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ON THE CONTRACTION METHOD WITH
DEGENERATE LIMIT EQUATION

BY RALPH NEININGER! AND LUDGER RUSCHENDORF
J. W. Goethe University and Universitat Freiburg

A class of random recursive sequencés,) with slowly varying
variances as arising for parameters of random trees or recursive algorithms

leads after normalizations to degenerate limit equations of the o,

For nondegenerate limit equations the contraction method is a main tool
to establish convergence of the scaled sequence to the “unique” solution
of the limit equation. In this paper we develop an extension of the
contraction method which allows us to derive limit theorems for parameters
of algorithms and data structures with degenerate limit equation. In particular,
we establish some new tools and a general convergence scheme, which
transfers information on mean and variance into a central limit law (with
normal limit). We also obtain a convergence rate result. For the proof we use
selfdecomposability properties of the limit normal distribution which allow
us to mimic the recursive sequence by an accompanying sequence in normal
variables.

1. Introduction and degener atelimit equations. A large number of parame-
ters of recursive combinatorial structures, random trees and recursive algorithms
satisfy recurrences of the divide-and-conquer type

K
L
(1) v, =) YI(Q) + by,
r=1 "

where I,(”) are random subgroup sizes {0, ..., n}, b, is a toll function and
(Y,f’)),,zo, r=1,..., K, are independent copies of the parameter, corresponding

to the contribution of subgroup, £ denotes equality in distribution. Typical
parameters,, range from the depths and path lengths of trees, the number of
various substructures in combinatorial structures, the number of comparisons,
space requirements and other cost measures of algorithms to parameters of
communication models, and many more.

The contraction method is an efficient and quite universal probabilistic tool
for the asymptotic analysis of recurrences as in (1). It has been introduced for
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the analysis of the Quicksort algorithm in Rdsler (1991) and further developed
independently in Rosler (1992, 2001) and Rachev and Ruschendorf (1995), see
also the survey article of Rosler and Ruschendorf (2001). It has been applied since
then successfully to a large number of problems.

Recently, a fairly general unifying limit theorem for this type of recurrence has
been obtained by the contraction method in Neininger and Riischendorf (2004) in
thenondegenerate casehere the limit distribution of the normalized recurrence
is uniquely characterized by a fixed point equation; we give an illustrative example
below. By this result one, in general, obtains the limit distribution from the limiting
recurrence and asymptotics of moments.

The aim of this paper is to extend the contraction method and to state a general
limit theorem for thedegenerate casén the degenerate case the characterizing
equations for the normalized algorithm degenerate in the limit to the trivial

equationX £x and, thus, give no indication on the limit distribution. This
case is also quite common in many examples. To simplify the discussion we
consider in the first part of the paper recursive sequefes=o which satisfy

the distributional recurrence in (1) in the most basic setting, wiRetel, that is,

we assume that

(2) Yy, inn + by, n > no,

whereng > 1, (I, b,), (Yy) are independent,, is random and,, is a random
index in{0, ..., n} with P(I, =n) < 1 forn > ng. Later on in Section 5 we come
back to the more general case as in (1).

To derive a limit in distribution foKY,,) as in (2) by the contraction method the
first step is to introduce a scaling Bf, sayX,, := (Y, — u,)/on, Whereu, = EY,
ando, = +/Var(Y,) and to derive a recurrence relation 6y :

3) X, £

X, +b"™, n > no,

On

where

1
b = _(bn — Un + MI,,)
n
and with independence relations as in (2).
The next step to prove a limit theorem f&, is to establish convergence of the
random coefficients in the recursive equation (3):

4 oh A, b — p,

On
thus, leading to a limit equation of the form
(5) X£AX +b.

Here, (A,b) and X are independent. Essential for the application of the
contraction method is that the limit equation (5) has a unique solution under
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appropriate constraints. The final step of the method is to establish convergence
of the X, to the solution of the limit equation (5).

Many examples of such an approach in the field of analysis of recursive
algorithms can be found in Cramer and Rischendorf (1996), Neininger and
Rischendorf (2004), Rosler (1991, 2001) and Rdsler and Ruschendorf (2001) and
the references therein.

As a typical example of this approach, we consider the Quickselect algorithm
which is designed similarly to the Quicksort algorithm and, as a result, yields a
fixed order statistioe) of ann-tuple of real numbersy, ..., x,. If ¥, denotes
the number of comparisons this algorithm needs to fipg, then, under the
assumption that all permutations @f;) are equally likely,Y, satisfies (2), where
I, ~unif{f0,...,n — 1}, b, =n —1,ng =2, andYy = Y, = 0. It is known for
this recursion that expectation and variance are of the ofiEfs=2n + O(1)
and VarY,) = n2/2 + o(n?), so that, noting that, /n has a continuous ur, 1]
distributed random variabl as its limit, we obtain, after scaling and deriving the
limits in (4), a limit equation (5) withd = U andb = ~/2(2U — 1), thus,

(6) XZUX+2QU - 1).
The solution of this equation, rescaled Wy= ,/1/2 X + 1, satisfies the equation
@) wWEUw+U,

whose unique solution is the Dickman distribution, which is quite common in the
analysis of algorithms, as well as in analytic number theory where it originated [see
Hwang and Tsai (2002)]. Standard application of the contraction method implies
that the fixed point equation (6) has a unique soluttitX) and that the rescaled
quantity(Y,, — EY,,)/+/Var(Y,) converges in distribution to this fixed point.

In this paper we discuss a case which appears quite often for parakigt@ith
logarithmic orders for the variance; see the examples below. Here, in the limiting
equation (5) we are led to the cage= 1, b = 0, that is, to thedegenerate limit
equation

x£x.

The degenerate limit equation does not give any hint to a limit of the recursive
sequenceX,) and so the contraction method does not work in this case.

We will focus in this paper on recursions of the form (2) and the extensions
in (1) which lead to a degenerate limit equation and exhibit an asymptotically
normal behavior for the scaled quantiti&s. We will explain how the normal
distribution comes up although the degenerate limit equation does not give any
indication for asymptotic normality, and obtain general theorems which lead on the
basis of information on mean and varianceYpfto a central limit law including
a rate of convergence. Special cases of our setting are suitable to rederive and
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extend various limit laws from the field of analysis of algorithms including rates
of convergence.
First of all, note that if forY,, given in (2) we have thatir2 Var(Y,) ~ L(n)
for n — oo, with a functionL being slowly varying ato, we obtain
o]

A L(l,)
On L(n)

almost surely, ifI,, satisfies mild conditions [see (9)] typically satisfied for
applications from the analysis of algorithms. If, furthermdrgjs appropriately
small andp™ = —(b — Wn + uz,) — 0 almost surely, then we are led to the
degenerate limit equatlon for the normalized sequénge. Therefore, degenerate
limit equations can be expected for quite general types of recursions.

As an example for the degenerate case, consider th&ga@dtan unsuccessful
search in a random binary search tree as discussed in Cramer and Ruschendorf
(1996) and Mahmoud (1992). Hel@,) satisfies (2) withl,, ~ unif{1, ..., n —1},

b, =1,n90=2 andYp=Y1=0. The tollb,, = 1 is small compared to the similar

case of Quickselect considered above. In this case the expectation and variance
satisfyEY,, = 2Inn+ O (1) and Va(Y,)) = 2Inn+ O(1). So the scaling now yields

A =1 andb = 0 and thus leads to the degenerate limit equation. We come back to
this example in Section 4.

Since the case where the variance is a slowly varying fundti@n of the order
(Inn)* with somea > 0 (up to multiplicative constants) is common in the field
of analysis of algorithms, we will restrict our setup to this case; for examples see
Sections 4 and 5.

The paper is organized as follows: Section 2 contains the basic central limit law,
Theorem 2.1. In Section 3 tools are developed to handle degenerate limit equations
leading to a proof of Theorem 2.1. In Section 4 as application a couple of limit laws
from the field of analysis of algorithms are rederived in a uniform setup. These
were previously proven one by one. In the last section we extend our results to
obtain central limit theorems for the more complex recurrences of the the divide-
and-conquer type in (1). In particular, our limit law covers some more complicated
problems related to a maximum-finding algorithm in a broadcast communication
model as analyzed in Chen and Hwang (2003).

— A1=1, n— 0o,

2. A central limit law. Let (Y,),>0 be a sequence of random variables
satisfying the recursion

(8) Yn£Y[n+bn’ n > no,

whereng > 1, (1,,, b,), (Y;) are independend,, is random and,, a random index
in {0, ...,n} with P(I, =n) < 1 for n > ng. We denotes,, = /Var(y,,) and
w, = EY, and use the convention9n := (Inn)* for « > 0 andn > 1. | X||,
denotes the ,-norm of a random variabl& . Then we have the following central
limit law, where (0, 1) denotes the standard normal distribution.
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THEOREM 2.1. Assume that(Y,),>o satisfies the recursion8) with

1Y, ]l3 < oo forall n > 0and
I,v1
In( u )H < 00.
n 3

Furthermore assume that for real numbegs A, « with 0 < A < 2«, the mean and
the variance of/,, satisfy

9) lim supIEIn(I" Y 1) <0, su#
n

n—oo n>1

(10)  |ba—pn+ s lz=00n"n),  of=Ch*n+ 0(n*n),
with some constar@ > O. If
(12) Bi=3A3@—k)A3@ -2/ A(@—k+1)>1,
then
Y, —EY,
(12) o £ N0, 1)
JVC In%n
and we have the following rate of convergence for the Zolotarev-mgtric
Y, —EY, 1
13 (u,w 0,1):0(7).

The Zolotarev metrigs is defined for distributionsC(V), L(W) by

G3(L(V), LW)) := sup|Ef (V) —Ef (W),
feF3

whereF3:={f € C3(R,R):|f"(x) — f"(y)| < |x — y|} is the space of all twice
differentiable functions with second derivative being Lipschitz continuous with
Lipschitz constant 1. We will use the short notati@V, W) := £3(L(V), L(W)).
It is well known that convergence igs implies weak convergence and that
c3(V,W) < oo if EV =EW, EVZ=EW?2, and ||V |3, |W|3 < co. The metric
£31s (3, +) ideal, that is, we have fdf independent ofV, W) andc £ 0

(14) B(V+T,W4+T) <V, W), g3(cV, W) = [c[za(V, W).

For general reference and propertiegpfve refer to Zolotarev (1976, 1977) and
Rachev (1991). For implications and interpretation of rates of convergencetis the
metric see Neininger and Rischendorf (2002).

3. Proof of the limit law. For the scaling of ther,, we have VafY,) ~
CIn% n with somea > 0. Since the scaling of the recurrence requires a scaling
forn =0, 1 as well, we define for integers> 0 and reab > 0,

Ls(n):=In(n v 1) +8§l,1(n),

where 15 denotes the indicator function of a st We use the convention
Ly (n) := (Ls(n))* for o > 0.
To prepare for the proof of Theorem 2.1 we provide two calculus lemmas:
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LEMMA 3.1. Let, be a random variable if0, ...,n} with P(I, =n) <1
for all n sufficiently large and withimsup,_, . EIn((Z, v 1)/n) < —e for some
e > 0.Let(d,)n=0, (rn)n=n, b€ sequences of nonnegative numbers with

Ls(I,)\”

dnfE[( 5(")) dl,,i|+rn7 n>ng>2,
Ls(n)

forsomey > 0. Thenforalll < 8 < 1+ y andé > 0 sufficiently smallwe have

o( 1) — 4 o( ! )
Ty = — = — ).
" Inf n " Inf~1n

PROOF We abbreviate) := y + 1 — 8 and choosé = ¢(n A 1)/(6n). There
exists amy > ngand anM > Owith EIn((Z,, v1)/n) < —¢, p, =P, =n) <1,
rp<M/InPn,and(1+8/Inn)" <1+ 2ns8/Inn for all n > n1. We define

-1 .
= o max{d; LE 1 (k):0 <k <n1}

and proved, < R/Lf_l(n) by induction. For O< n < n1, there is, by definition
of R, nothing to prove. For > n1, we obtain, using the induction hypothesis,

Lg(ln)>y R } M

dy < pndn + IE:|:]-{[n§n—1}<

Lsm) ) L8yl Infn
This implies
1 Ls(In)\" M
(13) dn < (1—Pn)|nﬁ_ln(R(E( La(n)) _Pn) * m)
1 IN((I, v 1)/n) +8\" M
19 = g (e ) ) )

For the estimate of the latter expectation we abbrevate In((7,, v 1)/n) and the
setF :={Z > —§}. Then we have, usinfl — x)* <1l—axforx>0,0<a <1,

Z +8\" s \" Z + 8\
E(1+ |+ ) sE[lp(l—i-—) +1Fc(1+ + ) ]

nn Inn Inn
2né H(Z+6
EE[1F<1+L>+1F"<1+M>:|
Inn Inn
2né DHEZ +65
51+L+(”A)( 9
Inn Inn

With EZ < —& and noting thatt < e(n A 1)/(2(2n + (n A 1))), we obtain the
estimate

Z +8\" A1
E<l+ + ) S1_(77 )€
[ 2Inn

nn
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Plugging this into (15), we obtain

.- 1 <R<1 (1/\7})8)+ M)
"= A= p)inf Iy Pr = S ) " inn

R 1
= — Re(mnl)/2—M
Inf~1n (l—pn)lnﬁn( et n b/ )
- R
T Infly’

by definition of R. [
LEMMA 3.2. Forall @ > 0and integers: > 3andl1 <i <n, we have
Ini\e 5 .
() 2= ()l
Inn n

~ Inn
PROOF Fori =1, the assertion is true. For= 2 anda > 1, we have, by the
mean value theorem, for appropriate [In 2, Inn],

1 o i
——[In%i —In"n|= — as“‘1|lni—lnn|§—’In<—)‘.
In%n In* n Inn n
We have
20 : 2
o1 In“i —In%n|= i “no,f_lna "< 21 [ In% i — In** n.
In%n IN“n In“i +In%n In%* n

Thus, for O< « < 1, doubling of the exponemnt successively yields

In% i —In% n|

1
[InN*i —In*n| <
In

In%n a/n

with &’ € [1, 2). Then applying the first part implies the assertionl

PROOF OFTHEOREM2.1. Wehav&In((I,Vv1)/n) < —eforalln > nq1 > ng
and some > 0. We define the scaled quantities
Y, —EY,
Zy=—"T71—",
\/EL(S (n)

with a§ > 0 sufficiently small to be specified later and dengte= /Var(Z,) =
an/(\/ELg (n)). Thus, we have,, — 1 for n — oco. The sequencéz,,) satisfies
the recurrence

n>0,

Ls(I)\*

Z, é( s( n)) Z _i_b(n)’ n>ni,
Ls(n)

with

b = b(n)(lnv bn) = (bn — Un + Mln)-

1
VCLy(n)
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Now we defineN, := t, N, where N is a standard normal distributed random
variable independent aff,,, b,), and introduce an accompanying seque(ip)

by

ZF =

n

o
(La(ln)) Ny, +p™, n>0.

Ls(n)

Note thatZ,, N,,, Z have identical first and second moment, and finite absolute
third moment. Thusgs distances between these random variables are finite. We
have

(17) ¢3(Zn, Nn) < §3(Zn, Zy) + ¢3(Z,;, Ni).

Using thatzs is (3, +) ideal, compare (14), and conditioning @, 4,,), we obtain

[elA((EG) 2eren)

¢3(Zn, Z,)) = sup

feFs
- f((L‘S(k) ) Ne + 6™k, s>)] AP0 (&, )
Ls(n)
Ls(k)\* (n)
(18) §/¢3<(La(n)) Zi + bk, 5),
Ls(k)\* (n) ) (i)
(Lg(n)) Ni + bV (k,s) )dP (k,s)
i Ls(k)\**
P, =k Zi, Nip).
5,;, ( )<L3(n) £3(Ze, No)
We will show below that
1
(19) aZ; N =0 (1)
n“n

with g given in (11). With this estimate, we obtain from (17) and (18) denoting
dy :=¢3(Zy, Np) andr, = {3(2::, Ny),

dy = ;3(2n7 Ny)

-5 o ) ) o

-#[(0) o] e

Lemma 3.1 then implieg,, = ¢3(Z,, N,) = O(1/Inf~1n) since, by definition
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of B8, we haves < 1+ 3a andé$ can be chosen appropriately. Moreover, we obtain
Y, — 1 1
ca W 0.D) = g 2o )

On n Tn

1
Tn

=05,
N Inf~1n)’

which is (13). Sinces convergence implies weak convergence, we obtain (12).
It remains to establish the bound (19) fa(Z;;, N,,): We define

Gn — (LS(In) )a‘fln,
Ls(n)

thus, we have the representatioh= G, N +b™. From VaxZ*) = t2, we obtain,
in particular, the relation

(20) E[G? + (b™)?] — t2 =0.

Using the closure of the normal familiy under convolution, we have, with the set
A :={G, > 1,} and its complemem¢, the decompositions

(21) ZF L1, (tuN + VG2 = 22N" + b™) + 14¢(G,N + b™),

(22) Ny £ 14(tuN) + 14c (G, N + V12 = G2 N'),

where N, N’, G,, are independenty £ N Subsequently, we abbreviatg, :=
|G2 — £2|%/2 and the right-hand sides in (21) and (22) 5§ andN,,, respectively.

We have to estimateE[f(Z;) — f(N,)]| uniformly for f e 3. Taylor
expansion around yields f(x) = f(N) + f/(N)(x — N) + (1/2 f"(N)(x —
N)2+ R(x, N) for x € R. Here we haveR(x, N)| < (1/6)|x — N|3 since /" has
Lipschitz constant 1. We may subsequently assumeftéd) = 0. If f(0) # 0,
considerg(x) := f(x) — (f”(0)/2)x2. Then we have” (0) = 0 and, since, Ny,
have identical second momefl], f (Z;) — f(N,)1=E[g(Z}) — g(Nn)].

Using the Taylor expansion and representations (21) and (22), we have

ELf(Z¥) — f(No)] =E[S1 + S2+ R(Z*, N) = R(N,.. N)],

where, forS1, we collect the terms involving the factg’(N) and, for S», we
collect the terms involving the factgi’ (N). Hence, after simplification and using
thatN, N’, and(G,, b™) are independent, we obtain

S1=f'(N)(An(Ls — 140)N' + ™),

J"(N)

> (A2(14 — Lae)(N)2 + (b™)?

So =

+ 26N (La(ty — 1) + 14c(G, — 1))).
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SinceEN’ = Eb™ = 0 and by the independence betweé¢mandb™ and between
N’and(N, G,), we obtainES; = 0. For the estimate @S>, first note that we have
A?(14 —14c) = G2 —12. Hence, with (20), the independence\ofN’, (G, b™),
andE(N’)2 =1, we obtain

J"(N)
2

Furthermore, note that fof € 3 with f”(0) =0, we have
IELf"(N)N]| = [E[(f"(N) — f"(0))N]|
<Ellf"N) - f"OIN]| <EN?=1.

E (A2(14 — 14) (N2 + (b)) = 0.

Thus, with the independence &f to the other quantities, we obtain the bound
ES2| < E[b™(|tw — U +1G, — 1| < [6™] y(17s — 1+ 1Gn — L]12).
For the remainder terms we have theestimate
EIR(ZE, N)| < LE[|(ts — DN + AN + P[P+ (G, — DN + 5™ ]
= 0(jt — 1P+ 1AL I3+ 6™ |3+ G — 113).

The termE|R(N,, N)| is bounded by the sam@-term. Hence, altogether we
obtain

23 3(Z5 Ny = O(1tw — 1P+ 1AL I3+ |63+ 16, — 1153
+ 16,1t — 11+ G — 1lI2)).

For the estimate of the latter norms and distances note that, using Lemma 3.2, we
have

1
|G — 1| = 7«/6In°‘n|01" —/CIn%n|
1 2 2
S C|n201_n|01"_cm n|

= pa ICIn% (I, v 1) — CIn®n + O(In*n)|

_|, I,v1 0 1
=|n(*57) o (s )

Analogously, we obtaitr, — 1| = 0(1/In?*~*n).
With sup,~1 [l In((Z, v 1)/n)||3 < oo, we obtain

1
1Gn ~ Ua=0 (g )
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By definition of 5™ and (10), we havelb™ |3 = O(1/In* "% n). For A,, we
obtain

|Anlla = [VIe2 = G2l |3 = 72 — G213

2 2,1/2

< (12— 1+ G2 — 1)3)¥2

1
=0 ( InW/2A =172, )

Collecting the estimates, we bound the right-hand side in (23). Estimating there
the Lo-norms, byL3-norms, we finally obtain

1
22N =0 (1)
In n

with
B=3A3a—K)A3@—1/2A@—k+1)AGBx—k—A).

Note that this coincides with the representation foin (11) since we have
3 — k) A3 —A/2) <3 — k — A. This is seen by distinguishing the cases
k>MA/2andk <A/2. O

In the proof of Theorem 2.1 the limit normal distribution is no longer
obtained from the limit fixed-point equation as in the usual contraction method.
Instead, as a substitute, the closure of the normal family under convolution
used in (21) and (22) allows us to mimic the recurrence satisfiedZy,
respectively, by the accompanying seque(i€g) in terms of normal quantities.

This decomposition allows for estimatigg(Z;;, N,,) sufficiently tight. It is easy

to see that the scaling property in (21) and (22) essentially characterizes the normal
distribution. More precisely, the following lemma explains the occurrence of the
normal limit distribution:

LEmMmA 3.3 (Characterization of normal distributions)Let X, W be indepen-
dent with mear® and variancel and assume that for af € (0, 1),

(24) XE£gX +V1-q2w.
Then we havel £ N(0,1).

PrROOF From (24) we obtain for all fixed > 1, by induction on < k <n,

that
e In—k+1 1 &
X |— x4+ | — S w,,
n+1 + n—l—ljz::1 /
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where Wy, ..., W,, X are independent withV; £ w for all j=1...,n. Thus,
with &k = n we have

£ 1 n 1 &
x£ [ 2 xi [T (S w)
nri "t n+1<ﬁi2::1 4’)

Therefore, the central limit theorem impliési N(O0,1). O

Note that a similar scaling property valid for stable distributions, in principle,
allows the method of proof of Theorem 2.1 to a stable limit theorem.

4. Applications and discussion. In this section we give applications of
Theorem 2.1. A couple of limit laws obtained before by different means and
involving specific calculations for each case are covered by Theorem 2.1:

Unsuccessful search. The cost of an unsuccessful search in a random binary
search tree witlz nodes, as discussed in Cramer and Ruschendorf (1996) and
Mahmoud (1992), satisfies recurrence (1) with~ unif{l, ..., n — 1}, b, = 1 for
n > 2, andYp = Y1 = 0. We have [see Mahmoud (1992)]

EY,=2Inn+ 0(1), Var(Y,) =2Inn + 0(1)
and obtain in the notation of Theorem 2.1,
|0 — pn + 11, | 3= 112In(L /) + O(D)]l3 = O(1).

Thus, the parametersin Theorem 2.1@are 1/2,x = A = 0 and we havg = 3/2.
The technical conditions in (9) are satisfied sinc€inv 2)/n) — InU in L3
for a uniff0, 1] random variablel/. (Use representations = [(n — 1)U and
decompose the domain of the resulting integral into the intevals (i + 1)/n]
fori =0,...,n — 1.) Theorem 2.1 implies the central limit law with a rate of
convergence:

(25) Q(%, N (O, 1)) = 0(\/|1n_n).

Note that the 1/Inn rate of convergence for different metrics was shown
previously in Cramer and Rischendorf (1996) based on calculations involving the
particular distribution of,.

Depthsof nodes. The depth of a random node in a random binary search tree
with n nodes satisfies recurrence (1) witt,, = 0) = 1/n andP(1,, = k) = 2k /n?
forl<k<n-—1andb, =1, wheren > 2 andYpy = —1, Y1 = 0. We have [see
Mahmoud (1992)]

EY,=2Inn+ O(1), Var(Y,) =2Inn + 0(1),
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and obtain in the notation of Theorem 2.1,
|60 — pn + 1, | 3= 112In(L, /n) + O (D)3 = O(D).

Hence, the parameters of Theorem 2.1 are given byl/2, x = A =0 and we
obtaing = 3/2. The technical conditions in (9) are satisfied sincelinv 2) /n) —
Inv/U in L3 for a uniff0, 1] random variable/ and Theorem 2.1 implies the
central limit law with a rate of convergence as in (25).

Mahmoud and Neininger (2003) obtained this rate of convergence via an
explicit calculation based on the specific distribution Bf and showed the
optimality of the order 1v/Inn, thatis,z3((Y, — tn) /o, N (0, 1)) = ©(1/+/Inn).

This indicates that our estimates in the proof of Theorem 2.1 are tight. See also
Mahmoud and Neininger (2003) for a different distributional recurrence satisfied
by (Y,)) which leads to the limit equatio’ £ Bx + (- B)X',whereX, X', B

are independent witlk, X’ being identically distributed an@ Bernoulli(1/2)
distributed. This limit equation similar t& £ X is as well satisfied by any
distribution, hence, also of degenerate type.

Broadcast communication. The time(Y,) of a maximum-finding algorithm
for a broadcast communication model wittprocessors as analyzed in Chen and
Hwang [(2003), Algorithm B] satisfiesp = Y1 = 1 and, forn > 2, recurrence (1)
with I,, ~ unif{0, ..., n — 1} andb,, being the time£ number of rounds) used by a
leader election algorithm as discussed in Prodinger (1993) and further analyzed in
Fill, Mahmoud and Szpankowski (1996). We have [see Chen and Hwang (2003)]
Eb2 = O0(In3n) and

EY, =uxIn’n+ O(nn),  VarY,) =c2In®n + 0(n®n),

with positive constantg:, o. A direct calculation gives, after cancellations of
leading terms,

[bn = pn + 11, [ 3= O(Inm).
Thus, we haver = 3/2, k =1 andi = 2, which givesg = 3/2. This implies the

following

COROLLARY 4.1. The time(Y,) of AlgorithmB in Chen and Hwang2003),
as introduced aboveatisfies

<Y,,—EY,, VO 1))_0< 1 )
S\ vaay YY) =N\ )

The same bound for the rate for the Kolmogorov metric was obtained in Chen and
Hwang (2003).
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5. Extensions and applications. We consider now the more general recur-
rence for(Y,), asin (1),

K
(26) Y, £ Z ((rn)) +b,,  n>no,

whereng, K > 1, b, is a random varlablel(”) ...,112”) € {0,...,n} are ran-
dom indices, and(Y(l)) ...,(Y,fk)) distributional copies of(Y;) such that

(Yk(l)), (Yk(K)) (I(”) 11(<")’ b,) are independent. Many examplesofide-
and-conquetype algorithms lead to this equation and have been considered in the
analysis of algorithms literature.

We introduce the scaling,, := (Y, — un)/on, Whereu,, = EY, ando, =
/' Var(Y,) and obtain as recurrence relation oy,

K
(n)
(27) X, £ Z il X(’(,f) + b, n > nog,

(o]
r=1 "1

where

1 K
b = — (bn — i+ ) M,(n))
On =1
and (X,El)), (X,EK)) (I("),...,I,({"),bn) are independenILX,El)),..., (X,EK))
being distributlonal copies afx,,).

Extensions of Theorem 2.1 in various directions are possible. We give as an
example a theorem tailored for the case when the coeffic'telmt)s/on in (27)
behave roughly as follows:

O () O ()
hy — A]_ = 1, Ir
o, oy
We assume that limsyp, ., Zf{:lIP’(I,(") =n) < 1 and denotey,, = /Var(Y,)
andu, =EY,.

— A, =0, r=2,...,K.

THEOREM 5.1. Assume that(Y,),>o0 satisfies the recurrencé26) with
IY,llz < oo forall n > 0, and

. 1k 1M1
(28) limsupEIn( =] v1)) <0, su#ln( 1 )H <00

n—oo n =1 n>1 n 3

Furthermore assume that for real numbess A, « with 0 < A < 2«, the mean and
the variance ot;,, satisfy

= 0(n“n), 02=CIn®n+ 0(n*n),
3

K
by — pn + Z Mllfn)
r=1
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with some constard > 0 and that for some real numbér> 0, we have
In* (1" v 1)|g=00n*n),  r=2,...,K.

If

(29) B:=3A3@-k)A3a—E) A -2/ A (@—Kk+1)>1,

then

—EY,
(30) 4

fI“

and we have the following rate of convergence for the Zolotarev-mgtric

— N(0,1),

o 0 ) =0 (7,
NWary) © ) T P,
For the proof we need a substitute for Lemma 3.1:

LEMMA 5.2. Let Il("),...,ll({") be random variables in{0,...,n} with
le]P’(I,(") =n) < 1for all n sufficiently largeand

1 K
l Ein( =™ v1))<-
im sup n(n [T v ))< €

n—oo r=1
for somes > 0. Let(d,),>0, (r:)n=n, D€ SEqUENCES Of NONNegative numbers with

Ls(1™)\Y

K
d, <E . ) d,m ; 2 no,
n= [;( Ls(n) Ir()}—l-rn n>ng

for somey > 1. Thenfor all 1 < g <y and$ > 0 sufficiently smallwe have

o( 1) — d o( ! )
Ty = — = — ).
" In® n . Inf~1n

The proof of Lemma 5.2 follows the argument of the proof of Lemma 3.1. Note
that we have the more restrictive conditiorr8 <y comparedto kg <y +1
in Lemma 3.1. This allows for replacing the analog of the estimates (15) and (16)
in the proof of Lemma 3.1 by

3P = (1 MR (Y]

In((1{" v 1 K Inz™
SE[HH n(( 1Inz )/n) +Z|n(llnn\/ 1)}

r=2

<14+ L Ein 115[(1(")\/1)
- Inn n d '

r=1
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Forthiswe usedthat=y +1— 8 > 1.
We sketch the extension of the techniques for Theorem 2.1 to obtain Theo-
rem5.1.

PROOF OF THEOREM 5.1. (Sketch) We haveEIn((1/n) 1‘[ 1(1(")
1)) < —¢ for all n > n1 with an appropriate > 0 andny > ng. With § > 0 suffi-
ciently small, we define the scaled quantities

Y, — EY,
Zy = nian, n >0,
\/6145(”)

and denote, := /Var(Z,) = o,/ (+/CL§ (n)); thus,z, — 1 forn — co. We have
the recurrence

(n)
Ls(I,
—Z( HO) 2046, nzm,

Ls(n)
with
) 1 -
b = 7a(bn —Un+ ) u <n>>-
VCL3(n) ;1 r
We defineN.” := ¢, N, whereN®, ..., NK) are standard normal distributed
random variables such that,, b,), NV, ..., NX) are independent. Also, we
introduce an accompanying sequenzg) by
K (n)
Ls(I:™") N
YARES ( ) b, > nj.
! ; Ls(n) o t=m

Then, withd, = ¢3(Z,, N,) and r, = ¢3(Z%, NiV), we obtain similarly to the
argument in the proof of Theorem 2.1,

K (m)y \ 3«
Ls(I;™")
" |:r:1 Lg(n) Ilf ):|

For the estimate of, = ¢3(Z;;, N,,), we define

Ls(l(n)) o
G, :=( Ls(;) ) r[{n), A:={G, > 1.}, Ay = |G,21—rnz|

and use the representations

.z o Ls(1™) N 4 )
ZF= 1. N +AN+Z< ) [(n)+b

Ls(n)

(n)
Ls(I,
Z( s( )) N(’(’n))_i_b(n) ’
Ls(n) Iy

+ 1y (GnN(l) +
r=2

Np £ 14 (N D) + 14 (G, ND + A, N'),
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where N’ is standard normal distributed and independent of the other random
variates. With corresponding estimates, as in the proof of Theorem 1.1, we find

* 3
a(ZF, Ny) = 0<|rn — 1B AL+ 63+ 11G, — 1113

1 K
+ [ o7 = 1+ 1Gn = L2) + g 3 I (1 v 1) Hi)
r=2

-0(iz7,)
N Infn/)’

with 8 given in (29). Since8 < 3w, Lemma 5.2 completes the proof]

As applications of Theorem 5.1 we discuss various cost measbisgsfor
a maximum finding algorithm in a broadcast communication model with
processors as analyzed in Chen and Hwang [(2003), Algorithm A]. We use their
expansions for mean and variance and, by Theorem 5.1, rederive the central limit
laws. Additionally, we endow them with new rates of convergences. Several cost
measuresY,) of this algorithm satisfy the recurrence
L v (1) @3]
(31) Y, = YI{’” + ngﬂ + by, n=>2,
with relations as in (26), wherk, varies for different cost measures, whereas the
distribution of the indices/.", 13") is in all cases given by
2—n’ (]a k) = (07 0)1

(n) sy _ - _

In particular, we have that the marginléf) is binomial B(n, 1/2) distributed and

3+27" k=0,

S
2—(k+1) l<k<n-—1.

The technical conditions in Theorem 5.1 regarding the ind'(dé@, 12(")) are,
hence, satisfied: We haﬂR{Il(”) =n)+ ]P’(Iz(") =n)=2"<1foralln>1and
[ In((Il(”) v1)/n)|lz—In2 sincell(") is binomial B(n, 1/2) distributed, thus, we

have sup. 4 | In((Il(”) v 1)/n)|l3 < oo. For the verification of the first condition

in (28) note that we havié In((Il(”) v 1)/n) — —In2 and, therefore, it is sufficient

to show lim sup_)ooEIn(Iz(”) v 1) <In2. We have

n—1 00

Ink In2 k n2 1
(n) _ _

EIn(Z; v1)_k§22k+15 3 +k§32k+1_ 3 +§<0.6<|n2.
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Chen and Hwang (2003) analyze three cost measures, namely, the time
(= number of rounds) taken by the algorithm, the number of coin flips performed
and the number of comparisons performed. The number of coin flips does not lead

to a degenerate limit equatict £ X and can be treated by standard application
of the contraction method, see, for example, Résler (2001). We focus on the other
two more delicate parameters:

Time of thealgorithm. The time(Y;) of the maximum finding Algorithm A
analyzed in Chen and Hwang (2003) satisfies (31) wjte= 1 andYg=Y; = 1.
Mean and variance satisfy, see Chen and Hwang (2003),

EY, =lnn+ 0(1), var(Y,) = 62Inn + 0(1),
with constantsjt,6 > 0 being explicitty known. Hence, in the notation of
Theorem 5.1 we have

lbw = st + 1o + 12,00l = O, [NV D)= 0D,

using that alsdg In(Iz(”) vD|3=0().Thus,wehave =1/2andk =1 =& =0,
which givess = 3/2. With Theorem 5.1 we rederive the central limit law and add
the following rate of convergence:

COROLLARY 5.3. The time(= number of rounds(Y,) of the maximum
finding AlgorithmA in Chen and Hwang§2003),as introduced aboveatisfies

{3(%, N (0, 1)) = 0(\/;_”).

Number of comparisons. The number of comparisori¥;,) of the maximum
finding Algorithm A was analyzed in Chen and Hwang (2003). It satisfies (31)

with b, =n — 11(”) andYy = Y1 = 0. Mean and variance have the expansions, see
Chen and Hwang (2003),

EY,=n+ lnn+ 0(1), Var(Y,) =a2Inn + 0(1),

with constantsit,c > 0 being explicitty known. Hence, in the notation of
Theorem 5.1 we obtain, after cancelation,

B0 — a4 1y + 1o |5 = [RINE" v D/n) + 17 +ain 17+ 0D
—0(D.

Thus, we havex = 1/2 andx = A = £ = 0, which givesg = 3/2. Theorem 5.1
rederives the central limit law and adds a rate of convergence:

COROLLARY 5.4. The number of comparisorni,) of the maximum finding
AlgorithmA in Chen and Hwang¢2003),as introduced aboyesatisfies

{3(%, N (0, 1)) = 0(\/;_”).
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