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ON FLUCTUATIONS OF COMPLEXITY MEASURES FOR THE FIND

ALGORITHM

JASPER ISCHEBECK AND RALPH NEININGER

Abstract. The FIND algorithm (also called Quickselect) is a fundamental algorithm to
select ranks or quantiles within a set of data. It was shown by Grübel and Rösler that the
number of key comparisons required by Find as a process of the quantiles α ∈ [0, 1] in a
natural probabilistic model converges after normalization in distribution within the càdlàg
space D[0, 1] endowed with the Skorokhod metric. We show that the process of the residuals
in the latter convergence after normalization converges in distribution to a mixture of Gauss-
ian processes in D[0, 1] and identify the limit’s conditional covariance functions. A similar
result holds for the related algorithm QuickVal. Our method extends to other cost measures
such as the number of swaps (key exchanges) required by Find or cost measures which are
based on key comparisons but take into account that the cost of a comparison between two
keys may depend on their values, an example being the number of bit comparisons needed
to compare keys given by their bit expansions.

1. Introduction

In 1961, Hoare [11] introduced the algorithm FIND, also called Quickselect, to select a key
(an element) of a given rank from a linearly ordered finite set of data. We assume that the
data are distinct real numbers. To be definite a simple version of the FIND algorithm is given
as follows: FIND(S, k) has as input a set S = {s1, . . . , sn} of distinct real numbers of size n
and an integer 1 ≤ k ≤ n. The algorithm FIND operates recursively as follows: If n = 1 we
have k = 1 and FIND returns the single element of S. If n ≥ 2 and S = {s1, . . . , sn} the
algorithm first chooses an elements from S, say sj, called pivot, and generates the sets

S< := {si | si < sj , i ∈ {1, . . . , n} \ {j}}, S≥ := {si | si ≥ sj, i ∈ {1, . . . , n} \ {j}}.
If k = |S<|+ 1, the algorithm returns sj. If k ≤ |S<|, recursively FIND(S<, k) is applied. If
k ≥ |S<|+2, recursively FIND(S≥, k−|S<|−1) is applied. Note that FIND(S, k) returns the
element of rank k from S. There are various variants of the algorithm, in particular regarding
how the pivot element is chosen and how S is partitioned into the subsets S< and S≥.

In a standard probabilistic model one assumes that the data are ordered, i.e. given as a
vector (s1, . . . , sn), and are randomly permuted, all permutations being equally likely. This
can be achieved assuming that the data are given as (U1, . . . , Un) where (Uj)j∈N is a sequence
of i.i.d. random variables with distribution unif[0, 1], the uniform distribution over the unit
interval [0, 1]. This is the probabilistic model considered below. Note that the randomness is
within the data, while the algorithm is deterministic.

Various cost measures have been considered for FIND, mainly the number of key compar-
isons required which we analyze in detail below. At the end of this extended abstract we state
related results for the number of swaps (key exchanges) required and for cost measures which
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2 ISCHEBECK AND NEININGER

are based on key comparisons, where the cost of a comparison may depend on the values of
the keys si, sj , the number of bit comparisons required to decide whether si < sj or not being
a prominent example.

For analysis purposes a related process, called QuickVal, has been considered, see [18, 8].
Informally, QuickVal for an α ∈ [0, 1] mimics FIND to select (or to try to select) the value
α from the set of data, which, in our probabilistic model for large n, comes close to FIND
selecting rank ⌊αn⌋. To be definite, QuickVal((U1, . . . , Un), α) compares the Ui with U1 to
generate sublists

S< := (Uj1 , . . . , Ujm−1), S≥ := (Ujm+1 , . . . , Ujn),

with Uji < U1 for i = 1, . . . ,m− 1 and 2 ≤ j1 < · · · < jm−1 and Uji ≥ U1 for i = m+1, . . . , n
and 2 ≤ jm+1 < · · · < jn. Hence, m− 1 ∈ {0, . . . , n − 1} is the number of the Ui, 2 ≤ i ≤ n,
being smaller than U1. The algorithm recursively calls QuickVal(S<, α) if α < U1 and |S<| >
0. If α ≥ U1 and |S≥| > 0 recursively QuickVal(S≥, α − U1) is called. The number of key
comparisons required by QuickVal((U1, . . . , Un), α) is denoted by Sα,n.

To describe the processes (Sα,n)α∈[0,1] and their limit (after scaling) conveniently we also
consider the binary search tree constructed from the the data (Ui)i∈N. Part of the following
definitions are depicted in Figure 1. The data are inserted into the rooted infinite binary tree,
where we denote its nodes by the elements of {0, 1}∗ := ∪∞

n=0{0, 1}n as follows. Its root is
denoted by the empty word ǫ and for each node φ ∈ {0, 1}∗ we denote by φ0 and φ1 (the word
φ appended with a 0 resp. 1) its left and right child respectively. Moreover |φ| denotes the
length of the word φ, which is the depth of the corresponding node in the tree. To construct
the binary search tree for (U1, . . . , Un) the first key U1 is inserted into the root and occupies
the root. Then, successively the following keys are inserted, where each key traverses the
already occupied nodes starting at the root as follows: Whenever the key traversing is less
than the occupying key at a node it moves on to the left child of that node, otherwise to its
right child. The first empty node found is occupied by the key.

To describe the costs of the algorithms we organize, using notation of Fill and Nakama [8],
the sub-intervals ([Lφ, Rφ))φ∈{0,1}∗ implicitly generated starting with [0, 1) =: [Lǫ, Rǫ) and
recursively setting

τφ := inf{i ∈ N |Lφ < Ui < Rφ},
Lφ0 := Lφ, Rφ1 := Rφ, Lφ1 := Rφ0 := Uτφ , Iφ := Rφ − Lφ.(1)

Now, if a sublist starting with pivot Uτφ has to be split by QuickVal, the keys which are
inserted in the subtree rooted at Uτφ need to be compared with Uτφ . Hence, we get a contri-
bution of key comparisons of

(2) Sφ,n =
∑

τφ<k≤n

1[Lφ,Rφ)(Uk).

Now, for α ∈ [0, 1], QuickVal((U1, . . . , Un), α) generates and splits sublists encoded by
φ(α, k) for k = 0, 1, . . . for which we obtain by φ(α, 0) = ǫ and

(3) φ(α, k + 1) =

{
φ(α, k)0, if α < Uτφ(α,k)

,

φ(α, k)1, if α ≥ Uτφ(α,k)
.

When using the variables defined in (1) or (2), we abbreviate the notation φ(α, k) by α, k,
such as writing Iα,k := Iφ(α,k) or Sα,k,n := Sφ(α,k),n.
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Uτǫ

Uτ0 Uτα,1

Uτα,2

...

Uτ10

α ≥ Uτǫ

α < Uτα,1

Figure 1. Part of the binary search tree. The pivots of sublists split by
QuickVal((U1, . . . , Un), α) for some α ∈ [0, 1] are on the path indicated. Note that
we have τǫ = τφ(α,0) = τα,0 = 1 and in this example α ≥ U1 and α < Uτα,1

so that

φ(α, 2) = 10 ∈ {0, 1}2.

The number of key comparisons required by QuickVal((U1, . . . , Un), α) is then given by the
(finite) sum

Sα,n =
∞∑

k=1

Sα,k,n.

Fill and Nakama [8, Theorem 3.2] showed (considering more general complexity measures)
that for each α ∈ [0, 1] almost surely

1

n
Sα,n → Sα :=

∞∑

k=0

Iα,k, (n → ∞).(4)

The latter convergence also holds in Lp, see Fill and Matterer [7, Proposition 6.1].
We take the point of view that such an almost sure asymptotic result may be considered a

strong law of large numbers (SLLN). The subject of the present extended abstract is to study
the fluctuations in such SLLN, sometimes called a central limit analogue. We study these
fluctuations as processes in the metric space (D[0, 1], dSK) of càdlàg functions endowed with
the Skorokhod metric; see Billingsley [2] for background on weak convergence of probability
measures on metric spaces in general and on (D[0, 1], dSK) in particular. Note that, by
definition, (Sα,n)α∈[0,1] and (Sα)α∈[0,1] have càdlàg paths almost surely. As the normalized
process of fluctuations we define

Gn := (Gα,n)α∈[0,1] :=

(
Sα,n − nSα√

n

)

α∈[0,1]

.(5)

Then we have the following result:

Theorem 1. Let Sα,n be the number of key comparisons required by QuickVal((U1, . . . , Un), α)
and (Sα)α∈[0,1] as in (4). Then for the fluctuation process Gn defined in (5) we have

Gn
d−→ G∞ in (D[0, 1], dSK) (n→ ∞),
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where G∞ is a mixture of centered Gaussian processes with random covariance function given
by

(6) Σ∞,α,β :=
J∑

k=0

∞∑

j=0

Iα,j∨k + 1{α6=β}(J + 1)
∞∑

j=J+1

(Iβ,j)− SαSβ, α, β ∈ [0, 1],

where J = J(α, β) := max{k ∈ N0 | τα,k = τβ,k} ∈ N0 ∪ {∞}.
Remark 2. In his PhD thesis, Matterer [14, Theorem 6.4] showed the convergence of the
one-dimensional marginals for the functional limit law in Theorem 1.

Remark 3. An alternative representation of the random covariance function in (6) is as follows:
With an independent random variable V uniformly distributed over [0, 1], we have

Σ∞,α,β = Cov
(
J(V, α), J(V, β)

∣∣ F∞

)
,(7)

with the σ-algebra

F∞ := σ
{
Iφ | φ ∈ {0, 1}∗

}
.(8)

Remark 4. A related functional limit law for the complexity of Radix Selection, an algorithm
to select ranks based on the bit expansions of the data, with a limiting Gaussian process with
a covariance function related to (7) can be found in [12, Theorem 1.2]. See [17, Theorem 1.1]
for another related functional limit law.

The analysis of QuickVal is usually considered an intermediate step to analyze the original
FIND algorithm. Grübel and Rösler [9] already pointed out that a version of FIND such as
stated above with C∗

n(k) denoting the number of key comparisons for finding rank k within
(U1, . . . , Un) does not lead to convergence within (D[0, 1], dSK) after the normalization α 7→
1
nC

∗
n(⌊αn⌋+1), where here and below the convention C∗

n(n+1) := C∗
n(n) is used. To overcome

this problem they propose a version that does not stop in case a pivot turns out to be the
rank to be selected by including the pivot in the list S< and proceeding until a list of size
1 is generated. Moreover, their pivots are chosen uniformly at random. The number of key
comparisons C ′

n(k) for Grübel and Rösler’s FIND-version has the property that
(
1

n
C ′
n

(
⌊αn⌋+ 1

))

α∈[0,1]

d−→ (Sα)α∈[0,1], in (D[0, 1], dSK),(9)

see [9, Theorem 4]. Without using random pivots we may also obtain right-continuous limits
by just recursively calling FIND(S≥, 0) in case the pivot turns out to be the rank sought. We
denote the number of key comparisons for this version by Cn(k), which is close to Grübel and
Rösler’s FIND-version and also satisfies (9).

The convergence in (9) could only be stated weakly (not almost surely) since Grübel und
Rösler’s FIND-version due to randomization within the algorithm does not have a natural
embedding on a probability space. Note that the formulation of the QuickVal complexity
does have such an embedding which, e.g., makes the almost sure convergence in (4) possible.
However, it is easy to see that we have the distributional equality

(10)
(
Cn
(
|{Ui ≤ α : 1 ≤ i ≤ n}|

))
α∈[0,1]

d
= (Sα,n)α∈[0,1].

This allows to naturally couple the complexities on one probability space, which we call its
natural coupling. See [7, page 807] for a related discussion of natural couplings.

To transfer Theorem 1 to FIND we need to align jumps to come up with a suitable fluctu-
ation process. The conventions Cn(0) := Cn(1) and Cn(n+ 1) := Cn(n) are used.
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Corollary 5. Let Cn(k) be the number of key comparisons required to select rank 1 ≤ k ≤ n
within a set of n data by FIND with the natural coupling (10). Let Λn : [0, 1] → [0, 1], n ∈ N,
be any (random) monotone increasing bijective function such that Λn(

k
n+1) is equal to the

element of rank k within {U1, . . . , Un}. Then we have
(
Cn(⌊t(n+ 1)⌋) − nSΛn(t)√

n

)

t∈[0,1]

d−→ G∞ in (D[0, 1], dSK),

where G∞ is the process defined in Theorem 1.

The extended abstract is organized as follows: In Section 2 we introduce a novel pertur-
bation argument which is the basis of our analysis. Section 3 contains a criterion for weak
convergence of probability measures on (D[0, 1], dSK), which is applied in Section 4 to proof
Theorem 1 and Corollary 5. In Section 5 further functional fluctuation results are stated
for the number of swaps (key exchanges) required by QuickVal (depending on the specific
algorithm used to partition S into the sublists S< and S≥) as well as functional fluctuation
results for cost measures which are based on key comparisons, where the cost of a comparison
may depend on the values of the keys.

2. Perturbation of the data

QuickVal splits an interval [Lφ, Rφ) by the first value falling into [Lφ, Rφ) denoted by
Uτφ . Obviously, this implies dependencies between the data Ui and the lengths Iφ of the

intervals [Lφ, Rφ). In the present section we construct a perturbed sequence (Ũi)i∈N to the

data (Ui)i∈N such that we gain independence of (Ũi)i∈N from the σ-algebra F∞ of the interval
lengths defined in (8). In particular, we aim that conditional on F∞ the number of data

(Ũ1, . . . , Ũn) falling into an interval [Lφ, Rφ) is binomial B(n, Iφ) distributed, see Lemma 7
below.

Every value Ui, i ∈ N, falls successively into subintervals generated by QuickVal until
becoming a pivot element. These subintervals correspond to the path between the root of the
corresponding binary search tree and the node where Ui is inserted. Let φi ∈ {0, 1}∗ denote
the node where Ui is inserted. Hence, we have τφi = i and Ui = Lφi + Iφi0.

Let (Vi)i∈N be a sequence of i.i.d. unif[0, 1] random variables being independent of (Ui)i∈N.
We define

(11) Ũi := Lφi + IφiVi.

Lemma 6. The sequence (Ũi)i∈N defined in (11) consists of i.i.d. unif[0, 1] distributed random
variables and is independent of F∞.

Proof. It suffices to show that Ũi conditional on F∞ and Ũ1, . . . , Ũi−1 is uniformly distributed
on [0, 1] for all i ∈ N. We use infinitesimal notation to denote this claim by

P

(
Ũi ∈ du

∣∣∣F∞, Ũ1, . . . , Ũi−1

)
= 1[0,1](u)du, i ∈ N.

For each i ∈ N the random variables Ũi and Ui fall into the same interval [Lφi , Rφi), hence

φ1, . . . , φi−1 are determined by Ũ1, . . . , Ũi−1. Let us additionally condition on φi, then, by
definition,

P

(
Ũi ∈ du

∣∣∣F∞, Ũ1, . . . , Ũi−1, φi

)
=

1

Iφi
1[Lφi

,Rφi
)(u)du.
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Note that φi denotes one of the i external nodes of the binary search tree with internal nodes
denoted by φ1, . . . , φi−1. We denote by Exti−1 the set of the labels of these external nodes.
Hence, conditional on F∞, φ1, . . . , φi−1 the label φi is chosen from Exti−1 with probability
given by the length of the corresponding interval, i.e., P (φi = φ | F∞, φ1, . . . , φi−1) = Iφ for
all φ ∈ Exti−1. Thus, by the law of total probability we obtain

P

(
Ũi ∈ du

∣∣∣F∞, Ũ1, . . . , Ũi−1

)
=

∑

φ∈Exti−1

Iφ
1

Iφ
1[Lφ,Rφ)(u)du = 1[0,1](u)du.

This implies the assertion. �

The Ũi are now coupled with the Ui but independent of the Iφ. To compare with the
number of key comparisons required by QuickVal((U1, . . . , Un), α) we define

S̃α,k,n :=

n∑

i=1

1[Lα,k,Rα,k)(Ũi).

Lemma 7. Conditional on Iα,k we have that S̃α,k,n has the binomial B(n, Iα,k) distribution.
Moreover, for all α ∈ [0, 1], n ∈ N and 0 ≤ k ≤ n we have

(12) Sα,k,n ≤ (S̃α,k,n − 1)+ ≤ Sα,k,n + k − 1.

Proof. The conditional distribution of S̃α,k,n follows from Lemma 6. Recall that Sα,k,n is

defined as
∑n

i=τα,k
1{Lα,k−1 ≤ Ui < Rα,k−1}. By definition, Ui and Ũi are in the interval

[Lφi , Rφi) for all i ∈ N. If Ui ∈ (Lα,k, Rα,k), then Ui appears as a pivot after the k-th pivot.

Hence, its interval [Lφi , Rφi) and thus also Ũi are contained in (Lα,k, Rα,k). The k-th pivot
Uτα,k

itself does not contribute to Sα,k,n, which implies the left inequality stated in the present
lemma.

For the right inequality, assume for some i ∈ N that the perturbed value Ũi is in (Lα,k, Rα,k),
but Ui is not. Then the corresponding interval (Lφi , Rφi) must contain (Lα,k, Rα,k), thus
making Ui a pivot that appears before the k-th pivot. Since there are only k such pivots, the
right inequality follows. �

3. On Weak Convergence in D[0, 1]

To prove the convergence in distribution in Theorem 1 within the space (D[0, 1], dSK) we
use the following Proposition 8. It can be proved by classical tools of weak convergence theory
based on a study of the modulus of continuity and the Arzelà–Ascoli theorem in form of a
general theorem of Billingsley [2, Theorem 13.2].

Proposition 8. Let X1,X2, . . . be a sequence of random variables in (D[0, 1], dSK). Suppose
that for every K ∈ N, there exist random càdlàg step functions XK

1 ,X
K
2 , . . . with all jumps

contained in {Uφ | φ ∈ {0, 1}∗, |φ| < K}. If

(i) for all r ∈ N and α1, . . . , αr ∈ [0, 1], the marginals L(Xn(α1), . . . ,Xn(αr)) converge
weakly to some distribution µα1,...,αr ,

(ii) for all ε > 0,

(13) lim
K→∞

lim sup
n→∞

P
(∥∥Xn −XK

n

∥∥
∞
> ε
)
→ 0,



ON FLUCTUATIONS OF COMPLEXITY MEASURES FOR THE FIND ALGORITHM 7

then (Xn)n∈N converges in distribution to a random variable X on (D[0, 1], dSK ), and for all
r ∈ N and α1, . . . , αr ∈ [0, 1] we have

(14) L(X(α1), . . . ,X(αr)) = µα1,...,αr .

4. Proof of Theorem 1

To split the contributions to the process Gn into costs resulting from above and below a
level K ∈ N we define

Gα,k,n :=
Sα,k,n − nIα,k√

n
(15)

as the normalized fluctuations of the contribution at level k, and set

G≤K
α,n :=

K∑

k=0

Gα,k,n, G≤K
n :=

(
G≤K
α,n

)
α∈[0,1]

, G>Kα,n :=

∞∑

k=K+1

Gα,k,n.(16)

Hence, Gα,n = G≤K
α,n +G>Kα,n . Analogously, for the perturbed values S̃k,n we define

Wα,k,n :=
S̃α,k,n − nIα,k√

n
, W≤K

α,n :=

K∑

k=0

Wα,k,n W≤K
n :=

(
W≤K
α,n

)
α∈[0,1]

.(17)

Lemma 9. For all K ∈ N we have convergence in distribution of (G≤K
n )n∈N towards a mixture

G≤K
∞ = (G≤K

α,∞)α∈[0,1] of centered Gaussian processes within ‖ · ‖∞. Conditional on F∞, the

limit G≤K
∞ is a centered Gaussian process with covariance function given, for α, β ∈ [0, 1] by

Cov
(
G≤K
α,∞, G

≤K
β,∞ | F∞

)
=

K∧J∑

k=0

K∑

j=0

Iα,j∨k +
(
1 + (K ∧ J)

) K∑

j=J+1

Iβ,j − S≤K
α S≤K

β ,(18)

where J = J(α, β) is as in Theorem 1 and S≤K
α :=

∑K
k=0 Iα,k. The stated convergence in

distribution also holds conditionally in F∞, i.e., we have almost surely that L(G≤K
n | F∞)

converges weakly towards L(G≤K
∞ | F∞).

Proof. First note that by Lemma 7 we have
∥∥G≤K

n −W≤K
n

∥∥
∞
< K2/

√
n, so it suffices to

show the lemma for W≤K
n . Conditional on F∞, the value of W≤K

α,n is given by

(19) W≤K
α,n =

1√
n

n∑

i=1

K∑

k=0

1{Lα,k ≤ Ũi < Rα,k} − (Rα,k − Lα,k),

thus the 2k different values of the process W≤K
n can be expressed as the sum of n centered,

bounded i.i.d. random vectors, scaled by 1/
√
n. By the multivariate central limit theorem,

these converge towards a multivariate, centered normal variable. As the positions of the
jumps, still conditional on F∞, are fixed, we have convergence of W≤K

n and thus also of G≤K
n

towards a Gaussian process. Define Xα,k := 1{Lα,k−1 ≤ Ũ1 < Rα,k−1}. The covariance
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function then is given by

Cov
(
G≤K
α,∞, G

≤K
β,∞ | F∞

)
= Cov

( K∑

k=0

Xα,k,
K∑

j=0

Xβ,j

∣∣∣∣ F∞

)

=

K∑

k=0

K∑

j=0

E

[
Xα,kXβ,j

∣∣∣F∞

]
− S≤K

α S≤K
β

=
K∧J∑

k=0

K∑

j=0

Iα,k∨j +
(
1 + (K ∧ J)

) K∑

j=J+1

Iβ,j − S≤K
α S≤K

β .(20)

The assertion follows. �

To see that the covariance functions in (20) converge towards the covariance function of
G∞ stated in Theorem 1 we restate a Lemma of Grübel and Rösler [9, Lemma 1] that the
maximal length of the intervals at a level is decreasing geometrically with increasing levels.

It is obtained observing that E
[∑

|φ|=k I
2
φ

]
= (2/3)k and states:

Lemma 10. There exists an a.s. finite random variable K1 such that for all k ≥ K1:

(21) max
α∈[0,1]

Iα,k ≤ k

(
2

3

)k/2
.

Lemma 10 implies that the covariance functions of G≤K
∞ from (18) converge a.s. to the

covariance function of G∞ from (6).
For the costs from levels k > K we find:

Proposition 11. For all ε, η > 0 there are constants K,N ∈ N such that for all n ≥ N

(22) P
(
‖G>Kn ‖∞ > η

)
< ε.

We postpone the proof of the latter proposition and first use Proposition 11 and Lemma 9
to show convergence of the finite-dimensional distributions, denoted fdd-convergence.

Lemma 12. We have fdd-convergence of Gn towards G∞.

Proof. For any K, we can split Gn = G≤K
n +G>Kn . By Lemma 9, we have

G≤K
n

fdd−→ G≤K
∞ (n→ ∞).

Furthermore, because the covariance functions of the G≤K
∞ converge a.s., we obtain

G≤K
∞

fdd−→ G∞ (K → ∞)

by Lévy’s continuity theorem. Hence, for all α1, . . . , αℓ ∈ [0, 1] and all t1, . . . , tℓ ∈ R we find
a sequence (Kn)n∈N in N such that

P
(
G≤Kn
α1,n < t1, . . . , G

≤Kn
αℓ ,n

< tℓ
)
−→ P (Gα1,∞ < t1, . . . , Gαℓ,∞ < tℓ) (n→ ∞).

Now, since ‖G>Kn
n ‖∞ → 0 in probability by Proposition 11 the claim of Lemma 12 follows by

Slutzky’s theorem. �

To prepare for the proof of Proposition 11, we show that the fluctuations on each level are
also at least geometrically decreasing. Recall K1 from Lemma 10.
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Lemma 13. There exists a constant a > 1 such that for all k, n ∈ N

P

(
max
α∈[0,1]

|Wα,k,n| > a−k, K1 ≤ k

)
≤ b(k) + c(k, n)

with b(k), c(k, n) ≥ 0 such that

(23)

∞∑

k=1

b(k) <∞ and

⌊(9/2) logn⌋∑

k=1

c(k, n) → 0 (n→ ∞).

For the proof of Lemma 13 we require the following Chernoff bound:

Lemma 14. Let Sn be binomial B(n, p) distributed for some p ∈ [0, 1] and n ∈ N and let
µ := E[Sn], ε ≥ 0. Then

P
(
Sn /∈

(
(1− ε)µ, (1 + ε)µ

))
≤ 2 exp

(
− ε2µ

2 + ε

)
.

Proof. Combine upper and lower bound in McDiarmid [15, Theorem 2.3]. �

Proof of Corollary 13. Fix some α ∈ [0, 1]. Conditionally on Ik,α, the costs S̃α,k,n areB(n, Ik,α)-
distributed by Lemma 6. The Chernoff bound in Lemma 14 implies

P

(
|Wα,k,n| > a−k

∣∣∣ Iα,k
)
= P

(∣∣S̃α,k,n − nIα,k
∣∣ >

√
na−k

∣∣∣ Iα,k
)

≤ 2 exp

(
− na−2k

nIα,k(2 +
√
na−k/(nIα,k))

)

= 2exp

(
−
(
2a2kIα,k + ak/

√
n
)−1

)
.(24)

For the two summands in the exponent in (24) we have the following behavior: Summand
2a2kIk,α is falling geometrically with k for sufficiently small a > 1. Summand ak/

√
n is falling

with n, but growing with k. To separate these two contributions, note that exp(x−1) ≥ 1
m!x

−m

and thus exp(−x−1) ≤ m!xm for all m ∈ N and x ≥ 0. Choosing m = 7, we obtain

P

(
|Wα,k,n| > a−k

∣∣∣ Iα,k
)
≤ 2 · 7!

(
2a2kIα,k + ak/

√
n
)7

≤ 2147!a14kI7α,k + 277!a7kn−7/2

by convexity of x 7→ x7. Note that the 2k intervals at level k have lengths Iα,k summing to 1.
Hence,

P

(
max
α∈[0,1]

|Wα,k,n| > a−k
∣∣∣ Iα,k

)
≤ 2147!a14k max

α∈[0,1]
I6α,k + 277!(2a7)kn−7/2.

When furthermore K1 ≤ k, by Lemma 10 the length Iα,k is bounded by k 2
3

k/2
, hence

P

(
max
α∈[0,1]

|Wα,k,n| > a−k, K1 ≤ k

)
≤ 2147!ka14k

(
2

3

)3k

+ 277!(2a7)kn−7/2.

Define the first summand on the right hand side of the latter inequality by b(k) and the
second summand by c(k, n). For all 1 < a < (3/2)3/14 the b(k) form a convergent series. To
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also show the second statement in (23) note that

⌊(9/2) logn⌋∑

k=1

c(k, n) = O
((

2a7
)(9/2) logn

n−7/2
)
= O

(
n(9/2) log 2+(9/2)·7 log a−7/2

)
.

The latter O-term converges to 0 for (63/2) log a < 7/2− (9/2) log 2 ≈ 0.381 . . . , thus we may
choose a as required. �

We are now prepared for the proof of Proposition 11.

Proof of Proposition 11. Let ε, η > 0. To K1 from Lemma 10 and a and b(k) from Lemma
13 we choose K sufficiently large such that

P(K1 > K) ≤ ε

4
,

∞∑

k=K

a−k ≤ η

4
and

∞∑

k=K

b(k) ≤ ε

4
.(25)

Let Hn be the maximum amount of steps needed by QuickVal((U1, . . . , Un), α) for any α.
Thus, Hn is also the height of the binary search tree built from U1, . . . , Un. Devroye [4]
showed that the height has expectation E[Hn] = γ log n + o(log n) with γ = 4.311 . . . Reed
[16] further showed that Var(Hn) = O(1). Hence, we can choose N sufficiently large such
that

P (Hn > ⌊(9/2) log n⌋) < ε

4
,

⌊(9/2) logn⌋∑

k=1

c(k, n) ≤ ε

4
, and

((9/2) log n)2√
n

≤ η

4
(26)

for all n ≥ N . Subsequently we use the decomposition

G>Kα,n =

⌊(9/2) logn⌋∑

k=K+1

Sα,k,n − nIα,k√
n

+

∞∑

⌊(9/2) logn⌋+1

Sα,k,n − nIα,k√
n

=: Γn +G>⌊(9/2) logn⌋
α,n

and consider the event

An := {K1 > K} ∪ {Hn > ⌊(9/2) log n⌋}.

We have P(An) < ε/2 for all n ≥ N . Note that on Acn (the complement of An) we have
Sα,k,n = 0 for all k > ⌊(9/2) log n⌋ and also the bound on Iα,k from Lemma 10 applies, hence

∣∣∣G>⌊(9/2) logn⌋
α,n

∣∣∣ ≤
∞∑

⌊(9/2) logn⌋+1

√
nIα,k ≤

∞∑

⌊(9/2) logn⌋+1

√
nk

(
2

3

)k/2

= O
(
n1/2−(9/4) log(3/2) log n

)
= o(1)

since (9/4) log(3/2) = 0.912 . . . Hence, we can enlargeN so that on Acn we have
∣∣G>⌊(9/2) logn⌋

α,n

∣∣ <
η/2 for all n ≥ N . This implies the bound

P
(
|G>Kα,n | > η

)
≤ P(An) + P

({
|G>Kα,n | > η

}
∩Acn

)

≤ ε

2
+ P

({
|Γn| >

η

2

}
∩Acn

)
+ P

({∣∣G>⌊(9/2) logn⌋
α,n

∣∣ > η

2

}
∩Acn

)
.(27)
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Note that the third summand in (27) is 0. Hence, it remains to bound the second summand
in (27). To this end note that

|Γn| ≤ sup
α∈[0,1]

⌊(9/2) logn⌋∑

k=K+1

(∣∣∣∣∣
S̃α,k,n − nIα,k√

n

∣∣∣∣∣+
∣∣∣∣∣
Sα,k,n − S̃α,k,n√

n

∣∣∣∣∣

)

≤
(⌊(9/2) logn⌋∑

k=K+1

max
α∈[0,1]

|Wα,k,n|
)

+
⌊(9/2) log n⌋2√

n
,(28)

where Lemma 7 is used. The third relation in (26) assures that the second term in (28) is
smaller than η/4. In view of the second relation in (25) and (28), we have

{
|Γn| >

η

2

}
∩Acn ⊂

⌊(9/2) logn⌋⋃

k=K

{
max
α∈[0,1]

|Wα,k,n| > a−k, K1 ≤ k

}
.

Thus, Lemma 13 together with (25) and (26) imply that the second summand in (27) is
bounded by ε/2. This implies the assertion. �

Proof of Theorem 1. We apply Lemma 8 to Gn and G≤K
n . The first condition, fdd conver-

gence, is Lemma 12, the second condition is Proposition 11. �

We now transfer the fluctuation result for QuickVal in Theorem 1 to the original Find
process in Corollary 5.

Proof of Corollary 5. Let F̃n be the inverse of Λn in the statement of Corollary 5. By def-
inition of Λn, the value of the element U(k) of rank k within U1, . . . , Un is given by k

n+1 ,
so

(29)
⌊
(n+ 1)F̃n(α)

⌋
=
∣∣{Ui ≤ α | 1 ≤ i ≤ n}

∣∣

for all α ∈ [0, 1). Thus, Cn
(⌊
(n+ 1)F̃n(α)

⌋)
= Sα,n a.s. for all α ∈ [0, 1], see (10). For α = 1

note that F̃n(α) = 1 and Cn(n + 1) = Cn(n) by definition. The Skorokhod distance dSK is
then bounded by

dSK

(
Gn,

(
Cn(⌊t(n + 1)⌋) − nSΛn(t)√

n

)

t∈[0,1]

)
= dSK

(
Gn,

(
SΛn(t),n − nSΛn(t)√

n

)

t∈[0,1]

)

= dSK
(
Gn, (GΛn(t),n)t∈[0,1]

)

≤ ‖F̃n − id‖∞.

By (29), F̃n is close to the empirical distribution function and thus converges a.s. uniformly to
the identity id by the Glivenko–Cantelli theorem. The statement of Corollary 5 then follows
from Slutzky’s theorem. �

5. Further cost measures

In this section we sketch results analogous to Theorem 1 for other cost measures than the
number of key comparisons. We consider the number of swaps required by QuickVal which
however depends on the implementation of the procedure to partition the input (U1, . . . , Un)
into the sublists S< and S≥. We consider two such procedures, the one originally proposed
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by Hoare [10] and one that is attributed to Lomuto, see [1, 3, 13]. Our results are stated in
Subsection 5.1.

As a further cost measure we consider the model where the costs to compare two keys may
depend on their values, e.g., the number of bit comparisons required to compare them when
they are given by their binary expansions. The total cost for all key comparisons required by
QuickVal((U1, . . . , Un), α) or FIND((U1, . . . , Un), k) is no longer determined by the fact that
the ranks of (U1, . . . , Un) form an uniformly random permutation. Here, the distribution of
the Ui matters. We only consider the uniform distribution as in the previous sections and
hope to report on other distributions in the full paper version of this extended abstract. Our
results are stated in Subsection 5.2. A probabilistic analysis for the number of bit comparisons
of the related Quicksort algorithms was given in [6, 5].

5.1. Number of swaps. Usually, QuickSelect is implemented in-place, meaning that it only
requires the memory for the list S of values and a bounded amount of additional memory. This
is achieved by swapping values within S so that the elements of S< and S≥ are contained in
contiguous parts of the list. Such a procedure is called partition. There are various procedures
of partition.

The original procedure by Hoare [10] searches the list S from both ends at once: It repeat-
edly finds the index i = min{2 ≤ i ≤ n | Ui > U1} of the leftmost element bigger than the
pivot and the index j := max{2 ≤ j ≤ n | Uj < U1} of the rightmost element smaller than
the pivot. If i < j, it swaps Ui and Uj . Else the algorithm terminates.

A simpler, but less efficient implementation is the so-called Lomuto partition scheme [1, 3,
13] that only searches from one end of S. It keeps track of the amount i of elements at the
start of the list it has already swapped. In every step, it finds the index j := max{2 ≤ j ≤
n | Uj < U1} of the rightmost element smaller than the pivot. If i+ 1 < j, it swaps Ui+1 and
Uj and increases i by one. Otherwise the algorithm terminates.

Both partition schemes only compare elements to the pivot, so the model of randomness
is preserved within the sublists S< and S≥. However, their original order is not preserved,
so QuickSelect run on U1, . . . , Un will usually not select the same pivots as QuickSelect on
U1, . . . , Un+1. For convenience, we assume that the pivot to split a sublist S′ of S is the
element of S′ that came first in the original list S. We call this choice of the pivots a suitable
embedding.

5.1.1. Hoare’s partition. For Hoare’s partition, via a hypergeometric distribution the expected
number of swaps in step k given F∞ is approximately nIα,k+1(Iα − Iα,k)/Iα,k, which leads to
the limit process L = (Lα)α∈[0,1] given by

Lα :=
∞∑

k=0

Iα,k+1(Iα − Iα,k)

Iα,k
, α ∈ [0, 1].

It is now possible to study the fluctuations by their contributions from the individual levels
and combine them as for the number of key comparisons above. Since we are still in the range
of the central limit theorem we again obtain a mixture of centered Gaussian processes. To
be explicit, first denote by Zφ the limit of the Gα,k,n as n → ∞ where φ = φ(α, k) ∈ {0, 1}k .
Further, denote by {Yφ |φ ∈ {0, 1}∗} a set of i.i.d. N (0, 1) random variables being independent
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of {Zφ |φ ∈ {0, 1}∗} and of F∞. Then the limiting process Gswap = (Gswap
α )α∈[0,1] is given by

(30) Gswap
α :=

∑

φ∈{φ(k,α) | k∈N0}

Yφ
Iφ0Iφ1

I
3/2
φ

+ Zφ0
Iφ1
Iφ

+ Zφ1
Iφ0
Iφ

− Zφ
Iφ0Iφ1
Iφ

, α ∈ [0, 1].

Then we have the following result for key exchanges corresponding to Theorem 1.

Theorem 15. Let Kα,n be the number of key exchanges required by QuickVal((U1, . . . , Un), α)
with Hoare’s partition algorithm in a suitable embedding. Then, as n→ ∞, we have

(
Kα,n − nLα√

n

)

α∈[0,1]

d−→ Gswap in (D[0, 1], dSK).

5.1.2. Lomuto’s partition. The Lomuto partition is simpler to implement and much easier to
analyze. The Lomuto partition swaps every element smaller than the pivot, so the amount
of swaps at some path φ ∈ {0, 1}∗ is given by Sφ0 +1. With the Zφ introduced in Subsection
5.1.1 we find that (Zφ)φ∈{0,1}∗ is a mixture of centered Gaussian processes with conditional
covariance function given by

Cov(Zφ, Zψ | F∞) = Iφ∨ψ − IφIψ, φ, ψ ∈ {0, 1}∗,
where Iφ∨ψ is the length of the interval [Lφ, Rφ) ∩ [Lψ, Rψ), thus Iφ∨ψ is only nonzero if one

of ψ and φ is a prefix of the other. Then the limiting process GLo = (GLo
α )α∈[0,1] is given by

GLo
α =

∞∑

k=0

Zφ(α,k)0, α ∈ [0, 1].

We can directly apply Lemma 13 and our proof for the number of key comparisons can be
straightforwardly transferred.

Theorem 16. Let KLo
α,n be the number of key exchanges required by QuickVal((U1, . . . , Un), α)

with Lomuto’s partition procedure in a suitable embedding. Then, as n→ ∞, we have
(
KLo
α,n − n

∑∞
k=0 Iφ(α,k)0√
n

)

α∈[0,1]

d−→ GLo in (D[0, 1], dSK).

5.2. Number of bit comparisons. We now consider the model where the cost to compare
two keys depends on their values. These costs are described by a measurable cost function
β : [0, 1]2 → [0,∞), and we require that they have a polynomial tail, that is: There are
constants c, ε > 0 such that for all u ∈ [0, 1], x ∈ N and for V ∼ unif[0, 1]

P (β(u, V ) ≥ x) ≤ cx−1/ε.

This condition is called (c, ε)-tameness, see Matterer [14], and β is called to be ε-tame if it
is (c, ε)-tame for some c > 0. Note that, e.g., β counting the number of bit comparisons is
ε-tame for all ε > 0. The costs of QuickVal((U1, . . . , Un), α) in this model are given by

Sβα,n :=
∞∑

k=0

∑

τα,k<i≤n

1[Lα,k,Rα,k)(Ui)β(Uτα,k
, Ui)

and the limit is, with V ∼ unif[0, 1] being independent of the U1, . . . , Un, given as

Sβα,∞ :=
∞∑

k=0

E

[
1[Lα,k,Rα,k)(V )β(Uτα,k

, V )
∣∣∣F∞

]
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Matterer [14, Theorem 6.4 and Theorem 6.14] shows for ε < 1
2 that for fixed α ∈ [0, 1] the

resulting residual

Gβα,n :=
Sβα,n − nSβα,∞√

n

converges to a mixed centered Gaussian random variable Gβα,∞ in distribution and with all
moments. It is possible to combine them to a mixture of centered Gaussian processes

Gβ∞ = (Gβα,∞)α∈[0,1],(31)

defined by the conditional covariance functions given, withXβ
α,k := 1[Lα,k,Rα,k)(V )·β(Uτα,k,n

, V ),
by

(32) Cov
(
Gβα,∞, G

β
γ,∞ | F∞

)
= Cov

(
∞∑

k=0

Xβ
α,k,

∞∑

k=0

Xβ
γ,k

∣∣∣F∞

)
, α, γ ∈ [0, 1].

It can be shown that the latter expression is a.s. well-defined. We have the following result
corresponding to Theorem 1.

Theorem 17. Let β be an ε-tame cost function with ε < 1
4 . Then we have

(
Sβα,n − nSβα,∞√

n

)

α∈[0,1]

d−→ Gβ∞ in (D[0, 1], dSK),

where Gβ∞ is the mixture of centered Gaussian processes defined in (31).
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