 ¢=1 w|—1

.

if the limit exists in RJ U {oc}. The cadlag property of f implies that, for any ¢ € (0, 1],

Vpi(f) <oo= W, (f) <oco and Wy, (f) =00 = [f]gp) = 00. (4.4)
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The following lemma is well-known in the case p = 1,q = 2, we did not find a proof for
the general case in the literature. Thus, we include one in the Appendix.

Lemma 4.3. Let f € D[0,1], p > 0 and V,,(f) < co. Then, for any g > p, we have
1Y = W (f). (4.5)

Additionally, the map t — [f]\? is cadlag with A[f]\? = |Af(t)]9.
The following theorem is the main result of this section. Recall the definition of p,
in (2.6) and

4 — 2k

T (4.6)

’y =
Theorem 4.4. i) Forp > p,, we have that, almost surely, V,,(Z) < co and

217 =Won(2)= Y |AzZ@)P,

s€2n[0,t]

where the convergence in (4.3) with f = Z also holds with respect to all moments.
For the mean, we have

i i 1
B [[2] =R INPI Y w0 |2 5.
i=1
ii) Almost surely, for any t € (0,1], we have V,,_ (Z) = W, +(Z) = [Z]gp“) = oo.

The proof of the theorem makes use of a simple yet useful tool, well known, e.g.,
from Lévy’s construction of Brownian motion.

Lemma 4.5. Let ¢ > \/2log2. Then, almost surely, there exists a (random) integer K
such that for every k > K, we have

sup  |N,| < - kM2
VEO:|v|=k

Proof. We have

oo
ZP ( sup [Ny > ck1/2>
k=1

VEB:|v|=k
i k+1 1/2 i PSR 2/2 i 2kH1 2k/2
< 2F TP <N > ck ) < / ye ¥/ 2dy = —e % < 0.
k=1 o1 V2T ek m V2m
The Borel-Cantelli Lemma implies the assertion. O

Proof of Theorem 4.4. The main part of claim i) follows immediately from Lemma 4.3
upon establishing V,(Z) < oo for p > p, almost surely. To prove this, let A be a set of
measure one and K = K (w) for w € A such that the statement of Lemma 4.5 is satisfied
with ¢ = 2 there. Let 7 € II(1). Then, for fixed w € A4,

S - 2@ = Y (2 - 2P+ Y |2 - 2w

i=1,...,m—1 i=1,...,m—1
J(Tip1,m) <K J(Tip1:m) 2K

(4.7)
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We will show that both terms on the right hand side can be bounded from above inde-
pendently of the partition m. This shows the claim V,(Z) < oco. The first summand is
easier. There are at most 2¢ pairs (7;, 7;41) such that j(r;, 7;11) = £. Thus,

Yo 1 Zmn) - Z(m)lP <25z (4.8)

J(Ti41,m) <K

Next, for j(7;, 7i+1) > K,

p
00

1Z(7i1) = Z(m)|P < D AsAVE) < (ADPRIT TP (g )P,

0=35(Ti,Tit1)

where we have abbreviated

D= Z K"™/2\/1T + m. (4.9)

m=0

Summation implies

i=1,...,m—1 =K j
J(rigp1,m) 2K J J

Yo 1Z(i) = Z@m)P <D 2 (AD)PRIPR P < (AD)P Y (26P/7) 571,
=K
Since 2xP/? < 1 the right hand side of the latter display is finite. Combining the latter
display and (4.8), we obtain the desired upper bound for (4.7). For the convergence of
moments let m € IN. Then, for = € II(1), we have

w|-1 |r|—1 0
Y 1Zmie) = Z@P| < Y0 MZ(Tia) = Z@E)Pllm < APPNNP Y (26772)F
=0 =0 k=1

The result follows as the last bound does not depend on 7.
Regarding the mean of the p-variation, abbreviating 9, = (), we have

E[IZP] = > EIAZE)F] =" PEINP]S. 12:\F:1 0 10,4572

s€2N[0,t] i=1

= /2 | i 1
=PPENP> kP22 4 o
VE[INT )k { t3

=1

which finishes the proof of 7).

We move on to the proof of 7). Due to (4.4) it is sufficient to show that, for any ¢ €
(0,1], we have W,,_ ; = co almost surely. Again, we restrict our presentation to the case
t = 1. As a warm-up we first investigate the case p < p,. Let X, = >, |AZ(?)|P and
X5 =2 eana, , |AZ(L)|P. Then X, < X, 13,5 |AZ(t)[P almost surely. The assertion
Y e |AZ(t)|P = oo almost surely now follows easily from Chebychev’s inequality and
the facts that, as n — oo,

1
ElX,]= Y E[AZOP]= 57" EINP] 267" - o,
tED\Dn—1
1
Var(X;) = Y Var(AZ(0)]) = 59" Var(INP)2s")" = o (E[X;)°).
tED\Dn—1
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Here, we have used that the random variables AZ(t), t € 2,\%,—1 are independent.
Note that this does not extend to all ¢t € &,,. The situation is more involved for p = p,,.
Here, the sequence (IE [X]]) is constant which implies

1
E[Xa] = 597/ B[N 0

Thus, E [[Z] 9’ “)} = 0o. The assertion now follows from showing that the variance of X,
grows at most linearly. By definition we have

Var(X,) = Y _ Var(JAZ{)P*)+ Y Cov(|AZ(@)*,|AZ(s)

tEDn S, tEDp 57t

I)a) .

First,

oo

> Var (JAZ(#)[P) < AP Var (IN[P=) Y (2x7=)F,

tEDn k=0

where the right hand side does not depend on n. Fort € 2,\%;_1 and j > i, AZ(t) is
independent of AZ(s) for all s € 2,;\Z;_1 except for its direct neighbors. Thus, we have

S Cov(jazt)re,|AZ(s)P)

S,tEDy, ,s#L

=2} 33 Cov(AZ@PIAZ(s))

i=1t€PD\Di—1 $€2;\ 251,
i<j<n

§4Z Z \/V&I‘(|AZ(t)‘pa)\/fypavar(lN|pa)Zﬁj/(i’)(l—a))

1=1t€2;\%;i-1 Jj>i

< 4nPeVar (|N|P) Z,{j/("i(l*a)) .
=0

The assertion follows. O

4.3 Binary topology and path continuity

Regarding path continuity of a Gaussian process X on the unit interval, the canonical
choice of a metric is given by d(s,t) := \/E[(X(¢) — X(s))?] for s,t € [0,1]. In our case,
that is X = Z, identifying [0, 1] with {0, 1}¥ via the binary representations, d induces the
product topology on {0, 1}. A sequence (z(™),,>; where (™) = 3", 2{Mo-

i converges
to x with respect to d if and only if for each k£ € IN there exists ny € IN such that 335”) =x;
for all i < k and n > ng. Convergence d(z™,z) — 0 implies |z(™) — x| — 0. Conversely,
|z(™) — 2| — 0 implies d(z(™,2) — 0 if and only if either z ¢ 2 or x € 2 and additionally
2(") > gz for almost all n. The limit process Z as well as its p-variation for p > p, are
almost surely continuous with respect to d.

For notational reasons, we work with an (topologically) equivalent metric: for z,y €

[0, 1] with binary representations z = Y., ;27" y = Y5, ¥:2~" we define

i

dy(z,y) == k1@, (4.10)

Note again that d, and d depend on « via . Finally, working with d or more gener-
ally, changing the base in (4.10) to any value lower than one will only effect absolute
constants in the following results.

The additive construction of Z somewhat resembles Lévy’s construction of Brownian
Motion which guides both intuition and proofs in the remainder of this section.
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Theorem 4.6 (Modulus of continuity). With v as in (4.6) we have, almost surely,

2~v1log 2 Z(t)— 2 24/21og 2
7108 < limsup sup |(> (S)|< o8

log(1/k) = “hjo " recion, /hlog(1/h) ~ /log(1/m)(1 ~ Vk)’

where the lim sup is taken over sequences h | 0 with h = k™ for some n € IN.

Proof. We start with the upper bound. First, let ¢ > 0 and K be large enough such that
S 2ok 21+ /K1 < (1+¢€)/(1 — k). Next, let ¢ > /2Iog2 and choose w € A and
K > K, as in Lemma 4.5. Let h = x© with L > K. Then, for ¢, s € [0, 1] with d,(¢,s) = h,
it follows

oo

— Z(s c k12 2¢(1 +¢) hlo h).
1Z(t) — Z( )\SZ‘; \/ES\/WQ—\/E)V g(1/h)

Lower bounds follow analogously as for Brownian Motion.
Let0 <v < +2vlog2. Forne Nand 0 <k < 2" ! —11let

Apn = {1Z((2k +1)27") — Z(2k - 27)| > vy/nx"/?}.

By construction, for fixed n € IN, the family of events Ay ,,0 < k < 27—l _ 1 is indepen-
v

dent. Moreover,
n 1 v2n
o) (-2)
NGl ) vn 2y

Thus, 2"~ 'P (A,,) — 0o as n — oo. By independence,

P (Ay,) = P <|N >

gn—1_1q
n—1
Pl () A, |<e™ P S0
k=0

This yields the assertion upon choosing h = ™ for n sufficiently large (and random). O

Moduli of continuity of the order \/hlog(1/h) can also be obtained from general
results on Gaussian processes. First, by Theorem 4.6 in [1], which relies on deep results
from Talagrand [49], a modulus of continuity is given by

E| sup (Z,—Z)| = VhE[max{S},...,S5}]
dy (s,t)<h
where h = k™ and 57,..., S5, are independent random variables, each having the dis-

tribution of sup, ;¢ 1) Z(t) — Z(s). An upper bound for the right hand side in the latter
display by use of the bound (4.2) leads to a constant

4,/2Tog 2
VI—ry/log1/k’

which is slightly worse than the upper bound stated in Theorem 4.6. Second, the ap-
proach towards path continuity relying on the so-called metric entropy of [0,1] with
respect to d, leads to a modulus of continuity of the same order with a random con-
stant, see e.g. [13, Corollary 2.3].

Theorem 4.7 (Holder continuity). For any § < 1/2, almost surely, the paths of Z are
Hélder continuous with exponent  with respect to d,.. For any 8 > 1/2, almost surely,
the paths of Z are nowhere pointwise Hélder continuous with exponent 3 with respect
tod,.
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Proof. The result for § < 1/2 follows immediately from the upper bound on the modulus
of continuity. Thus, we consider the case S > 1/2. We only treat the interval [0,1), the
proof for t = 1 being easier. We adopt the proof of the corresponding statement for the
Brownian Motion from [37], Theorem 1.30. As explained there, it is sufficient to show
that, for any M > 0, the event

A=4¢3t€[0,1),e>0: sup |Z(s) — Z(t)| < Md,(t,s)”
s€ft,1],dy (t,s)<e

is a null event. We fix an integer L > 4 whose precise value will be specified later. For
any n > 3L let

R,={0<k<2"—3L:d.((k+3L)27 " k27") < k" L}.

Fort € [0,1) and n € IN, let k,(¢t) = [2"t] € IN which satisfies &, (¢)27" < ¢t < (k,(¢) +
1)2=". Then, with ¢ = (t1,t2,...), choose m € N with ¢,, = 0 and set n = n(m) =
m + [log, 3L]. (Note that there are infinitely many m with this property since ¢ # 1.)
Then, d.((kn(t) +3L)27", k,(t)27") < k"~ [°e23L1 Hence, as t # 1, we have k,(t) € R,
for infinitely many n. Moreover, for k € R,,, we also have d,((k + z)27",k27") < x"~ L
for 0 < x < 3L by monotonicity. Next, let

S ={1Z((k+30)27") = Z((k+3i—1)27")| <2Mr""PP¥1 <i <L}, Sp= ] Suu-
kER,

Assume that w € A and (tg,20) = (to(w),e0(w)) satisfies the statement in the event A.
Then, if k,(ty) € R, and n > 3L is large enough such that x"~ < ¢, we infer

1 Z((kn(to) + 31)27") = Z((kn(to) + 3i — 1)277)|

< |Z((kn(to) +30)27") = Z(to)| + [Z((kn(to) + 3i — 1)27") — Z (o)

< M (dy(to, (kn(to) + 30)27™)7 + di(to, (kn(to) + 3i — 1)27™)7)

< M (dy (b (t0)27", (kn(to) +30)27™)7 + dye (kn(t0)27™, (kn(to) + 3i — 1)27™)P)
< oM k=18

forall 1 < i < L. Hence, w € Sy, (t,)- AS kn(to) € R, for infinitely many n, we can
deduce that also w € S, for infinitely many n, that is A C liminf S,,. We finish the proof
by showing that P (liminf S,,) = 0. For k € R,,, we have

P(S,;) =P (|Z((k +30)27") = Z((k+3i — 1)27")| < 2Mr™ PPy 1 < < L)

L
~-II® (71/2((1,{((1{ +30)277, (k 4+ 3i — 1)27™)Y2|N| < 2Mn("_L)ﬂ)
=1

< (P (71/2,{(n—L)/2|N| < 2Mﬁ(n—L)B>)L
As the density of |N| is bounded by 2, we have
P (Snk‘) < (4M,‘€_L(’B_1/2)’y_1/2)L:‘inL(ﬁ_l/2).
Hence, as |R,| < 2", by an application of the union bound, we see that the sequence

P (S,,) is summable upon choosing L > max(4,2/((2—a)(26—1))). Thus, P (liminf S,,) =
0 as desired. O
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5 Appendix

5.1 Refined information on the mean E {Xr(?)(ﬂ)} and E {Xr(?)(é)}

We denote
D) =E [Xff) (@)} . ) =E [Xﬁ(é)] , n>1,1<(<n. (5.1)

The following result is sufficient to handle the difference between 2- and 3-version of
the algorithm. Again, we assume c = 1.

Lemma 5.1. For cﬁlz) and 023) defined in (5.1) we have c%g)(é) < 07(12)(6) foralll <{¢<n

and, asn — oo,

sup () =0(n), 0< sup (c2(0)—cP ) =0 (na\/log n) .

1<(<n 1<(<n

The proof of the lemma makes use of a tail bound for the distribution of M,, given in
Lemma 5.2. It relies on standard concentration results for sums of independent random
variables. The following simplified version of Bernstein’s inequality, see e.g., Theorem

2.8 in [5] is sufficient: For a sequence of independent random variables X4, ..., X,, with
0<X;<lforalli=1,...,n, we have
P X, —B[X;]| >t] <2exp (— = ) , (5.2)
i=1 2 Zi:l E [Xi] + 2t/3

forall ¢t > 0and n € IN.

Lemma 5.2. Let k ~ n® be odd. There exists a constant C > 0 such that for ally > 0

and n > ng we have
1 2
P (Mn —3 > yna/2> < Cexp (_y4> .

Proof. Using the connection (3.4) with x = 1/2 + yn~/ and Y,, = Bin(k, ) we infer
1 —a/2 1 —a/2
P Mn—§>yn <P Yn—E[Yn]§§—kyn )

We may assume that 1 < y < n®/?

that for all n sufficiently large,

1 (kyrfo‘/2 — l)2
P(M,—=>yn /*) <2 - 2 .
( g~ = 2P Tk Skyn—/2/3 - 1/3

. Using Bernstein’s inequality (5.2), we can deduce

From here, the result follows easily. O

Proof of Lemma 5.1. The claim 07(13)(6) < cgf) (¢) is clear. Note that (3.2) implies

n —1
D) =3Py =)0+ Y Pl =)D (0 —i) +n—k+ BT, (5.3)
=/ 1=1

for all n > ng. Assuming that 0(2)(6) < (Ciforalll </<iandi<n—1,itfollows that

%

2 (0) < CE [max(L,,n — L) +n—k+E[T,].

n
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Choosing n and C large enough, the right hand side is bounded by Cn as E [T,,] = O(n%)
which proves sup; <<, P () = O(n).

Much in the same way as (5.3) follows from (3.2), the following recurrence follows
from (3.1):

D)= Pl =) ( +ZP NP (6—i)+n—k+ BT,

for n > ng. We proceed recursively and assume that |c(2)( 0) — ng) (0)] < Ci*y/logs for all
1<¢<4,i<n—1. Then, denoting I} = max(I,,,n — I),

2 (0) = P (0)] < nz P (I, =i+1)—P (I, =) )

+P (L, = n)cP(0) + CE [(I;)" /log I

n—1
=S P(La=i+1)—P (I, =) P () + CE [(I;)a\/log I;;] (5.4)
=4

For now, let us assume (a proof given below) that

P( n:i+1)—P(In:i)zO(na_Q«/logn> (5.5)
uniformly in 1 < ¢ < n. By the results obtained so far, we have

cP(0) < P (6) = O(n)

uniformly in 1 < ¢ < n. Using these two bounds, it follows from (5.4) that

[ () = D ()] < (C*n® + CE[(I;)]) Viogn
for some universal constant C* > 0. Let ¢ > 0 be sufficiently small and assume n was

chosen large enough such that E [(I,/m)®] < 1—¢ for all m > n. Then \cf) () —0513)(6)| <
Cn®y/logn follows upon choosing C > C*/e.

It remains to prove (5.5): First, observe that we can write

. , , (k—1)(n — 24)
P, = H-PU,=9)=P({,= — . 5.6
=i+ =P =) =Pt =i (S (56
By symmetry, it is enough to consider the case i < [n/2]|. Moreover, again by symmetry,
P (I, = i) is maximal for ¢ = |n/2]. An application of Stirling’s formula in (3.3) shows
that
2
sup P(I, =4) =PI, = |n/2]) ~ 4 [ 2 pe/2—1
1<i<n v
In particular, sup,<,<, P (I, = i) = O(n®/?~1), which is suggested by the limit law in
Lemma 3.2. Now, let C; > 0 (to be specified later) and v,, = n/2 — C;+/Tognn'~*/2. For

1 > 7, it is easy to see that the second factor on the right hand side of (5.6) is uniformly
bounded by a constant multiple of v/log nn®/2~1. Thus,

sup P(I,=i+1)—-P (I, =1i)=0n""?/logn).

n<i<[n/2]
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To treat small values of i, consider the event 4, := {M,, > % — Cyv/log nn*"‘/z} with
0 < Cy < (1. We have

P(l, <y, A,) <P (Bin(n —k,1/2 = Co\/lognn™%%) < 4, — (k + 1)/2)
<P (|, ~E[Va| 2 (C1 — Ca)/lognn'~*/2)

where Y, = Bin(n—k, 1/2—Cy+/Tog nn~*/?) and n is assumed to be sufficiently large. Us-
ing Bernstein’s inequality (5.2), the latter display is bounded by a multiple of exp(—(Cy —
C5)2n'~*logn/2). By Lemma 5.2, P (A¢) = O(n~C3/4) which finally shows that

sup P(I,=49) =0 <max {nc§/4,exp (1(01 — Cy)*ntme logn) }) .
1<i<yn 2

This finishes the proof of the lemma by choosing, e.g., C5 = 3 and C; = 4. O

5.2 Proof of Lemma 4.3

By (4.4) we have ZteNf IAf(t)|]P =: M < co. Let d,e > 0. There exists a number
Ne]NandasetN}:{ai :1<i< N} CNywith0 <oy <...<ony <1 such that, first,

|f(t) — f(s)] <4 foralls,t€[0,1],1 <i< Nwiths,t€[o;,0i41)
and for all s,¢ € [0,01) ors,¢ € [on, 1],

and second, }_, NAN; |Af(t)]? < e. For the remainder of the proof we consider ¢ = 1.
Let 7 € II(1) with mesh(r) < ming<;<ny—1|oiy1 — 0;| (Where gy := 0) and, if oy < 1,
additionally mesh(n) <1 —on. For 7 =7, € m with 1 <4 < |r| — 1 let 7* = 7,41 be its
successor. For 1 <i < N —1, let 7,7 € 7 be the largest element strictly smaller than o;
and 7;* = (7;)*. Then, we have

|m]—1
ST F (Fisn) = £ ()= [0
1=0
N
< Z |f (T;F) —f(m) 11— |Af (Uz')|q (5.7)
=1 N
O ALY D> ) = f))e (5.8)
sENF\N} i=1 remnloj,oiq1)

with 7*€(0;,0;41]

By definition, the first summand in (5.8) does not exceed . Moreover,

N N
Yo > ME) i@ty Y fT) — f()IP < 6TV,

i=1 Tenn[o;,0541) i=1 te€mnlo;,0541)
withm* €(o;,0;41] witht* € (0,044 1]
To treat the term in (5.7), note that, for all x,y € R, we have the elementary inequality
[l +yl? = [2]?] < [yl? +29(J2]"Hy| + |z]ly|*7).
Applying this inequality to the i-th summand of (5.7) where z = Af(0;) and y = f(;7) —
f(os) + f(oi—) — f(7;), the i-th summand is bounded from above by
167 + 07 17+ 29(|Af (o) 7718 + 67 |+ [Af(oa)llof + 671771
< 29(|6F |7 + 16, 19) + 27(|AF (o) 71167 [+ 16;71)
+A1Af (o) (16177 + |07 17,
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where we have set ;" = f(7;")— f(0:) and §; = f(o;—)— f(7;"). It is now straightforward
to show that the sum (over 1 < i < N) of the last display is bounded from above by C§“
for some 0 < o = a(p,q) < 1 and C = C(p,q) > 0. This finishes the proof of (4.5) as ¢

and ¢ were chosen arbitrarily. Exemplarily, we pick one of the terms. We have

N N 1-1/q , § 1/q
D IAf(e) s < <Z|Af(0i)|q> (Z@ﬂq)

i=1 i=1 =1

< §1-p/q (a=p)(A—=1/a) pri=1/ay1/a( ¢y,
<9 gg]a@;IAf(t)l M= VA(f)

The regularity of ¢ — | f]EQ) and the characterization of its jumps follow immediately.
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