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ON THE CONTRACTION METHOD WITH
DEGENERATE LIMIT EQUATION

BY RALPH NEININGER1 AND LUDGER RÜSCHENDORF

J. W. Goethe University and Universität Freiburg

A class of random recursive sequences(Yn) with slowly varying
variances as arising for parameters of random trees or recursive algorithms

leads after normalizations to degenerate limit equations of the formX
L= X.

For nondegenerate limit equations the contraction method is a main tool
to establish convergence of the scaled sequence to the “unique” solution
of the limit equation. In this paper we develop an extension of the
contraction method which allows us to derive limit theorems for parameters
of algorithms and data structures with degenerate limit equation. In particular,
we establish some new tools and a general convergence scheme, which
transfers information on mean and variance into a central limit law (with
normal limit). We also obtain a convergence rate result. For the proof we use
selfdecomposability properties of the limit normal distribution which allow
us to mimic the recursive sequence by an accompanying sequence in normal
variables.

1. Introduction and degenerate limit equations. A large number of parame-
ters of recursive combinatorial structures, random trees and recursive algorithms
satisfy recurrences of the divide-and-conquer type

Yn
L=

K∑
r=1

Y
(r)

I
(n)
r

+ bn,(1)

where I
(n)
r are random subgroup sizes in{0, . . . , n}, bn is a toll function and

(Y
(r)
n )n≥0, r = 1, . . . ,K , are independent copies of the parameter, corresponding

to the contribution of subgroupr , L= denotes equality in distribution. Typical
parametersYn range from the depths and path lengths of trees, the number of
various substructures in combinatorial structures, the number of comparisons,
space requirements and other cost measures of algorithms to parameters of
communication models, and many more.

The contraction method is an efficient and quite universal probabilistic tool
for the asymptotic analysis of recurrences as in (1). It has been introduced for
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the analysis of the Quicksort algorithm in Rösler (1991) and further developed
independently in Rösler (1992, 2001) and Rachev and Rüschendorf (1995), see
also the survey article of Rösler and Rüschendorf (2001). It has been applied since
then successfully to a large number of problems.

Recently, a fairly general unifying limit theorem for this type of recurrence has
been obtained by the contraction method in Neininger and Rüschendorf (2004) in
thenondegenerate case, where the limit distribution of the normalized recurrence
is uniquely characterized by a fixed point equation; we give an illustrative example
below. By this result one, in general, obtains the limit distribution from the limiting
recurrence and asymptotics of moments.

The aim of this paper is to extend the contraction method and to state a general
limit theorem for thedegenerate case. In the degenerate case the characterizing
equations for the normalized algorithm degenerate in the limit to the trivial
equationX

L= X and, thus, give no indication on the limit distribution. This
case is also quite common in many examples. To simplify the discussion we
consider in the first part of the paper recursive sequences(Yn)n≥0 which satisfy
the distributional recurrence in (1) in the most basic setting, whereK = 1, that is,
we assume that

Yn
L= YIn + bn, n ≥ n0,(2)

wheren0 ≥ 1, (In, bn), (Yk) are independent,bn is random andIn is a random
index in{0, . . . , n} with P (In = n) < 1 for n ≥ n0. Later on in Section 5 we come
back to the more general case as in (1).

To derive a limit in distribution for(Yn) as in (2) by the contraction method the
first step is to introduce a scaling ofYn, sayXn := (Yn −µn)/σn, whereµn = EYn

andσn = √
Var(Yn) and to derive a recurrence relation forXn:

Xn
L= σIn

σn

XIn + b(n), n ≥ n0,(3)

where

b(n) := 1

σn

(
bn − µn + µIn

)
and with independence relations as in (2).

The next step to prove a limit theorem forXn is to establish convergence of the
random coefficients in the recursive equation (3):

σIn

σn

→ A, b(n) → b,(4)

thus, leading to a limit equation of the form

X
L= AX + b.(5)

Here, (A,b) and X are independent. Essential for the application of the
contraction method is that the limit equation (5) has a unique solution under
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appropriate constraints. The final step of the method is to establish convergence
of theXn to the solution of the limit equation (5).

Many examples of such an approach in the field of analysis of recursive
algorithms can be found in Cramer and Rüschendorf (1996), Neininger and
Rüschendorf (2004), Rösler (1991, 2001) and Rösler and Rüschendorf (2001) and
the references therein.

As a typical example of this approach, we consider the Quickselect algorithm
which is designed similarly to the Quicksort algorithm and, as a result, yields a
fixed order statisticx(k) of an n-tuple of real numbersx1, . . . , xn. If Yn denotes
the number of comparisons this algorithm needs to findx(1), then, under the
assumption that all permutations of(xi) are equally likely,Yn satisfies (2), where
In ∼ unif{0, . . . , n − 1}, bn = n − 1, n0 = 2, andY0 = Y1 = 0. It is known for
this recursion that expectation and variance are of the ordersEYn = 2n + O(1)

and Var(Yn) = n2/2 + o(n2), so that, noting thatIn/n has a continuous unif[0,1]
distributed random variableU as its limit, we obtain, after scaling and deriving the
limits in (4), a limit equation (5) withA = U andb = √

2(2U − 1), thus,

X
L= UX + √

2(2U − 1).(6)

The solution of this equation, rescaled byW = √
1/2X + 1, satisfies the equation

W
L= UW + U,(7)

whose unique solution is the Dickman distribution, which is quite common in the
analysis of algorithms, as well as in analytic number theory where it originated [see
Hwang and Tsai (2002)]. Standard application of the contraction method implies
that the fixed point equation (6) has a unique solutionL(X) and that the rescaled
quantity(Yn − EYn)/

√
Var(Yn) converges in distribution to this fixed point.

In this paper we discuss a case which appears quite often for parametersXn with
logarithmic orders for the variance; see the examples below. Here, in the limiting
equation (5) we are led to the caseA = 1, b = 0, that is, to thedegenerate limit
equation

X
L= X.

The degenerate limit equation does not give any hint to a limit of the recursive
sequence(Xn) and so the contraction method does not work in this case.

We will focus in this paper on recursions of the form (2) and the extensions
in (1) which lead to a degenerate limit equation and exhibit an asymptotically
normal behavior for the scaled quantitiesXn. We will explain how the normal
distribution comes up although the degenerate limit equation does not give any
indication for asymptotic normality, and obtain general theorems which lead on the
basis of information on mean and variance ofYn to a central limit law including
a rate of convergence. Special cases of our setting are suitable to rederive and
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extend various limit laws from the field of analysis of algorithms including rates
of convergence.

First of all, note that if forYn given in (2) we have thatσ 2
n = Var(Yn) ∼ L(n)

for n → ∞, with a functionL being slowly varying at∞, we obtain

σIn

σn

∼
√

L(In)

L(n)
→ A1 = 1, n → ∞,

almost surely, ifIn satisfies mild conditions [see (9)] typically satisfied for
applications from the analysis of algorithms. If, furthermore,bn is appropriately
small andb(n) = 1

σn
(bn − µn + µIn) → 0 almost surely, then we are led to the

degenerate limit equation for the normalized sequence(Xn). Therefore, degenerate
limit equations can be expected for quite general types of recursions.

As an example for the degenerate case, consider the costYn of an unsuccessful
search in a random binary search tree as discussed in Cramer and Rüschendorf
(1996) and Mahmoud (1992). Here,(Yn) satisfies (2) withIn ∼ unif{1, . . . , n−1},
bn = 1, n0 = 2 andY0 = Y1 = 0. The tollbn = 1 is small compared to the similar
case of Quickselect considered above. In this case the expectation and variance
satisfyEYn = 2 lnn+O(1) and Var(Yn) = 2 lnn+O(1). So the scaling now yields
A = 1 andb = 0 and thus leads to the degenerate limit equation. We come back to
this example in Section 4.

Since the case where the variance is a slowly varying functionL(n) of the order
(lnn)α with someα > 0 (up to multiplicative constants) is common in the field
of analysis of algorithms, we will restrict our setup to this case; for examples see
Sections 4 and 5.

The paper is organized as follows: Section 2 contains the basic central limit law,
Theorem 2.1. In Section 3 tools are developed to handle degenerate limit equations
leading to a proof of Theorem 2.1. In Section 4 as application a couple of limit laws
from the field of analysis of algorithms are rederived in a uniform setup. These
were previously proven one by one. In the last section we extend our results to
obtain central limit theorems for the more complex recurrences of the the divide-
and-conquer type in (1). In particular, our limit law covers some more complicated
problems related to a maximum-finding algorithm in a broadcast communication
model as analyzed in Chen and Hwang (2003).

2. A central limit law. Let (Yn)n≥0 be a sequence of random variables
satisfying the recursion

Yn
L= YIn + bn, n ≥ n0,(8)

wheren0 ≥ 1, (In, bn), (Yk) are independent,bn is random andIn a random index
in {0, . . . , n} with P(In = n) < 1 for n ≥ n0. We denoteσn = √

Var(Yn) and
µn = EYn and use the convention lnα n := (lnn)α for α > 0 andn ≥ 1. ‖X‖p

denotes theLp-norm of a random variableX. Then we have the following central
limit law, whereN (0,1) denotes the standard normal distribution.
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THEOREM 2.1. Assume that(Yn)n≥0 satisfies the recursion(8) with
‖Yn‖3 < ∞ for all n ≥ 0 and

lim sup
n→∞

E ln
(

In ∨ 1

n

)
< 0, sup

n≥1

∥∥∥∥ln
(

In ∨ 1

n

)∥∥∥∥
3
< ∞.(9)

Furthermore, assume that for real numbersα,λ, κ with 0 ≤ λ < 2α, the mean and
the variance ofYn satisfy∥∥bn − µn + µIn

∥∥
3 = O(lnκ n), σ 2

n = C ln2α n + O(lnλ n),(10)

with some constantC > 0. If

β := 3
2 ∧ 3(α − κ) ∧ 3(α − λ/2) ∧ (α − κ + 1) > 1,(11)

then
Yn − EYn√

C lnα n

L→ N (0,1)(12)

and we have the following rate of convergence for the Zolotarev-metricζ3:

ζ3

(
Yn − EYn√

Var(Yn)
,N (0,1)

)
= O

(
1

lnβ−1 n

)
.(13)

The Zolotarev metricζ3 is defined for distributionsL(V ),L(W) by

ζ3
(
L(V ),L(W)

) := sup
f ∈F3

|Ef (V ) − Ef (W)|,

whereF3 := {f ∈ C2(R,R) : |f ′′(x) − f ′′(y)| ≤ |x − y|} is the space of all twice
differentiable functions with second derivative being Lipschitz continuous with
Lipschitz constant 1. We will use the short notationζ3(V,W) := ζ3(L(V ),L(W)).
It is well known that convergence inζ3 implies weak convergence and that
ζ3(V,W) < ∞ if EV = EW , EV 2 = EW2, and‖V ‖3,‖W‖3 < ∞. The metric
ζ3 is (3,+) ideal, that is, we have forT independent of(V,W) andc �= 0

ζ3(V + T,W + T ) ≤ ζ3(V,W), ζ3(cV, cW) = |c|3ζ3(V,W).(14)

For general reference and properties ofζ3 we refer to Zolotarev (1976, 1977) and
Rachev (1991). For implications and interpretation of rates of convergence in theζ3
metric see Neininger and Rüschendorf (2002).

3. Proof of the limit law. For the scaling of theYn we have Var(Yn) ∼
C ln2α n with someα > 0. Since the scaling of the recurrence requires a scaling
for n = 0,1 as well, we define for integersn ≥ 0 and realδ > 0,

Lδ(n) := ln(n ∨ 1) + δ1{0,1}(n),

where 1F denotes the indicator function of a setF . We use the convention
L

α

δ (n) := (Lδ(n))α for α > 0.
To prepare for the proof of Theorem 2.1 we provide two calculus lemmas:



CONTRACTION WITH DEGENERATE LIMIT 2843

LEMMA 3.1. Let In be a random variable in{0, . . . , n} with P(In = n) < 1
for all n sufficiently large and withlim supn→∞ E ln((In ∨ 1)/n) < −ε for some
ε > 0. Let (dn)n≥0, (rn)n≥n0 be sequences of nonnegative numbers with

dn ≤ E

[(
Lδ(In)

Lδ(n)

)γ

dIn

]
+ rn, n ≥ n0 ≥ 2,

for someγ > 0. Then for all1< β < 1+ γ andδ > 0 sufficiently small, we have

rn = O

(
1

lnβ n

)

⇒ dn = O

(
1

lnβ−1 n

)
.

PROOF. We abbreviateη := γ + 1− β and chooseδ = ε(η ∧ 1)/(6η). There
exists ann1 ≥ n0 and anM > 0 with E ln((In ∨1)/n) < −ε, pn := P(In = n) < 1,
rn ≤ M/ lnβ n, and(1+ δ/ lnn)η ≤ 1+ 2ηδ/ lnn for all n ≥ n1. We define

R := 2M

ε(η ∧ 1)
∨ max{dkL

β−1
δ (k) : 0 ≤ k ≤ n1}

and provedn ≤ R/L
β−1
δ (n) by induction. For 0≤ n ≤ n1, there is, by definition

of R, nothing to prove. Forn ≥ n1, we obtain, using the induction hypothesis,

dn ≤ pndn + E

[
1{In≤n−1}

(
Lδ(In)

Lδ(n)

)γ R

L
β−1
δ (In)

]
+ M

lnβ n
.

This implies

dn ≤ 1

(1− pn) lnβ−1n

(
R

(
E

(
Lδ(In)

Lδ(n)

)η

− pn

)
+ M

lnn

)
(15)

≤ 1

(1− pn) lnβ−1n

(
R

(
E

(
1+ ln((In ∨ 1)/n) + δ

lnn

)η

− pn

)
+ M

lnn

)
.(16)

For the estimate of the latter expectation we abbreviateZ := ln((In ∨1)/n) and the
setF := {Z > −δ}. Then we have, using(1− x)a ≤ 1− ax for x > 0, 0< a ≤ 1,

E

(
1+ Z + δ

lnn

)η

≤ E

[
1F

(
1+ δ

lnn

)η

+ 1Fc

(
1+ Z + δ

lnn

)η∧1]

≤ E

[
1F

(
1+ 2ηδ

lnn

)
+ 1Fc

(
1+ (η ∧ 1)(Z + δ)

lnn

)]

≤ 1+ 2ηδ

lnn
+ (η ∧ 1)(EZ + δ)

lnn
.

With EZ ≤ −ε and noting thatδ ≤ ε(η ∧ 1)/(2(2η + (η ∧ 1))), we obtain the
estimate

E

(
1+ Z + δ

lnn

)η

≤ 1− (η ∧ 1)ε

2 lnn
.
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Plugging this into (15), we obtain

dn ≤ 1

(1− pn) lnβ−1n

(
R

(
1− pn − (1∧ η)ε

2 lnn

)
+ M

lnn

)

= R

lnβ−1 n
− 1

(1− pn) lnβ n

(
Rε(η ∧ 1)/2− M

)

≤ R

lnβ−1 n
,

by definition ofR. �

LEMMA 3.2. For all α > 0 and integersn ≥ 3 and1≤ i ≤ n, we have∣∣∣∣
(

ln i

lnn

)α

− 1
∣∣∣∣ ≤ 2∨ α

lnn

∣∣∣∣ln
(

i

n

)∣∣∣∣.
PROOF. For i = 1, the assertion is true. Fori ≥ 2 andα ≥ 1, we have, by the

mean value theorem, for appropriates ∈ [ln 2, lnn],
1

lnα n
| lnα i − lnα n| = 1

lnα n
αsα−1| ln i − lnn| ≤ α

lnn

∣∣∣∣ln
(

i

n

)∣∣∣∣.
We have

1

lnα n
| lnα i − lnα n| = 1

lnα n

| ln2α i − ln2α n|
lnα i + lnα n

≤ 1

ln2α n
| ln2α i − ln2α n|.

Thus, for 0< α < 1, doubling of the exponentα successively yields

1

lnα n
| lnα i − lnα n| ≤ 1

lnα′
n

∣∣lnα′
i − lnα′

n
∣∣

with α′ ∈ [1,2). Then applying the first part implies the assertion.�

PROOF OFTHEOREM2.1. We haveE ln((In∨1)/n) < −ε for all n ≥ n1 ≥ n0
and someε > 0. We define the scaled quantities

Zn := Yn − EYn√
CL

α

δ (n)
, n ≥ 0,

with a δ > 0 sufficiently small to be specified later and denoteτn := √
Var(Zn) =

σn/(
√

C L
α

δ (n)). Thus, we haveτn → 1 for n → ∞. The sequence(Zn) satisfies
the recurrence

Zn
L=

(
Lδ(In)

Lδ(n)

)α

ZIn + b(n), n ≥ n1,

with

b(n) = b(n)(In, bn) = 1√
CL

α

δ (n)

(
bn − µn + µIn

)
.
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Now we defineNn := τnN , whereN is a standard normal distributed random
variable independent of(In, bn), and introduce an accompanying sequence(Z∗

n)

by

Z∗
n :=

(
Lδ(In)

Lδ(n)

)α

NIn + b(n), n ≥ 0.

Note thatZn,Nn,Z
∗
n have identical first and second moment, and finite absolute

third moment. Thus,ζ3 distances between these random variables are finite. We
have

ζ3(Zn,Nn) ≤ ζ3(Zn,Z
∗
n) + ζ3(Z

∗
n,Nn).(17)

Using thatζ3 is (3,+) ideal, compare (14), and conditioning on(In, bn), we obtain

ζ3(Zn,Z
∗
n) = sup

f ∈F3

∣∣∣∣
∫

E

[
f

((
Lδ(k)

Lδ(n)

)α

Zk + b(n)(k, s)

)

− f

((
Lδ(k)

Lδ(n)

)α

Nk + b(n)(k, s)

)]
dP

(In,bn)(k, s)

∣∣∣∣
≤

∫
ζ3

((
Lδ(k)

Lδ(n)

)α

Zk + b(n)(k, s),

(
Lδ(k)

Lδ(n)

)α

Nk + b(n)(k, s)

)
dP

(In,bn)(k, s)

≤
n∑

k=0

P(In = k)

(
Lδ(k)

Lδ(n)

)3α

ζ3(Zk,Nk).

(18)

We will show below that

ζ3(Z
∗
n,Nn) = O

(
1

lnβ n

)
,(19)

with β given in (11). With this estimate, we obtain from (17) and (18) denoting
dn := ζ3(Zn,Nn) andrn = ζ3(Z

∗
n,Nn),

dn = ζ3(Zn,Nn)

≤
n∑

k=0

(
P(In = k)

(
Lδ(k)

Lδ(n)

)3α

dk

)
+ rn

= E

[(
Lδ(In)

Lδ(n)

)3α

dIn

]
+ rn.

Lemma 3.1 then impliesdn = ζ3(Zn,Nn) = O(1/ lnβ−1 n) since, by definition
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of β, we haveβ < 1+ 3α andδ can be chosen appropriately. Moreover, we obtain

ζ3

(
Yn − µn

σn

,N (0,1)

)
= ζ3

(
1

τn

Zn,
1

τn

Nn

)

= 1

τ3
n

ζ3(Zn,Nn)

= O

(
1

lnβ−1 n

)
,

which is (13). Sinceζ3 convergence implies weak convergence, we obtain (12).
It remains to establish the bound (19) forζ3(Z

∗
n,Nn): We define

Gn :=
(

Lδ(In)

Lδ(n)

)α

τIn,

thus, we have the representationZ∗
n = GnN +b(n). From Var(Z∗

n) = τ2
n , we obtain,

in particular, the relation

E
[
G2

n + (
b(n))2] − τ2

n = 0.(20)

Using the closure of the normal familiy under convolution, we have, with the set
A := {Gn > τn} and its complementAc, the decompositions

Z∗
n

L= 1A

(
τnN +

√
G2

n − τ2
nN ′ + b(n)

) + 1Ac

(
GnN + b(n)

)
,(21)

Nn
L= 1A(τnN) + 1Ac

(
GnN +

√
τ2
n − G2

n N ′),(22)

whereN,N ′,Gn are independent,N L= N ′. Subsequently, we abbreviate�n :=
|G2

n − τ2
n |1/2 and the right-hand sides in (21) and (22) byẐ∗

n andN̂n, respectively.
We have to estimate|E[f (Z∗

n) − f (Nn)]| uniformly for f ∈ F3. Taylor
expansion aroundN yields f (x) = f (N) + f ′(N)(x − N) + (1/2)f ′′(N)(x −
N)2 + R(x,N) for x ∈ R. Here we have|R(x,N)| ≤ (1/6)|x − N |3 sincef ′′ has
Lipschitz constant 1. We may subsequently assume thatf ′′(0) = 0. If f ′′(0) �= 0,
considerg(x) := f (x)− (f ′′(0)/2)x2. Then we haveg′′(0) = 0 and, sinceZ∗

n,Nn

have identical second moment,E[f (Z∗
n) − f (Nn)] = E[g(Z∗

n) − g(Nn)].
Using the Taylor expansion and representations (21) and (22), we have

E[f (Z∗
n) − f (Nn)] = E[S1 + S2 + R(Ẑ∗

n,N) − R(N̂n,N)],
where, forS1, we collect the terms involving the factorf ′(N) and, forS2, we
collect the terms involving the factorf ′′(N). Hence, after simplification and using
thatN , N ′, and(Gn, b

(n)) are independent, we obtain

S1 = f ′(N)
(
�n(1A − 1Ac)N ′ + b(n)),

S2 = f ′′(N)

2

(
�2

n(1A − 1Ac)(N ′)2 + (
b(n))2

+ 2b(n)N
(
1A(τn − 1) + 1Ac(Gn − 1)

))
.
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SinceEN ′ = Eb(n) = 0 and by the independence betweenN andb(n) and between
N ′ and(N,Gn), we obtainES1 = 0. For the estimate ofES2, first note that we have
�2

n(1A−1Ac) = G2
n−τ2

n . Hence, with (20), the independence ofN,N ′, (Gn, b
(n)),

andE(N ′)2 = 1, we obtain

E
f ′′(N)

2

(
�2

n(1A − 1Ac)(N ′)2 + (
b(n))2) = 0.

Furthermore, note that forf ∈ F3 with f ′′(0) = 0, we have

|E[f ′′(N)N ]| = ∣∣E[(
f ′′(N) − f ′′(0)

)
N

]∣∣
≤ E[|f ′′(N) − f ′′(0)||N |] ≤ EN2 = 1.

Thus, with the independence ofN to the other quantities, we obtain the bound

|ES2| ≤ E
∣∣b(n)(|τn − 1| + |Gn − 1|)∣∣ ≤ ∥∥b(n)

∥∥
2(|τn − 1| + ‖Gn − 1‖2).

For the remainder terms we have theO-estimate

E|R(Ẑ∗
n,N)| ≤ 1

6E
[∣∣(τn − 1)N + �nN

′ + b(n)
∣∣3 + ∣∣(Gn − 1)N + b(n)

∣∣3]
= O

(|τn − 1|3 + ‖�n‖3
3 + ∥∥b(n)

∥∥3
3 + ‖Gn − 1‖3

3
)
.

The termE|R(N̂n,N)| is bounded by the sameO-term. Hence, altogether we
obtain

ζ3(Z
∗
n,Nn) = O

(|τn − 1|3 + ‖�n‖3
3 + ∥∥b(n)

∥∥3
3 + ‖Gn − 1‖3

3

+ ∥∥b(n)
∥∥

2(|τn − 1| + ‖Gn − 1‖2)
)
.

(23)

For the estimate of the latter norms and distances note that, using Lemma 3.2, we
have

|Gn − 1| = 1√
C lnα n

∣∣σIn − √
C lnα n

∣∣
≤ 1

C ln2α n

∣∣σ 2
In

− C ln2α n
∣∣

= 1

C ln2α n
|C ln2α(In ∨ 1) − C ln2α n + O(lnλ n)|

=
∣∣∣∣ln

(
In ∨ 1

n

)∣∣∣∣O
(

1

ln1∧(2α−λ) n

)
.

Analogously, we obtain|τn − 1| = O(1/ ln2α−λ n).
With supn≥1 ‖ ln((In ∨ 1)/n)‖3 < ∞, we obtain

‖Gn − 1‖3 = O

(
1

ln1∧(2α−λ) n

)
.
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By definition of b(n) and (10), we have‖b(n)‖3 = O(1/ lnα−κ n). For �n, we
obtain

‖�n‖3 = ∥∥√
|τ2

n − G2
n|

∥∥
3 = ‖τ2

n − G2
n‖1/2

3/2

≤ ‖τ2
n − G2

n‖1/2
3

≤ (|τ2
n − 1| + ‖G2

n − 1‖3)
1/2

= O

(
1

ln(1/2)∧(α−λ/2) n

)
.

Collecting the estimates, we bound the right-hand side in (23). Estimating there
theL2-norms, byL3-norms, we finally obtain

ζ3(Z
∗
n,Nn) = O

(
1

lnβ n

)

with

β = 3
2 ∧ 3(α − κ) ∧ 3(α − λ/2) ∧ (α − κ + 1) ∧ (3α − κ − λ).

Note that this coincides with the representation forβ in (11) since we have
3(α − κ) ∧ 3(α − λ/2) ≤ 3α − κ − λ. This is seen by distinguishing the cases
κ ≥ λ/2 andκ < λ/2. �

In the proof of Theorem 2.1 the limit normal distribution is no longer
obtained from the limit fixed-point equation as in the usual contraction method.
Instead, as a substitute, the closure of the normal family under convolution
used in (21) and (22) allows us to mimic the recurrence satisfied by(Zn),
respectively, by the accompanying sequence(Z∗

n) in terms of normal quantities.
This decomposition allows for estimatingζ3(Z

∗
n,Nn) sufficiently tight. It is easy

to see that the scaling property in (21) and (22) essentially characterizes the normal
distribution. More precisely, the following lemma explains the occurrence of the
normal limit distribution:

LEMMA 3.3 (Characterization of normal distributions).LetX,W be indepen-
dent with mean0 and variance1 and assume that for allq ∈ (0,1),

X
L= qX +

√
1− q2 W.(24)

Then we haveX
L= N (0,1).

PROOF. From (24) we obtain for all fixedn ≥ 1, by induction on 1≤ k ≤ n,
that

X
L=

√
n − k + 1

n + 1
X +

√
1

n + 1

k∑
j=1

Wj,
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whereW1, . . . ,Wn,X are independent withWj
L= W for all j = 1, . . . , n. Thus,

with k = n we have

X
L=

√
1

n + 1
X +

√
n

n + 1

(
1√
n

n∑
j=1

Wj

)
.

Therefore, the central limit theorem impliesX
L= N (0,1). �

Note that a similar scaling property valid for stable distributions, in principle,
allows the method of proof of Theorem 2.1 to a stable limit theorem.

4. Applications and discussion. In this section we give applications of
Theorem 2.1. A couple of limit laws obtained before by different means and
involving specific calculations for each case are covered by Theorem 2.1:

Unsuccessful search. The cost of an unsuccessful search in a random binary
search tree withn nodes, as discussed in Cramer and Rüschendorf (1996) and
Mahmoud (1992), satisfies recurrence (1) withIn ∼ unif{1, . . . , n − 1}, bn = 1 for
n ≥ 2, andY0 = Y1 = 0. We have [see Mahmoud (1992)]

EYn = 2 lnn + O(1), Var(Yn) = 2 lnn + O(1)

and obtain in the notation of Theorem 2.1,∥∥bn − µn + µIn

∥∥
3 = ‖2 ln(In/n) + O(1)‖3 = O(1).

Thus, the parameters in Theorem 2.1 areα = 1/2,κ = λ = 0 and we haveβ = 3/2.
The technical conditions in (9) are satisfied since ln((In ∨ 2)/n) → lnU in L3
for a unif[0,1] random variableU . (Use representationsIn = �(n − 1)U� and
decompose the domain of the resulting integral into the intervals(i/n, (i + 1)/n]
for i = 0, . . . , n − 1.) Theorem 2.1 implies the central limit law with a rate of
convergence:

ζ3

(
Yn − EYn√

Var(Yn)
,N (0,1)

)
= O

(
1√
lnn

)
.(25)

Note that the 1/
√

lnn rate of convergence for different metrics was shown
previously in Cramer and Rüschendorf (1996) based on calculations involving the
particular distribution ofIn.

Depths of nodes. The depth of a random node in a random binary search tree
with n nodes satisfies recurrence (1) withP(In = 0) = 1/n andP(In = k) = 2k/n2

for 1 ≤ k ≤ n − 1 andbn = 1, wheren ≥ 2 andY0 = −1, Y1 = 0. We have [see
Mahmoud (1992)]

EYn = 2 lnn + O(1), Var(Yn) = 2 lnn + O(1),
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and obtain in the notation of Theorem 2.1,∥∥bn − µn + µIn

∥∥
3 = ‖2 ln(In/n) + O(1)‖3 = O(1).

Hence, the parameters of Theorem 2.1 are given byα = 1/2, κ = λ = 0 and we
obtainβ = 3/2. The technical conditions in (9) are satisfied since ln((In∨2)/n) →
ln

√
U in L3 for a unif[0,1] random variableU and Theorem 2.1 implies the

central limit law with a rate of convergence as in (25).
Mahmoud and Neininger (2003) obtained this rate of convergence via an

explicit calculation based on the specific distribution ofIn and showed the
optimality of the order 1/

√
lnn, that is,ζ3((Yn−µn)/σn,N (0,1)) = 
(1/

√
lnn).

This indicates that our estimates in the proof of Theorem 2.1 are tight. See also
Mahmoud and Neininger (2003) for a different distributional recurrence satisfied
by (Yn) which leads to the limit equationX

L= BX + (1− B)X′, whereX,X′,B
are independent withX,X′ being identically distributed andB Bernoulli(1/2)

distributed. This limit equation similar toX L= X is as well satisfied by any
distribution, hence, also of degenerate type.

Broadcast communication. The time(Yn) of a maximum-finding algorithm
for a broadcast communication model withn processors as analyzed in Chen and
Hwang [(2003), Algorithm B] satisfiesY0 = Y1 = 1 and, forn ≥ 2, recurrence (1)
with In ∼ unif{0, . . . , n−1} andbn being the time (= number of rounds) used by a
leader election algorithm as discussed in Prodinger (1993) and further analyzed in
Fill, Mahmoud and Szpankowski (1996). We have [see Chen and Hwang (2003)]
Eb3

n = O(ln3n) and

EYn = µ ln2 n + O(lnn), Var(Yn) = σ 2 ln3n + O(ln2n),

with positive constantsµ,σ . A direct calculation gives, after cancellations of
leading terms, ∥∥bn − µn + µIn

∥∥
3 = O(ln n).

Thus, we haveα = 3/2, κ = 1 andλ = 2, which givesβ = 3/2. This implies the
following

COROLLARY 4.1. The time(Yn) of AlgorithmB in Chen and Hwang(2003),
as introduced above, satisfies

ζ3

(
Yn − EYn√

Var(Yn)
,N (0,1)

)
= O

(
1√
lnn

)
.

The same bound for the rate for the Kolmogorov metric was obtained in Chen and
Hwang (2003).
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5. Extensions and applications. We consider now the more general recur-
rence for(Yn), as in (1),

Yn
L=

K∑
r=1

Y
(r)

I
(n)
r

+ bn, n ≥ n0,(26)

wheren0,K ≥ 1, bn is a random variable,I (n)
1 , . . . , I

(n)
K ∈ {0, . . . , n} are ran-

dom indices, and(Y (1)
k ), . . . , (Y

(K)
k ) distributional copies of(Yk) such that

(Y
(1)
k ), . . . , (Y

(K)
k ), (I

(n)
1 , . . . , I

(n)
K , bn) are independent. Many examples ofdivide-

and-conquertype algorithms lead to this equation and have been considered in the
analysis of algorithms literature.

We introduce the scalingXn := (Yn − µn)/σn, whereµn = EYn and σn =√
Var(Yn) and obtain as recurrence relation forXn,

Xn
L=

K∑
r=1

σ
I

(n)
r

σn

X
(r)

I
(n)
r

+ b(n), n ≥ n0,(27)

where

b(n) := 1

σn

(
bn − µn +

K∑
r=1

µ
I

(n)
r

)

and (X
(1)
k ), . . . , (X

(K)
k ), (I

(n)
1 , . . . , I

(n)
K , bn) are independent,(X(1)

k ), . . . , (X
(K)
k )

being distributional copies of(Xn).
Extensions of Theorem 2.1 in various directions are possible. We give as an

example a theorem tailored for the case when the coefficientsσ
I

(n)
r

/σn in (27)
behave roughly as follows:

σ
I

(n)
1

σn

→ A1 = 1,
σ

I
(n)
r

σn

→ Ar = 0, r = 2, . . . ,K.

We assume that lim supn→∞
∑K

r=1 P(I
(n)
r = n) < 1 and denoteσn = √

Var(Yn)

andµn = EYn.

THEOREM 5.1. Assume that(Yn)n≥0 satisfies the recurrence(26) with
‖Yn‖3 < ∞ for all n ≥ 0, and

lim sup
n→∞

E ln

(
1

n

K∏
r=1

(
I (n)
r ∨ 1

))
< 0, sup

n≥1

∥∥∥∥ln
(

I
(n)
1 ∨ 1

n

)∥∥∥∥
3
< ∞.(28)

Furthermore, assume that for real numbersα,λ, κ with 0 ≤ λ < 2α, the mean and
the variance ofYn satisfy∥∥∥∥∥bn − µn +

K∑
r=1

µ
I

(n)
r

∥∥∥∥∥
3

= O(lnκ n), σ 2
n = C ln2α n + O(lnλ n),
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with some constantC > 0 and that for some real numberξ ≥ 0, we have∥∥lnα
(
I (n)
r ∨ 1

)∥∥
3 = O(lnξ n), r = 2, . . . ,K.

If

β := 3
2 ∧ 3(α − κ) ∧ 3(α − ξ) ∧ 3(α − λ/2) ∧ (α − κ + 1) > 1,(29)

then
Yn − EYn√

C lnα n

L→ N (0,1),(30)

and we have the following rate of convergence for the Zolotarev-metricζ3:

ζ3

(
Yn − EYn√

Var(Yn)
,N (0,1)

)
= O

(
1

lnβ−1 n

)
.

For the proof we need a substitute for Lemma 3.1:

LEMMA 5.2. Let I
(n)
1 , . . . , I

(n)
K be random variables in{0, . . . , n} with∑K

r=1 P(I
(n)
r = n) < 1 for all n sufficiently large, and

lim sup
n→∞

E ln

(
1

n

K∏
r=1

(
I (n)
r ∨ 1

))
< −ε

for someε > 0. Let (dn)n≥0, (rn)n≥n0 be sequences of nonnegative numbers with

dn ≤ E

[
K∑

r=1

(
Lδ(I

(n)
r )

Lδ(n)

)γ

d
I

(n)
r

]
+ rn, n ≥ n0,

for someγ > 1. Then, for all 1< β ≤ γ andδ > 0 sufficiently small, we have

rn = O

(
1

lnβ n

)

⇒ dn = O

(
1

lnβ−1n

)
.

The proof of Lemma 5.2 follows the argument of the proof of Lemma 3.1. Note
that we have the more restrictive condition 1≤ β ≤ γ compared to 1≤ β ≤ γ + 1
in Lemma 3.1. This allows for replacing the analog of the estimates (15) and (16)
in the proof of Lemma 3.1 by

E

K∑
r=1

(
ln(I

(n)
r ∨ 1)

lnn

)η

= E

[(
1+ ln((I

(n)
1 ∨ 1)/n)

lnn

)η

+
K∑

r=2

(
ln(I

(n)
r ∨ 1)

lnn

)η
]

≤ E

[
1+ η

ln((I
(n)
1 ∨ 1)/n)

lnn
+

K∑
r=2

ln(I
(n)
r ∨ 1)

lnn

]

≤ 1+ 1

lnn
E ln

(
1

n

K∏
r=1

(
I (n)
r ∨ 1

))
.
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For this we used thatη = γ + 1− β ≥ 1.
We sketch the extension of the techniques for Theorem 2.1 to obtain Theo-

rem 5.1.

PROOF OF THEOREM 5.1. (Sketch) We haveE ln((1/n)
∏K

r=1(I
(n)
r ∨

1)) < −ε for all n ≥ n1 with an appropriateε > 0 andn1 ≥ n0. With δ > 0 suffi-
ciently small, we define the scaled quantities

Zn := Yn − EYn√
CL

α

δ (n)
, n ≥ 0,

and denoteτn := √
Var(Zn) = σn/(

√
CLα

δ (n)); thus,τn → 1 for n → ∞. We have
the recurrence

Zn
L=

K∑
r=1

(
Lδ(I

(n)
r )

Lδ(n)

)α

Z
(r)

I
(n)
r

+ b(n), n ≥ n1,

with

b(n) = 1√
CL

α

δ (n)

(
bn − µn +

K∑
r=1

µ
I

(n)
r

)
.

We defineN(r)
n := τnN

(r), whereN(1), . . . ,N(K) are standard normal distributed
random variables such that(In, bn),N

(1), . . . ,N(K) are independent. Also, we
introduce an accompanying sequence(Z∗

n) by

Z∗
n :=

K∑
r=1

(
Lδ(I

(n)
r )

Lδ(n)

)α

N
(r)

I
(n)
r

+ b(n), n ≥ n1.

Then, with dn = ζ3(Zn,Nn) and rn = ζ3(Z
∗
n,N

(1)
n ), we obtain similarly to the

argument in the proof of Theorem 2.1,

dn ≤ E

[
K∑

r=1

(
Lδ(I

(n)
r )

Lδ(n)

)3α

d
I

(n)
r

]
+ rn.

For the estimate ofrn = ζ3(Z
∗
n,Nn), we define

Gn :=
(

Lδ(I
(n)
1 )

Lδ(n)

)α

τ
I

(n)
1

, A := {Gn > τn}, �n :=
√

|G2
n − τ2

n |
and use the representations

Z∗
n

L= 1A

(
τnN

(1) + �nN
′ +

K∑
r=2

(
Lδ(I

(n)
r )

Lδ(n)

)α

N
(r)

I
(n)
r

+ b(n)

)

+ 1Ac

(
GnN

(1) +
K∑

r=2

(
Lδ(I

(n)
r )

Lδ(n)

)α

N
(r)

I
(n)
r

+ b(n)

)
,

Nn
L= 1A

(
τnN

(1)
) + 1Ac

(
GnN

(1) + �nN
′),
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whereN ′ is standard normal distributed and independent of the other random
variates. With corresponding estimates, as in the proof of Theorem 1.1, we find

ζ3(Z
∗
n,Nn) = O

(
|τn − 1|3 + ‖�n‖3

3 + ∥∥b(n)
∥∥3

3 + ‖Gn − 1‖3
3

+ ∥∥b(n)
∥∥

2(|τn − 1| + ‖Gn − 1‖2) + 1

ln3α n

K∑
r=2

∥∥lnα(
I (n)
r ∨ 1

)∥∥3
3

)

= O

(
1

lnβ n

)
,

with β given in (29). Sinceβ ≤ 3α, Lemma 5.2 completes the proof.�

As applications of Theorem 5.1 we discuss various cost measures(Yn) for
a maximum finding algorithm in a broadcast communication model withn

processors as analyzed in Chen and Hwang [(2003), Algorithm A]. We use their
expansions for mean and variance and, by Theorem 5.1, rederive the central limit
laws. Additionally, we endow them with new rates of convergences. Several cost
measures(Yn) of this algorithm satisfy the recurrence

Yn
L= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ bn, n ≥ 2,(31)

with relations as in (26), wherebn varies for different cost measures, whereas the
distribution of the indices(I (n)

1 , I
(n)
2 ) is in all cases given by

P
((

I
(n)
1 , I

(n)
2

) = (j, k)
) =

{
2−n, (j, k) = (0,0),(n−k−1

j−1

)
2−n, k ≥ 0,1≤ j ≤ n − k.

In particular, we have that the marginalI
(n)
1 is binomialB(n,1/2) distributed and

P
(
I

(n)
2 = k

) =
{

1
2 + 2−n, k = 0,

2−(k+1), 1≤ k ≤ n − 1.

The technical conditions in Theorem 5.1 regarding the indices(I
(n)
1 , I

(n)
2 ) are,

hence, satisfied: We haveP(I
(n)
1 = n) + P(I

(n)
2 = n) = 2−n < 1 for all n ≥ 1 and

‖ ln((I
(n)
1 ∨ 1)/n)‖3 → ln 2 sinceI

(n)
1 is binomialB(n,1/2) distributed, thus, we

have supn≥1‖ ln((I
(n)
1 ∨ 1)/n)‖3 < ∞. For the verification of the first condition

in (28) note that we haveE ln((I
(n)
1 ∨ 1)/n) → − ln 2 and, therefore, it is sufficient

to show lim supn→∞ E ln(I
(n)
2 ∨ 1) < ln 2. We have

E ln
(
I

(n)
2 ∨ 1

) =
n−1∑
k=2

lnk

2k+1
≤ ln 2

8
+

∞∑
k=3

k

2k+1
= ln2

8
+ 1

2
< 0.6< ln 2.
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Chen and Hwang (2003) analyze three cost measures, namely, the time
(= number of rounds) taken by the algorithm, the number of coin flips performed
and the number of comparisons performed. The number of coin flips does not lead
to a degenerate limit equationX L= X and can be treated by standard application
of the contraction method, see, for example, Rösler (2001). We focus on the other
two more delicate parameters:

Time of the algorithm. The time(Yn) of the maximum finding Algorithm A
analyzed in Chen and Hwang (2003) satisfies (31) withbn = 1 andY0 = Y1 = 1.
Mean and variance satisfy, see Chen and Hwang (2003),

EYn = µ̂ lnn + O(1), Var(Yn) = σ̂ 2 lnn + O(1),

with constantsµ̂, σ̂ > 0 being explicitly known. Hence, in the notation of
Theorem 5.1 we have∥∥bn − µn + µ

I
(n)
1

+ µ
I

(n)
2

∥∥
3 = O(1),

∥∥ln1/2(I (n)
2 ∨ 1

)∥∥
3 = O(1),

using that also‖ ln(I
(n)
2 ∨1)‖3 = O(1). Thus, we haveα = 1/2 andκ = λ = ξ = 0,

which givesβ = 3/2. With Theorem 5.1 we rederive the central limit law and add
the following rate of convergence:

COROLLARY 5.3. The time(= number of rounds) (Yn) of the maximum
finding AlgorithmA in Chen and Hwang(2003),as introduced above, satisfies

ζ3

(
Yn − EYn√

Var(Yn)
,N (0,1)

)
= O

(
1√
lnn

)
.

Number of comparisons. The number of comparisons(Yn) of the maximum
finding Algorithm A was analyzed in Chen and Hwang (2003). It satisfies (31)
with bn = n − I

(n)
1 andY0 = Y1 = 0. Mean and variance have the expansions, see

Chen and Hwang (2003),

EYn = n + µ̄ lnn + O(1), Var(Yn) = σ̄ 2 lnn + O(1),

with constantsµ̄, σ̄ > 0 being explicitly known. Hence, in the notation of
Theorem 5.1 we obtain, after cancelation,∥∥bn − µn + µ

I
(n)
1

+ µ
I

(n)
2

∥∥
3 = ∥∥µ̄ ln

((
I

(n)
1 ∨ 1

)
/n

) + I
(n)
2 + µ̄ ln I

(n)
2 + O(1)

∥∥
3

= O(1).

Thus, we haveα = 1/2 andκ = λ = ξ = 0, which givesβ = 3/2. Theorem 5.1
rederives the central limit law and adds a rate of convergence:

COROLLARY 5.4. The number of comparisons(Yn) of the maximum finding
AlgorithmA in Chen and Hwang(2003),as introduced above, satisfies

ζ3

(
Yn − EYn√

Var(Yn)
,N (0,1)

)
= O

(
1√
lnn

)
.
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