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Abstract9

In this extended abstract a general framework is developed to bound rates of convergence for10

sequences of random variables as they mainly arise in the analysis of random trees and divide and11

conquer algorithms. The rates of convergence are bounded in the Zolotarev distances. Concrete12

examples from the analysis of algorithms and data structures are discussed as well as a few examples13

from other areas. They lead to convergence rates of polynomial and logarithmic order. A crucial14

role is played by a factor 3 in the exponent of these orders in cases where the normal distribution is15

the limit distribution.16
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1 Introduction and notation22

In this extended abstract we consider a general recurrence for (probability) distributions23

which covers many instances of complexity measures of divide and conquer algorithms and24

parameters of random search trees. We consider a sequence (Yn)n≥0 of d-dimensional random25

vectors satisfying the distributional recursion26

Yn
d=

K∑
r=1

Ar(n)Y (r)
I

(n)
r

+ bn, n ≥ n0, (1)27

28

where (A1(n), . . . , AK(n), bn, I(n)), (Y (1)
n )n≥0, . . . , (Y (K)

n )n≥0 are independent, the coefficients29

A1(n), . . . , AK(n) are random (d× d)-matrices, bn is a d-dimensional random vector, I(n) =30

(I(n)
1 , . . . , I

(n)
K ) is a random vector in {0, . . . , n}K , n0 ≥ 1 and (Y (r)

n )n≥0
d= (Yn)n≥0 for31

r = 1, . . . ,K. Moreover, K ≥ 1 is a fixed integer, but extensions to K being random and32

depending on n are possible.33

This is the framework of [14] where some general convergence results are shown for34

appropriate normalizations of the Yn. The content of the present extended abstract is to35

also study the rates of convergence in such limit theorems.36

We define the normalized sequence (Xn)n≥0 by37

Xn := C−1/2
n (Yn −Mn), n ≥ 0,38

where Mn is a d-dimensional vector and Cn a positive definite (d× d)-matrix. Essentially,39

we choose Mn as the mean and Cn as the covariance matrix of Yn if they exist or as the40
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23:2 Convergence Rates in the Probabilistic Analysis of Algorithms

leading order terms in expansions of these moments as n→∞. The normalized quantities41

satisfy the following modified recursion:42

Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0, (2)43

44

with45

A(n)
r := C−1/2

n Ar(n)C1/2
I

(n)
r

, b(n) := C−1/2
n

(
bn −Mn +

K∑
r=1

Ar(n)M
I

(n)
r

)
(3)46

47

and independence relations as in (1).48

In the context of the contraction method the aim is to establish transfer theorems of the49

following form: After verifying the assumptions of appropriate convergence of the coefficients50

A
(n)
r → A∗r , b

(n) → b∗ then convergence in distribution of random vectors (Xn) to a limit X51

is implied. The limit distribution L(X) is identified by a fixed-point equation obtained from52

(2) by considering formally n→∞:53

X
d=

K∑
r=1

A∗rX
(r) + b∗. (4)54

55

Here (A∗1, . . . , A∗K , b∗), X(1), . . . , X(K) are independent and X(r) d= X for r = 1, . . . ,K.56

The aim of the present extended abstract is to endow such general transfer theorems57

with bounds on the rates of convergence. As a distance measure between (probability)58

distributions we use the Zolotarev metric. For various of the applications we discuss, bounds59

on the rate of convergence have been derived one by one for more popular distance measures60

such as the Kolmogorov–Smirnov distance. The transfer theorems of the present paper are61

in terms of the smoother Zolotarev metrics. However, they are easy to apply and cover a62

broad range of applications at once. A crucial role is played by a factor 3 in the exponent of63

these orders in cases where the normal distribution is the limit distribution, see Remark 4.64

In the rest of this section we fix some notation. Regarding norms of vectors and (random)65

matrices we denote for x ∈ Rd by ‖x‖ its Euclidean norm and for a random vector X and66

some 0 < p < ∞, we set ‖X‖p := E[‖X‖p](1/p)∧1. Furthermore, for a (d × d)-matrix A,67

‖A‖op := sup‖x‖=1 ‖Ax‖ denotes the spectral norm of A and for a random such A we define68

‖A‖p := E[‖A‖pop](1/p)∧1 for a random square matrix and 0 < p < ∞. Note that for a69

symmetric (d × d)-matrix A, we have ‖A‖op = max{|λ| : λ eigenvalue of A}. By Idd the70

d-dimensional unit matrix is denoted. For multilinear forms the norm is defined similarly.71

Furthermore we define by Pd the space of probability distributions in Rd (endowed with72

the Borel σ-field), by Pds := {L(X) ∈ Pd : ‖X‖s < ∞} and for a vector m ∈ Rd, and a73

symmetric positive semidefinite d× d matrix C the spaces74

Pds (m) := {L(X) ∈ Pds : E[X] = m}, s > 1, (5)75

Pds (m,C) := {L(X) ∈ Pds : E[X] = m,Cov(X) = C}, s > 2.76
77

We use the convention Pds (m) := Pds for s ≤ 1 and Pds (m,C) := Pds (m) for s ≤ 2.78

The Zolotarev metrics ζs, [19], are defined for probability distributions L(X),L(Y ) ∈ Pd79

by80

ζs(X,Y ) := ζs(L(X),L(Y )) = sup
f∈Fs

|E(f(X)− f(Y ))| (6)81

82
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where for s = m+ α, 0 < α ≤ 1,m ∈ N0,83

Fs := {f ∈ Cm(Rd,R) : ‖f (m)(x)− f (m)(y)‖ ≤ ‖x− y‖α}.84
85

Note that these distance measures may be infinite. Finite metrics are given by ζs on Pds for86

0 ≤ s ≤ 1, by ζs on Pds (m) for 1 < s ≤ 2, and by ζs on Pds (m,C) for 2 < s ≤ 3, cf. (5).87

2 Results88

We return to the situation outlined in the introduction, where we have normalized (Yn)n≥089

in the following way:90

Xn := C−1/2
n (Yn −Mn), n ≥ 0, (7)91

92

where Mn is a d-dimensional random vector and Cn a positive definite (d× d)-matrix. As93

recalled in Section 1, for s > 1, we may fix the mean and covariance matrix of the scaled94

quantities to guarantee the finiteness of the ζs-metric. Therefore, we choose Mn = E[Yn]95

for n ≥ 0 and s > 1. For s > 2, we additionally have to control the covariances of Xn. We96

assume that there exists an n1 ≥ 0 such that Cov(Yn) is positive definite for n ≥ n1 and97

choose Cn = Cov(Yn) for n ≥ n1 and Cn = Idd for n < n1. For s ≤ 2, we just assume that98

Cn is positive definite and set n1 = 0 in this case.99

The normalized quantities satisfy the modified recursion100

Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0,101

102

with A(n)
r and b(n) given in (3). The following theorem discusses a general framework to103

bound rates of convergence for the sequence (Xn)n≥0. For the proof, we need some technical104

conditions which guarantee that the sizes I(n)
r of the subproblems grow with n. More precisely,105

we will assume that there exists some monotonically decreasing sequence R(n) > 0 with106

R(n)→ 0 such that107 ∥∥1{I(n)
r <`}A

(n)
r

∥∥
s

= O(R(n)), n→∞, (8)108
109

for all ` ∈ N and r = 1, . . . ,K and that110 ∥∥1{I(n)
r =n}A

(n)
r

∥∥
s
→ 0, n→∞, (9)111

112

for all r = 1, . . . ,K.113

2.1 A general transfer theorem for rates of convergence114

Our first result is a direct extension of the main Theorem 4.1 in [14], where we essentially115

only make all the estimates there explicit. The main result of the present extended abstract116

in contained in the subsequent subsection.117

I Theorem 1. Let (Xn)n≥0 be s-integrable, 0 < s ≤ 3, and satisfy recurrence (7) with the118

choices for Mn and Cn specified there. We assume that there exist s-integrable A∗1, . . . , A∗K , b∗119

and some monotonically decreasing sequence R(n) > 0 with R(n)→ 0 such that, as n→∞,120

∥∥b(n) − b∗
∥∥
s

+
K∑
r=1

∥∥A(n)
r −A∗r

∥∥
s

= O(R(n)). (10)121

122

CVIT 2016



23:4 Convergence Rates in the Probabilistic Analysis of Algorithms

If conditions (8) and (9) are satisfied and if123

lim sup
n→∞

E
K∑
r=1

(
R(I(n)

r )
R(n)

∥∥A(n)
r

∥∥s
op

)
< 1, (11)124

125

then we have, as n→∞,126

ζs(Xn, X) = O(R(n)),127
128

where L(X) is given as the unique fixed point in Pds (0, Idd) of the equation129

X
d=

K∑
r=1

A∗rX
(r) + b∗, (12)130

131

with (A∗1, . . . , A∗K , b∗), X(1), . . . , X(K) independent and X(r) d= X for r = 1, . . . ,K.132

I Remark 2. In applications, the convergence rate of the coefficients (conditions (8) and133

(10)) is often faster than the convergence rate of the quantities Xn, see, e.g., Section 4.4.134

In these cases, it is often possible to perform the induction step in the proof of Theorem 1135

although condition (11) does not hold. To be more precise, we may assume136 ∥∥1{I(n)
r <`}A

(n)
r

∥∥
s

+
∥∥b(n) − b∗

∥∥
s

+
∥∥A(n)

r −A∗r
∥∥
s

= O(R̃(n))137

for every ` ≥ 0, r = 1, . . . ,K and n→∞. Then, instead of condition (11), it is sufficient to138

find some K > 0 such that139

E
[ K∑
r=1

1{n1≤I(n)
r <n}

R(I(n)
r )

R(n) ‖A
(n)
r ‖sop

]
≤ 1− pn −

R̃(n)
KR(n) (13)140

141

for all large n with pn := E
[∑K

r=1 1{I(n)
r =n}‖A

(n)
r ‖sop

]
.142

2.2 An improved transfer theorem for normal limit distributions143

We now consider the special case where the sequence (Xn)n≥0 is 3-integrable and satisfies144

recursion (2) with (A(n)
1 , . . . , A

(n)
K , b(n)) L3−→ (A∗1, . . . , A∗K , b∗) for some 3-integrable coefficients145

A∗1, . . . , A
∗
K , b

∗ with146

b∗ = 0,
K∑
r=1

A∗r(A∗r)T = Idd147

almost surely. Corollary 3.4 in [14] implies that, if E[
∑K
r=1 ‖A∗r‖3

op] < 1, equation (12) has a148

unique solution in the space Pd3 (0, Idd). Furthermore, e.g., using characteristic functions, it149

is easily checked that this unique solution is the standard normal distribution N (0, Idd).150

In this special case of normal limit laws, it is possible to derive a refined version of151

Theorem 1. Instead of the technical condition (8), we now need the weaker condition152 ∥∥1{I(n)
r <`}A

(n)
r

∥∥3
3 = O(R(n)), n→∞, (14)153

154

for all ` ∈ N and r = 1, . . . ,K. Moreover, condition (10) concerning the convergence rates of155

the coefficients can be weakened, which is formulated in the following theorem.156
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I Theorem 3. Let (Xn)n≥0 be given as in (7) and be 3-integrable. We assume that for some157

R(n) > 0 monotonically decreasing with R(n)→ 0 as n→∞ we have158 ∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd
∥∥∥3/2

3/2
+
∥∥b(n)∥∥3

3 = O(R(n)), (15)159

160

and the technical conditions (9) and (14) being satisfied for s = 3. If161

lim sup
n→∞

E
K∑
r=1

(
R(I(n)

r )
R(n)

∥∥A(n)
r

∥∥3
op

)
< 1, (16)162

163

then we have, as n→∞,164

ζ3(Xn,N (0, Idd)) = O(R(n)).165

Proof. (Sketch) We define an accompanying sequence (Z∗n)n≥0 by166

Z∗n :=
K∑
r=1

A(n)
r T

I
(n)
r
N (r) + b(n), n ≥ 0,167

where (A(n)
1 , . . . , A

(n)
K , I(n), b(n)), N (1), . . . , N (K) are independent, L(N (r)) = N (0, Idd) for168

r = 1, . . . ,K and TnTTn = Cov(Xn) for n ≥ 0. Hence, Z∗n is L3-integrable, E[Z∗n] = 0 and169

Cov(Z∗n) = Idd for all n ≥ n1. By the triangle inequality, we have170

ζ3(Xn,N (0, Idd)) ≤ ζ3(Xn, Z
∗
n) + ζ3(Z∗n,N (0, Idd)).171

Then, the assertion follows inductively if one has shown the bound ζ3(Z∗n,N (0, Idd)) =172

O(R(n)): Using the convolution property of the multidimensional normal distribution, we173

obtain the representation174

Z∗n =
K∑
r=1

A(n)
r T

I
(n)
r
N (r) + b(n) d= GnN + b(n), (17)175

176

where GnGTn =
∑K
r=1 A

(n)
r T

I
(n)
r
TT
I

(n)
r

(A(n)
r )T , L(N) = N (0, Idd) and N is independent of177

(Gn, b(n)). As Cov(Z∗n) = Idd for all n ≥ n1, we have E[GnGTn +b(n)(b(n))T ] = Idd for n ≥ n1.178

Furthermore, we have
∥∥b(n)

∥∥3
3 = O(R(n)) and179

∥∥GnGTn − Idd
∥∥3/2

3/2 =
∥∥∥ K∑
r=1

A(n)
r T

I
(n)
r
TT
I

(n)
r

(A(n)
r )T − Idd

∥∥∥3/2

3/2
180

= O
(∥∥∥ K∑

r=1
1{I(n)

r <n1}
A(n)
r (T

I
(n)
r
TT
I

(n)
r
− Idd)(A(n)

r )T
∥∥∥3/2

3/2
181

+
∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd
∥∥∥3/2

3/2

)
182

= O
(

K∑
r=1

∥∥1{I(n)
r <n1}

A(n)
r

∥∥3
3 +

∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd
∥∥∥3/2

3/2

)
183

= O(R(n)).184
185

Thus, the following Lemma 5 implies ζ3(Z∗n,N (0, Idd)) = O(R(n)). Lemma 5 is the main186

part of the present proof. J187

CVIT 2016



23:6 Convergence Rates in the Probabilistic Analysis of Algorithms

I Remark 4. Theorem 3, when applicable, often improves over Theorem 1 by a factor 3 in188

the exponent, see Remark 9 for an example. This is caused by the additional exponents in189

(15) in comparison to (10).190

I Lemma 5. Let (Z∗n)n≥0 be a sequence of d-dimensional random vectors satisfying Z∗n
d=191

GnN + b(n), where Gn is a random (d × d)-matrix, b(n) a centered random vector with192

E[GnGTn + b(n)(b(n))T ] = Idd and N ∼ N (0, Idd) independent of (Gn, b(n)). Furthermore, we193

assume that, as n→∞,194 ∥∥GnGTn − Idd
∥∥3/2

3/2 +
∥∥b(n)∥∥3

3 = O(R(n))195

for appropriate R(n). Then, we have, as n→∞,196

ζ3(Z∗n,N (0, Idd)) = O(R(n)).197

The proof of Lemma 5 builds upon ideas of [15].198

3 Expansions of moments199

In applications to problems arising in theoretical computer science, where the recurrence200

(1) is explicitly given one usually has no direct means to identify the orders of the terms201

‖b(n) − b∗‖s and ‖A(n)
r − A∗r‖s. This is due to the fact that the mean vector Mn and the202

covariance matrix Cn, for the cases 1 < s ≤ 2 and 2 < s ≤ 3 respectively, which are used203

for the normalization (7) are typically not exactly known or too involved to be amenable204

to explicit calculations. As a substitute one usually has asymptotic expansions of these205

sequences as n→∞.206

In the present section we assume the dimension to be d = 1 and Ar(n) = 1 for all207

r = 1, . . . ,K and provide tools to apply the general Theorems 1 and 3 on the basis of208

expansions of the mean and variance. We assume that209

E[Xn] = µ(n) = f(n) + O(e(n)), Var(Xn) = σ2(n) = g(n) + O(h(n)), (18)210
211

with e(n) = o(f(n)) and h(n) = o(g(n)). To connect Theorems 1 and 3 to recurrences with212

known expansions we use the following notion.213

I Definition 6. A sequence (a(n))n≥0 of non-negative numbers is called essentially non-214

decreasing if there exists a c > 0 such that a(m) ≤ ca(n) for all 0 ≤ m < n.215

The scaling introduced in (7) with the special choices Ar(n) = 1 for all r = 1, . . . ,K leads to216

the scaled recurrence for (Xn) given in (2) with217

A(n)
r = σ(I(n)

r )
σ(n) , b(n) = 1

σ(n)

(
bn − µ(n) +

K∑
r=1

µ(I(n)
r )

)
. (19)218

219

Additionally, we consider the corresponding quantities220

A
(n)
r = g1/2(I(n)

r )
g1/2(n)

, b
(n) = 1

g1/2(n)

(
bn − f(n) +

K∑
r=1

f(I(n)
r )

)
. (20)221

222

Then we have:223
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I Lemma 7. With A(n)
r , b(n) given in (19), A(n)

r , b(n) given in (20), and the expansions for224

µ(n), σ2(n) given in (18) the following holds.225

If the sequence h/g1/2 is essentially non-decreasing then226 ∥∥A(n)
r −A∗r

∥∥
s
≤
∥∥A(n)

r −A∗r
∥∥
s

+ O
(h(n)
g(n)

)
. (21)227

228

If the sequence h is essentially non-decreasing then229 ∥∥∥ K∑
r=1

(A(n)
r )2 − 1

∥∥∥
s
≤
∥∥∥ K∑
r=1

(A(n)
r )2 − 1

∥∥∥
s

+ O
(h(n)
g(n)

)
. (22)230

231

If the sequence e is essentially non-decreasing then232 ∥∥b(n) − b∗
∥∥
s
≤
∥∥b(n) − b∗

∥∥
s

+ O
(h(n)
g(n) + e(n)

g1/2(n)

)
. (23)233

234

If the sequence g/h is essentially non-decreasing and235

T (n) := E
K∑
r=1

gs/2−1(I(n)
r )h(I(n)

r )R(I(n)
r )

gs/2(n)R(n)
236

then we have237

E
K∑
r=1

σs(I(n)
r )R(I(n)

r )
σs(n)R(n) ≤ E

K∑
r=1

gs/2(I(n)
r )R(I(n)

r )
gs/2(n)R(n)

+ O(T (n)). (24)238

239

Proof. We show (21), the other bounds can be shown similarly. Note that σ2(n) = g(n) +240

O(h(n)) implies σ(n) = g1/2(n)+O(h(n)/g1/2(n)) and that for any essentially non-decreasing241

sequence (a(n))n≥0 we have ‖a(I(n)
r )‖∞ = O(a(n)). Since h/g1/2 is essentially non-decreasing242

we obtain243

A(n)
r = σ(I(n)

r )
σ(n) = g1/2(I(n)

r ) + O(h(I(n)
r )/g1/2(I(n)

r ))
σ(n)244

= g1/2(I(n)
r ) + O(h(n)/g1/2(n))

g1/2(n)
· g

1/2(n)
σ(n)245

=
(
g1/2(I(n)

r )
g1/2(n)

+ O
(
h(n)
g(n)

))(
1 + O

(
h(n)
g(n)

))
246

= g1/2(I(n)
r )

g1/2(n)
+ O

(
h(n)
g(n)

(
1 + g1/2(I(n)

r )
g1/2(n)

))
.247

248

Hence, we obtain249

‖A(n)
r −A∗r‖s ≤ ‖A

(n)
r −A∗r‖s + O

(
h(n)
g(n)

(
1 +

∥∥∥A(n)
r

∥∥∥
s

))
.250

251

Since A(n)
r → A∗r in Ls we have ‖A(n)

r ‖s = O(1), hence252

‖A(n)
r −A∗r‖s ≤ ‖A

(n)
r −A∗r‖s + O

(
h(n)
g(n)

)
,253

254

which is bound (21). J255

Note that in applications the terms on the right hand side in the estimates (21)–(24) can256

easily be bound when expansions as in (18) with explicit functions e, f, g, h are available.257

CVIT 2016



23:8 Convergence Rates in the Probabilistic Analysis of Algorithms

4 Applications258

We start by deriving a known result to illustrate in detail how to apply our framework of the259

previous sections.260

4.1 Quicksort: Key comparisons261

The number of key comparisons Yn needed by the Quicksort algorithm to sort n randomly262

permuted (distinct) numbers satisfies the distributional recursion263

Yn
d= YIn

+ Y ′n−1−In
+ n− 1, n ≥ 1, (25)264

where Y0 := 0 and (Yk)k=0,...,n−1, (Y ′k)k=0,...,n−1, In are independent, In is uniformly distrib-265

uted on {0, . . . , n− 1}, and Yk
d= Y ′k, k ≥ 0. Hence, equation (25) is covered by our general266

recurrence (1). For the expectation and variance of Yn exact expressions are known which267

imply the asymptotic expansions268

EYn = 2n log(n) + (2γ − 4)n+ O(logn), (26)269

Var(Yn) = σ2n2 − 2n log(n) + O(n), (27)270
271

where γ denotes Euler’s constant and σ :=
√

7− 2π2/3 > 0. We introduce the normalized272

quantities X0 := X1 := X2 := 0 and273

Xn := Yn − EYn√
Var(Yn)

, n ≥ 3. (28)274

To apply Theorem 1 we need to find an 0 < s ≤ 3 and a sequence (R(n)) with (10) and (11).275

Note that the Yn are bounded, thus Ls-integrable for any s > 0. To bound the Ls-norms276

appearing in (10) we use Lemma 7 and choose277

f(n) = 2n log(n) + (2γ − 4)n, e(n) = logn,278

g(n) = σ2n2, h(n) = n logn.279
280

With these functions we obtain for the quantities defined in (20) that281

A
(n)
1 = In

n
, A

(n)
2 = n− 1− In

n
,282

b
(n) = 1

σ

(
2In
n

log In
n

+ 2n− 1− In
n

log n− 1− In
n

+ n− 1
n

+ O
(

logn
n

))
283

284

With the embedding In = bnUc with U uniformly distributed over the unit interval [0, 1] we285

have286

A∗1 = U, A∗2 = 1− U, b∗ = 1
σ

(2U log(U) + 2(1− U) log(1− U) + 1) =: 1
σ
ϕ(U).287

288

The limit theorem Xn → X has been derived by different methods by Régnier [16] and289

Rösler [17]. Rösler [17] also found that the scaled limit Y := σX satisfies the distributional290

fixed-point equation291

Y
d= UY + (1− U)Y ′ + ϕ(U). (29)292

Lower and upper bounds for the rate of convergence in Xn → X have been studied for293

various metrics in Fill and Janson [6] and Neininger and Rüschendorf [13].294
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Now, we apply the framework of the present paper: For r = 1, 2 and any s ≥ 1 we find295

that296

‖A(n)
r −A∗r‖s = O

( 1
n

)
.297

298

Using Proposition 3.2 of Rösler [17] we obtain299

‖bn − b∗‖s = O
( logn

n

)
.300

301

Moreover, we have302

h(n)
g(n) = O(R(n)) and e(n)

g1/2(n)
= O(R(n)) with R(n) := logn

n
,303

304

thus Lemma 7 implies that condition (10) is satisfied for our choice of the sequence R. To305

verify condition (11) by use of (24) we obtain that for T (n) given in Lemma 7 we find306

T (n) = O(log(n)/n)→ 0 and that307

E
2∑
r=1

gs/2(I(n)
r )R(I(n)

r )
gs/2(n)R(n)

= E
2∑
r=1

(
I

(n)
r

n

)s−1
log I(n)

r

logn .308

309

Note that the latter expression has a limes superior of less than 1 if and only if s > 2. Hence,310

Theorem 1 is applicable for s > 2 and yields that311

ζs(Xn, X) = O
(

logn
n

)
, for 2 < s ≤ 3. (30)312

313

The bound (30) had previously been shown for s = 3 in [13], where also the optimality of314

the order was shown, i.e., that ζ3(Xn, X) = Θ (log(n)/n).315

In the full paper version we also discuss bounds on rates of convergence for various cost316

measures of the related Quickselect algorithms under various models for the rank to be317

selected.318

4.2 Size of m-ary search trees319

The size of m-ary search trees satisfies the recurrence (1) with K = m ≥ 3, A1(n) = · · · =320

Am(n) = 1, n0 = m, bn = 1, i.e., we have321

Yn
d=

m∑
r=1

Y
(r)
I

(n)
r

+ 1, n ≥ m.322

323

For a representation of I(n) we define for independent, identically unif[0, 1] distributed random324

variables U1, . . . , Um−1 their spacings in [0, 1] by S1 = U(1), S2 = U(2) − U(1), . . . , Sm :=325

1 − U(m−1), where U(1), . . . U(m−1) denote the order statistics of U1, . . . , Um−1. Then I(n)
326

has the mixed multinomial distribution:327

I(n) d= M(n−m+ 1, S1, . . . , Sm).328

By this we mean that given (S1, . . . , Sm) = (s1, . . . , sm) we have that I(n) is multinomial329

M(n −m + 1, s1, . . . , sm) distributed. Expectations, variances and limit laws for Yn have330

been studied, see[12, 4]. We have331

EYn = µn+ O(1 + nα−1), m ≥ 3, (31)332

Var(Yn) = σ2n+ O(1 + n2α−2), 3 ≤ m ≤ 26, (32)333
334
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Here, the constants µ, σ > 0 depend on m and α ∈ R depends on m such that α < 1 for335

m ≤ 13, 1 ≤ α ≤ 4/3 for 14 ≤ m ≤ 19, and 4/3 ≤ α ≤ 3/2 for 20 ≤ m ≤ 26, see, e.g.,336

Mahmoud [12, Table 3.1] for the values α = αm depending on m. It is known that Yn337

standardized by mean and variance satisfies a central limit law for m ≤ 26, whereas the338

standardized sequence has no weak limit for m > 26 due to dominant periodicities, see339

Chern and Hwang [4]. The rate of convergence in the central limit law for m ≤ 26 for the340

Kolmogorov metric has been identified in Hwang [9]. Our Theorem 3 implies the central limit341

theorem for Yn with m ≤ 26 with the same (up to an ε for 3 ≤ m ≤ 19) rate of convergence342

for the Zolotarev metric ζ3:343

I Theorem 8. The size Yn of a random m-ary search tree with n items inserted satisfies,344

for m ≤ 26,345

ζ3

( Yn − EYn√
Var(Yn)

,N (0, 1)
)

=
{

O
(
n−1/2+ε), 3 ≤ m ≤ 19,

O
(
n−3(3/2−α)), 20 ≤ m ≤ 26,

(33)346

347

as n→∞.348

Proof. In order to apply Theorem 3 we have to estimate the orders of ‖
∑m
r=1(A(n)

r )2− 1‖3/2349

and ‖b(n)
∥∥

3 with A(n)
r and b(n) defined in (3). For this we apply Lemma 7. From (31) and350

(32) we obtain that for the quantities appearing in Lemma 7 we can choose f(n) = µn,351

e(n) = 1 ∨ nα−1, g(n) = σ2n, and h(n) = 1 ∨ n2(α−1). Hence we obtain352

∥∥∥ m∑
r=1

(A(n)
r )2 − 1

∥∥∥
3/2

=
∥∥∥ m∑
r=1

I
(n)
r

n
− 1
∥∥∥

3/2
= m− 1

n
= O

(
n−1)

353

and O(h(n)/g(n)) = O(n−(1∧(3−2α))). This implies354

∥∥∥ m∑
r=1

(A(n)
r )2 − 1

∥∥∥3/2

3/2
= O

(
n−((3/2)∧(3(3/2−α)))).355

Similarly we obtain356

∥∥b(n)∥∥
3 = 1

σ
√
n

∥∥∥1− µn+
m∑
r=1

µI(n)
r

∥∥∥
3

= 1
σ
√
n

∥∥1− µ(m− 1)
∥∥

3 = O
(
n−1/2)

357

and O(e(n)/g1/2(n)) = O(n−(1∧(3/2−α))). This implies358 ∥∥b(n)∥∥3
3 = O

(
n−((3/2)∧(3(3/2−α)))).359

Hence, condition (15) is satisfied with R(n) = n−((3/2)∧(3(3/2−α))). J360

I Remark 9. Using Theorem 1 instead of Theorem 3 in the latter proof is also possible but361

leads to a bound O(n−(3/2−α)) for 20 ≤ m ≤ 26, missing the factor 3 appearing in Theorem362

8.363

In the full paper version we also discuss rates of convergence for the number of leaves of364

d-dimensional random point quadtrees in the model of [7, 3, 8] where a similar behavior365

as in Theorem 8 appears. A technically related example is the number of maxima in right366

triangles in the model of [1, 2], where the order n−1/4 appears. Our framework also applies.367
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4.3 Periodic functions in mean and variance368

We now discuss some examples where the asymptotic expansions of the mean and the369

variance include periodic functions instead of fixed constants. This is the case for several370

quantities in binomial splitting processes such as tries, PATRICIA tries and digital search371

trees. Throughout this section, we assume that we have a 3-integrable sequence (Yn)n≥0372

satisfying the recursion373

Yn
d= Y

(1)
I

(n)
1

+ Y
(2)
I

(n)
2

+ bn, n ≥ n0, (34)374
375

with (I(n), bn), (Y (1)
n )n≥0 and (Y (2)

n )n≥0 independent and (Y (r)
n )n≥0

d= (Yn)n≥0 for r = 1, 2.376

Furthermore, I(n)
1 has the binomial distribution Bin(n, 1

2 ) and I
(n)
2 = n − I1(n) or I(n)

1377

is binomially Bin(n − 1, 1
2 ) distributed and I

(n)
2 = n − 1 − I1(n). Mostly, these binomial378

recurrences are asymptotically normally distributed, see [10, 11, 14, 18] for some examples.379

Our first theorem covers the case of linear mean and variance, i.e. we assume that, as380

n→∞,381

E[Yn] = nP1(log2 n) + O(1), (35)382

Var(Yn) = nP2(log2 n) + O(1), (36)383
384

for some smooth and 1-periodic functions P1, P2 with P2 > 0. Possible applications would385

start with the analysis of the number of internal nodes of a trie for n strings in the symmetric386

Bernoulli model and the number of leaves in a random digital search tree, see, e.g., [10].387

I Theorem 10. Let (Yn)n≥0 be 3-integrable and satisfy (34) with ‖bn‖3 = O(1), (35) and388

(36). Then, for any ε > 0 and n→∞, we have389

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O(n−1/2+ε).390

We now consider the case where our quantities Yn satisfy recursion (34) with bn being391

essentially n. We assume that, as n→∞, we have392

E[Yn] = n log2(n) + nP1(log2 n) + O(1), (37)393

Var(Yn) = nP2(log2 n) + O(1), (38)394
395

for some smooth and 1-periodic functions P1, P2 with P2 > 0. This covers, for example, the396

external path length of random tries and related digital tree structures constructed from n397

random binary strings under appropriate independence assumptions.398

I Theorem 11. Let (Yn)n≥0 be 3-integrable and satisfy (34) with ‖bn − n‖3 = O(1), (37)399

and (38). Then, for any ε > 0 and n→∞, we have400

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O(n−1/2+ε).401

4.4 A multivariate application402

We consider a random binary search tree with n nodes built from a random permutation of403

{1, . . . , n}. For n ≥ 0, we denote by L0n the number of nodes with no left descendant and404

CVIT 2016
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by L1n the number of nodes with exactly one left descendant. Defining Yn := (L0n, L1n), we405

have Y0 = (0, 0) and we obtain the following distributional recurrence:406

Yn
d= Y

(1)
I

(n)
1

+ Y
(2)
I

(n)
2

+ bn, n ≥ 1,407

where (Y (1)
j )j≥0 and (Y (2)

j )j≥0 are independent copies of (Yj)j≥0, I(n)
1 is uniformly distributed408

on {0, . . . , n − 1} and independent of (Y (1)) and (Y (2)), I(n)
2 = n − 1 − I

(n)
1 and bn =409

(1{I(n)
1 =0},1{I(n)

1 =1}). In Devroye [5] it is shown that, for n ≥ 2,410

E[L0n] = 1
2(n+ 1), E[L1n] = 1

6(n+ 1),411
412

and that the standardized quantities have a limiting normal distribution. Using Devroye’s413

description with local counters one also obtains the covariance structure:414

I Lemma 12. For n ≥ 4, we have Cov(Yn) = (n+ 1) Γ with415

Γ = 1
360

(
30 −15
−15 28

)
.416

For n ≥ 0, we now set Mn := E[Yn], Cn = Id2 for n ≤ 3, Cn := Cov(Yn) for n ≥ 4 and417

define Xn := C
−1/2
n (Yn −Mn) for n ≥ 0. Note that the matrix Γ in Lemma 12 is symmetric418

and positive definite, which implies, for n ≥ 4,419

C1/2
n =

√
n+ 1 Γ1/2 and C−1/2

n = 1√
n+ 1

Γ−1/2.420

The normalized quantities satisfy X0 = (0, 0) and recursion (2) with K = 2, n0 = 1,421

A(n)
r = C−1/2

n C
1/2
I

(n)
r

= 1{I(n)
r ≥4}

√
I

(n)
r + 1
n+ 1 Id2 + 1{I(n)

r <4}
1√
n+ 1

Γ−1/2
422

for r = 1, 2 and423

b(n) = C−1/2
n (bn −Mn +M

I
(n)
1

+M
I

(n)
2

).424

Modeling all quantities on a joint probability space such that I(n)
1 /n converges almost surely425

to a uniform random variable U in [0, 1], we have the L3-convergences A(n)
1 →

√
U Id2,426

A
(n)
2 →

√
1− U Id2 and b(n) → 0 as n → ∞. Thus, we are in the situation of Section 2.2427

and obtain the limiting equation428

X
d=
√
UX(1) +

√
1− UX(2),429

with U uniformly distributed on [0, 1] and X(1), X(2) and U independent. We now check the430

conditions of Theorem 3. Since A(n)
1 (A(n)

1 )T +A(n)
2 (A(n)

2 )T = Id2 on the event {I(n)
1 , I

(n)
2 ≥ 4},431

we obtain, as n→∞,432 ∥∥∥ 2∑
r=1

A(n)
r (A(n)

r )T − Id2

∥∥∥3/2

3/2
= O

(∥∥∥1{I(n)
1 <4}

( 1
n+ 1 Γ−1 + I

(n)
2 + 1
n+ 1 Id2 − Id2

)∥∥∥3/2

3/2

)
433

= O
(
E
[
1{I(n)

1 <4}

∥∥∥ 1
n+ 1 Γ−1 − I

(n)
1 + 1
n+ 1 Id2

∥∥∥3/2

op

])
434

= O
(
n−5/2).435

436
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Similarly, we obtain437 ∥∥b(n)∥∥3
3 = O(n−5/2).438

439

Since we have ‖1{I(n)
r <`}A

(n)
r ‖3

3 = O(n−5/2) for ` ∈ N and r = 1, 2, the technical conditions440

are satisfied. We now use Theorem 3 with R(n) = n−1/2. Note that condition (16) is not441

satisfied for R(n) = n−1/2, but we can use the weakened condition stated in Remark 2 to442

obtain the following result.443

I Theorem 13. Denoting by Yn := (L0n, L1n) the vector of the numbers of nodes with no444

and with exactly one left descendant respectively in a random binary search tree with n nodes445

we have, for n→∞, that446

ζ3
(
Cov(Yn)−1/2(Yn − E[Yn]),N (0, Id2)

)
= O(n−1/2).447
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5 Appendix507

Proof. (Proof of Theorem 1) Using condition (10), the assumption that R is monotonically508

decreasing and condition (11), we have509

E

[
K∑
r=1
‖A∗r‖sop

]
= lim
n→∞

E

[
K∑
r=1
‖A(n)

r ‖sop

]
≤ lim sup

n→∞
E

[
K∑
r=1

R(I(n)
r )

R(n) ‖A
(n)
r ‖sop

]
< 1.510

511

Furthermore, condition (10) implies E[b∗] = lim
n→∞

E[b(n)] = 0 if s > 1 and additionally512

E
[
b∗(b∗)T

]
+ E

[ K∑
r=1

A∗r(A∗r)T
]

= Idd513

if s > 2. Thus, Corollary 3.4 in [14] states that equation (12) has a unique fixed-point514

L(X) in Pds (0, Idd). To establish a rate of convergence to this fixed-point, we introduce the515

accompanying sequence516

Z∗n :=
K∑
r=1

A(n)
r T

I
(n)
r
X(r) + b(n),517

where (A(n)
1 , . . . , A

(n)
K , I(n), b(n)), X(1), . . . , X(K) are independent and X(r) is identically dis-518

tributed as X for r = 1, . . . ,K. Here, for 2 < s ≤ 3, the sequence (Tn)n≥0 is chosen such519

that Z∗n has the same covariance structure as Xn. To be more precise, for 2 < s ≤ 3, we520

choose Tn such that TnTTn = Cov(Xn) (i.e. Tn = Idd for n ≥ n1 and TnTTn = Cov(Yn) for521

n < n1). For s ≤ 2, we do not need to control the covariance of Z∗n and set Tn := Idd522

for n ≥ 0. Then, Z∗n is Ls-integrable, we have E[Z∗n] = 0 for s > 1 and in the case s > 2523
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additionally Cov(Z∗n) = Cov(Xn) = Idd for n ≥ n1. Hence, ζs-distances between Xn, Z∗n524

and X are finite for n ≥ n1. Applying the triangle inequality we have, for n ≥ n1,525

ζs(Xn, X) ≤ ζs(Xn, Z
∗
n) + ζs(Z∗n, X). (39)526

527

Denoting by Υn the joint distribution of (A(n)
1 , . . . , A

(n)
K , b(n), I(n)), α = (α1, . . . , αK), j =528

(j1, . . . , jK) and ∆(n) := ζs(Xn, X), we obtain by conditioning on Υn that, for n ≥ n1,529

ζs(Xn, Z
∗
n) = ζs

(
K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n),

K∑
r=1

A(n)
r T

I
(n)
r
X(r) + b(n)

)
530

= sup
f∈Fs

∣∣∣∣∣
∫

E
[
f
( K∑
r=1

αrX
(r)
jr

+ β
)]
− E

[
f
( K∑
r=1

αrTjr
X(r) + β

)]
dΥn(α, β, j)

∣∣∣∣∣531

≤
∫
ζs

(
K∑
r=1

αrX
(r)
jr

+ β,

K∑
r=1

αrTjr
X(r) + β

)
dΥn(α, β, j)532

≤
∫ K∑

r=1
‖αr‖sop ζs

(
X

(r)
jr
, Tjr

X(r)
)
dΥn(α, β, j)533

≤

(
E

K∑
r=1

1{I(n)
r =n}‖A

(n)
r ‖sop

)
∆(n) + E

[
K∑
r=1

1{n1≤I(n)
r <n}‖A

(n)
r ‖sop∆(I(n)

r )
]

534

+ E

[
K∑
r=1

1{I(n)
r <n1}

‖A(n)
r ‖sop sup

k<n1

ζs(Xk, TkX
(r))
]
. (40)535

536

Note that the last summand is in O(R(n)) by condition (8). To bound the second summand537

ζs(Z∗n, X) in (39), we switch to the Wasserstein metric `s: By condition (10) and ‖Z∗n‖s ≤538 ∑K
r=1 ‖A

(n)
r T

I
(n)
r
‖s‖X‖s + ‖b(n)‖s, we have supn≥0 ‖Z∗n‖s < ∞. Thus, a standard bound539

implies that ζs(Z∗n, X) ≤ Cs`s(Z∗n, X) for some constant Cs > 0. Furthermore, we have540

`s(Z∗n, X) ≤

∥∥∥∥∥
(

K∑
r=1

A(n)
r T

I
(n)
r
X(r) + b(n)

)
−

(
K∑
r=1

A∗rX
(r) + b∗

)∥∥∥∥∥
s

541

≤
K∑
r=1

∥∥A(n)
r T

I
(n)
r
−A∗r

∥∥
s

∥∥X(r)∥∥
s

+
∥∥b(n) − b∗

∥∥
s

542

≤
K∑
r=1

(∥∥A(n)
r T

I
(n)
r
−A(n)

r

∥∥
s

+
∥∥A(n)

r −A∗r
∥∥
s

)∥∥X∥∥
s

+
∥∥b(n) − b∗

∥∥
s

543

=
K∑
r=1

(∥∥1{I(n)
r <n1}

A(n)
r (T

I
(n)
r
− Idd)

∥∥
s

+
∥∥A(n)

r −A∗r
∥∥
s

)∥∥X∥∥
s

+
∥∥b(n) − b∗

∥∥
s
.544

545

Using conditions (8) and (10), we obtain `s(Z∗n, X) = O(R(n)). Hence, putting everything546

together and introducing the notation pn := E
[∑K

r=1 1{I(n)
r =n}‖A

(n)
r ‖sop

]
, we obtain from547

(39) and (40) that548

∆(n) ≤ pn ∆(n) + E

[
K∑
r=1

1{n1≤I(n)
r <n}‖A

(n)
r ‖sop∆(I(n)

r )
]

+ O(R(n)). (41)549

550

From (11), there exists a δ > 0 such that E
[∑K

r=1
R(I(n)

r )
R(n)

∥∥A(n)
r

∥∥s
op

]
≤ 1 − δ for all n551

sufficiently large and from (9) we have pn < δ/2 for n large. We now choose some C > 0552
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and n2 ≥ n1 sufficiently large such that for n ≥ n2 all these inequalities are satisfied and the553

O(R(n)) term in (41) is bounded by CR(n). By setting554

L := 2C
δ
∨max

{∆(n)
R(n) : n ≤ n2

}
555

we now obtain ∆(n) ≤ LR(n) by induction: For n ≤ n2, by definition of L, the assertion is556

true. For n > n2, solving for ∆(n) in (41), we find557

∆(n) ≤ 1
1− pn

(
E

[
K∑
r=1

1{n1≤I(n)
r <n}‖A

(n)
r ‖sop∆(I(n)

r )
]

+ CR(n)
)

558

≤ 1
1− δ/2

(
E

[
K∑
r=1
‖A(n)

r ‖sopLR(I(n)
r )

]
+ CR(n)

)
559

= 1
1− δ/2

(
LE

[
K∑
r=1
‖A(n)

r ‖sop
R(I(n)

r )
R(n)

]
R(n) + CR(n)

)
560

≤ 1
1− δ/2

(
L(1− δ) + C

)
R(n)561

≤ LR(n).562
563

J564

Proof. (Proof of Lemma 5) As the matrix GnGTn is symmetric and positive-semidefinite, we565

can decompose it in the following way: Let λ1 ≥ . . . ≥ λm ≥ 1 > λm+1 ≥ . . . ≥ λd ≥ 0 be566

the (random) eigenvalues of GnGTn . Then, with a suitable (random) orthogonal matrix O,567

we have568

GnG
T
n = O diag(λ1, . . . , λd)OT569

= O diag(1, . . . , 1, λm+1, . . . , λd)OT +O diag(λ1 − 1, . . . , λm − 1, 0, . . . , 0)OT570

= BnB
T
n + CnC

T
n ,571

572

where we define the random (d × d)-matrices Bn := O diag(1, . . . , 1,
√
λm+1, . . . ,

√
λd)OT573

and Cn := O diag(
√
λ1 − 1, . . . ,

√
λm − 1, 0, . . . , 0)OT . Hence, we can decompose Z∗n in the574

following way:575

Z∗n
d= GnN + b(n) d= BnN + CnN

′ + b(n) =: Ẑ∗n,576

where (Bn, Cn, b(n)), N and N ′ are independent with L(N) = L(N ′) = N (0, Idd). Analog-577

ously, we decompose the multivariate normal distribution:578

N
d= BnN +DnN

′ =: N̂ ,579

where Dn := O diag(0, . . . , 0,
√

1− λm+1, . . . ,
√

1− λd)OT is chosen such that BnBTn +580

DnD
T
n = Idd.581

By definition of the Zolotarev metric ζ3 we have582

ζ3(Z∗n,N (0, Idd)) = ζ3(Ẑ∗n, N̂) = sup
f∈F3

∣∣∣E[f(Ẑ∗n)− f(N̂)]
∣∣∣ .583

For arbitrary f ∈ F3 we use Taylor expansion around N and obtain for x ∈ Rd that584

f(x) = f(N) + (x−N)T ∇f(N) + 1
2(x−N)THf (N)(x−N) +R(x,N),585
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where the remainder term satisfies |R(x,N)| ≤ 1
2 ‖x−N‖

3. Thus, we have586

f(Ẑ∗n)− f(N̂) = (Ẑ∗n − N̂)T ∇f(N) + 1
2(Ẑ∗n −N)THf (N)(Ẑ∗n −N)587

− 1
2(N̂ −N)THf (N)(N̂ −N) +R(Ẑ∗n, N)−R(N̂ ,N). (42)588

589

We now study the expectation of these summands: For the first summand, we have590

E[(Ẑ∗n − N̂)T ∇f(N)] = E[
(
(Cn −Dn)N ′ + b(n))T ∇f(N)]591

= E[(Cn −Dn)N ′ + b(n)]T E[∇f(N)] = 0,592
593

since N is independent of the other quantities, N ′ is independent of (Cn, Dn) and E[N ′] =594

E[b(n)] = 0. For the second summand, we define Fn := Bn − Idd and obtain595

E[(Ẑ∗n −N)THf (N)(Ẑ∗n −N)]596

= E[(FnN + CnN
′ + b(n))THf (N)(FnN + CnN

′ + b(n))]597

= E[(FnN)THf (N)(FnN)] + E[(FnN)THf (N)(CnN ′)] + E[(FnN)THf (N)b(n)]598

+ E[(CnN ′)THf (N)(FnN)] + E[(CnN ′)THf (N)(CnN ′)] + E[(CnN ′)THf (N)b(n)]599

+ E[(b(n))THf (N)(FnN)] + E[(b(n))THf (N)(CnN ′)] + E[(b(n))THf (N)b(n)].600
601

Since N , N ′ and (Fn, Cn, b(n)) are independent with E[N ′] = 0, we have602

E[(FnN)THf (N)(CnN ′)] = 0.603

The same argument applies to E[(CnN ′)THf (N)(FnN)], E[(CnN ′)THf (N)b(n)] and E[(b(n))THf (N)(CnN ′)].604

Analogously, we obtain for the third summand in (42)605

E[(N̂ −N)THf (N)(N̂ −N)]606

= E[(FnN +DnN
′)THf (N)(FnN +DnN

′)]607

= E[(FnN)THf (N)(FnN)] + E[(DnN
′)THf (N)(DnN

′)].608
609

This implies together with E[(FnN)THf (N)b(n)] = E[(b(n))THf (N)(FnN)]610

E[(Ẑ∗n −N)THf (N)(Ẑ∗n −N)− (N̂ −N)THf (N)(N̂ −N)]611

= E[(CnN ′)THf (N)(CnN ′)]− E[(DnN
′)THf (N)(DnN

′)] + E[(b(n))THf (N)b(n)]612

+ 2 E[(FnN)THf (N)b(n)]613
614

Note that we have CnCTn −DnD
T
n = GnG

T
n − Idd. Furthermore, E[GnGTn + b(n)(b(n))T ] =615

Idd. Thus, with the independence of N , N ′ and (Cn, Dn, b
(n)) and E[N ′iN ′j ] = 1{i=j} for616

i, j = 1, . . . , d, we have617

E[(CnN ′)THf (N)(CnN ′)]− E[(DnN
′)THf (N)(DnN

′)] + E[(b(n))THf (N)b(n)]618

=
d∑

i,j=1
E[Hf (N)ij ]E[(CnN ′)i(CnN ′)j − (DnN

′)i(DnN
′)j + b

(n)
i b

(n)
j ]619

=
d∑

i,j=1
E[Hf (N)ij ]E[(CnCTn −DnD

T
n )ij + (b(n)(b(n))T )ij ]620

=
d∑

i,j=1
E[Hf (N)ij ]E[(GnGTn + b(n)(b(n))T − Idd)ij ]621

= 0.622
623
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Thus, we have shown that624 ∣∣∣E[f(Ẑ∗n)− f(N̂)]
∣∣∣ =

∣∣∣E[(FnN)THf (N)b(n)] + E[R(Ẑ∗n, N)]− E[R(N̂ ,N)]
∣∣∣625

≤ E[|(FnN)THf (N)b(n)|] + E[|R(Ẑ∗n, N)|] + E[|R(N̂ ,N)|].626
627

We now bound these three terms. For this, without loss of generality, we may assume that628

Hf (0) = 0: If this is not the case, we consider the function g : Rd → R defined by g(x) :=629

f(x)− 1
2x

THf (0)x for x ∈ Rd. Then, Hg(0) = 0 and E[g(Ẑ∗n)−g(N̂)] = E[f(Ẑ∗n)−f(N̂)] since630

Ẑ∗n and N̂ have the same mean and covariance structure. The assumption Hf (0) = 0 implies,631

together with the Lipschitz property of the second derivative of f , ‖Hf (N)‖op ≤ ‖N‖. Hence,632

using the Cauchy-Schwarz inequality, the independence of (Fn, b(n)) and N and Hölder’s633

inequality, we have634

E[|(FnN)THf (N)b(n)|] ≤ E[‖Fn‖op‖N‖‖Hf (N)‖op‖b(n)‖]635

≤ E[‖N‖2]E[‖Fn‖op‖b(n)‖]636

≤ d ‖Fn‖3/2‖b(n)‖3637

≤ d ‖GnGTn − Idd‖3/2‖b(n)‖3,638
639

where the last step follows by ‖GnGTn − Idd‖op = max{|λ1 − 1|, |λd − 1|}, ‖Fn‖op =640

1{λd<1}|
√
λd − 1| and the identity |

√
a − 1| ≤ |a − 1| for a ≥ 0. The first remainder641

term is bounded by642

E[|R(Ẑ∗n, N)|] ≤ 1
2 E
[
‖Ẑ∗n −N‖3]

643

= 1
2 E
[
‖FnN + CnN

′ + b(n)‖3]
644

= O
(
E
[
‖Fn‖3

op
]

+ E
[
‖Cn‖3

op
]

+ E
[
‖b(n)‖3])

645

= O
(
‖GnGTn − Idd‖3/2

3/2 + ‖b(n)‖3
3
)
,646

647

since ‖Cn‖op = 1{λ1>1}
√
|λ1 − 1| ≤ ‖GnGTn − Idd‖1/2

op and ‖Fn‖op = 1{λd<1}|
√
λd − 1| ≤648

‖GnGTn − Idd‖1/2
op (note that we have |

√
a − 1| ≤

√
|a− 1| for any a ≥ 0). With the same649

arguments, we obtain for the second remainder term650

E[|R(N̂ ,N)|] ≤ 1
2 E
[
‖FnN +DnN

′‖3] = O
(
‖Fn‖3

3 + ‖Dn‖3
3
)

651

= O
(
‖GnGTn − Idd‖3/2

3/2
)
,652

653

as ‖Dn‖op = 1{λd<1}
√
|λd − 1| ≤ ‖GnGTn − Idd‖1/2

op . This implies654 ∣∣∣E[f(Ẑ∗n)− f(N̂)]
∣∣∣ ≤ E[|(FnN)THf (N)b(n)|] + E[|R(Ẑ∗n, N)|] + E[|R(N̂ ,N)|]655

= O
(
‖GnGTn − Idd‖3/2‖b(n)‖3 + ‖GnGTn − Idd‖3/2

3/2 + ‖b(n)‖3
3
)

656

= O(R(n)).657
658

Note that the constants in the O-notation do not depend on the function f , i.e. we have659

supf∈F3

∣∣∣E[f(Ẑ∗n)− f(N̂)]
∣∣∣ = O(R(n)). J660
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