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Abstract We propose and analyze an algorithm to approximate distribution func-
tions and densities of perpetuities. Our algorithm refines an earlier approach based
on iterating discretized versions of the fixed point equation that defines the per-
petuity. We significantly reduce the complexity of the earlier algorithm. Also one
particular perpetuity arising in the analysis of the selection algorithm Quickselect
is studied in more detail. Our approach works well for distribution functions. For
densities we have weaker error bounds although computer experiments indicate that
densities can also be approximated well.
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1 Introduction

A perpetuity is a random variable X in R that satisfies the stochastic fixed-point
equation

X d= AX + b , (1)
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where the symbol d= denotes that left and right hand side in Eq. 1 are identically
distributed and where (A, b) is a vector of random variables being independent of
X, whereas dependence between A and b is allowed.

Perpetuities arise in various different contexts: In discrete mathematics, perpetu-
ities come up as the limit distributions of certain count statistics of decomposable
combinatorial structures such as random permutations or random integers. In these
areas, perpetuities often arise via relationships to the GEM and Poisson–Dirichlet
distributions; see Arratia et al. (2003) for perpetuities, GEM and Poisson–Dirichlet
distribution in the context of combinatorial structures; see Donnelly and Grimmett
(1993) for occurrences in probabilistic number theory. In the probabilistic analysis
of algorithms, perpetuities arise as limit distributions of certain cost measures of
recursive algorithms such as the selection algorithm Quickselect, see e.g. Hwang
and Tsai (2002) or Mahmoud et al. (1995). In insurance and financial mathematics,
a perpetuity represents the value of a commitment to make regular payments,
where b represents the payment and A a discount factor both being subject to
random fluctuation; see, e.g. Goldie and Maller (2000) or Embrechts et al. (1997,
Section 8.4).

As perpetuities are given implicitly by their fixed-point characterization (1),
properties of their distributions are not directly amenable. Nevertheless, various
questions about perpetuities have already been settled. Necessary and sufficient
conditions on (A, b) for the fixed-point equation (1) to uniquely determine a
probability distribution are discussed in Vervaat (1979) and Goldie and Maller
(2000). The types of distributions possible for perpetuities have been identified in
Alsmeyer et al. (2007). Tail behavior of perpetuities has been studied for certain
cases in Goldie and Grübel (1996).

In the present article, we are interested in the central region of the distributions.
The aim is to algorithmically approximate perpetuities, in particular their distribution
functions and their Lebesgue densities (if they exist).

For this, we apply and refine a method proposed in Devroye and Neininger (2002)
that was originally designed for random variables X satisfying distributional fixed-
point equations of the form

X d=
K∑

r=1

Ar X(r) + b , (2)

where X(1), . . . , X(K), (A1, . . . , AK, b) are independent with X(r) being identically
distributed as X for r = 1, . . . , K and random coefficients A1, . . . , AK, b , and K ≥ 2.

The case of perpetuities, i.e., K = 1, structurally differs from the cases K ≥ 2:
The presence of more than one independent copy of X on the right hand side in
Eq. 2 often has a smoothing effect so that under mild additional assumptions on
(A1, . . . , AK, b) the existence of smooth Lebesgue densities of X follows, see Fill
and Janson (2000) and Devroye and Neininger (2002). On the other hand, the case
K = 1 often leads to distributions L(X) that have no smooth Lebesgue density; an
example is discussed in Section 5.

Our basic approach to approximate perpetuities is as follows: A random variable
X satisfies the distributional identity (1) if and only if its distribution is a fixed-point
of the map T on the space M of probability distributions, given by

T : M → M, μ �→ L(AY + b), (3)
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where Y is independent of (A, b), and L(Y) = μ. Under the conditions ‖A‖p < 1
and ‖b‖p < ∞ for some p ≥ 1, which we assume throughout the paper, this map
is a contraction on certain complete metric subspaces of M. Hence, L(X) can be
obtained as limit of iterations of T, starting with some distribution μ0.

However, it is not generally possible to algorithmically compute the iterations of
T exactly. We therefore use discrete approximations (A(n), b (n)) of (A, b), which
become more accurate for increasing n, to approximate T by a mapping T̃(n),
defined by

T̃(n) : M → M, μ �→ L
(

A(n)Y + b (n)
)
,

where again Y is independent of (A(n), b (n)) and L(Y) = μ.
To allow for an efficient computation of the approximation, we impose a further

discretisation step 〈·〉n, introduced in Section 2, defining

T(n) : M → M, μ �→ L
(〈

A(n)Y + b (n)
〉
n

)
,

where Y is independent of (A(n), b (n)) and L(Y) = μ.
In Section 2, we give conditions for T(n) ◦ T(n−1) ◦ · · · ◦ T(1)(μ0) to converge to the

perpetuity given as the solution of Eq. 1. To this aim, we derive a rate of convergence
in the minimal Lp metric �p, defined on the space Mp of probability measures on R

with finite absolute pth moment by

�p(ν, μ) := inf
{∥∥V − W

∥∥
p : L(V) = ν,L(W) = μ

}
, for ν, μ ∈ Mp, (4)

where ‖·‖p denotes the Lp-norm of random variables. To get an explicit error bound
for the distribution function, we then convert this into a rate of convergence in the
Kolmogorov metric �, defined by

�(ν, μ) := sup
x∈R

∣∣Fν(x) − Fμ(x)
∣∣ ,

where Fν, Fμ denote the distribution functions of ν, μ ∈ Mp. This implies explicit
rates of convergence for distribution function and density, depending on the corre-
sponding moduli of continuity of the fixed-point.

For these moduli of continuity we find global bounds for perpetuities with b ≡ 1
in Section 4. For cases with random b , we have to derive these moduli of continuity
individually. One example, connected to the selection algorithm Quickselect, is
worked out in detail in Section 5.

We analyze the complexity of our approach in Section 3. As a measure for the
complexity of the approximations for distribution function and density, we use the
number of steps needed to obtain an approximation that has distance, in supremum
norm, of at most 1/n to the true function. Although we generally follow the approach
in Devroye and Neininger (2002), we can improve the complexity significantly by
using different discretisations. For the approximation of the distribution function to
an accuracy of 1/n in a typical case, we obtain a complexity of O(n1+ε) for any ε > 0.
In comparison, the algorithm described in Devroye and Neininger (2002), which
originally was designed for fixed-point equations of type (2) with K ≥ 2, would lead
to a complexity of O(n4+ε), if applied to our cases. For the approximation of the
density to an accuracy of 1/n, we obtain a complexity of O(n1+1/α+ε) for any ε > 0 in
the case of α-Hölder continuous densities, cf. Corollary 3.2.

An extended abstract of this article appeared in Knape and Neininger (2007).
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2 Discrete Approximation and Convergence

Recall that our basic assumption in Eq. 1 is that ‖A‖p < 1 and ‖b‖p < ∞ for some
p ≥ 1. To obtain an algorithmically computable approximation of the solution of
the fixed-point equation (1), we use an approximation of the sequence defined as
follows: We replace (A, b) by a sequence of independent discrete approximations
(A(n), b (n)), converging to (A, b) in pth mean for n → ∞. To reduce the complexity,
we introduce a further discretisation step 〈·〉n, which reduces the number of values
attained by Xn:

X0 := 〈EX
〉
0, X̃n := A(n) Xn−1 + b (n), Xn := 〈X̃n

〉
n, n ≥ 1. (5)

We assume that the discretisations A(n), b (n) and 〈·〉n satisfy
∥∥A(n) − A

∥∥
p ≤ RA(n),

∥∥b (n) − b
∥∥

p ≤ Rb (n),
∥∥〈X̃n

〉
n − X̃n

∥∥
p

≤ RX(n), (6)

for some error functions RA, Rb and RX , which we specify later.
Furthermore, we assume that there exists some ξ p < 1, such that for all n ≥ 1,

∥∥A(n)
∥∥

p ≤ ξ p, (7)

which in applications is easy to obtain, since ‖A‖p < 1.
By arguments similar to those used in Fill and Janson (2002) and Devroye and

Neininger (2002) we obtain the following convergence rates for the approximations
Xn to converge to the corresponding characteristics of the fixed-point X. We use the
shorthand notation �p(X, Y) := �p(L(X),L(Y)).

Lemma 2.1 Let (Xn)n∈N0
be defined by Eq. 5 and ξ p as in Eq. 7. Then

�p(Xn, X) ≤ ξ n
p ‖X − X0‖p +

n−1∑

i=0

ξ i
p R(n − i), (8)

where R(n) := RX(n) + RA(n) ‖X‖p + Rb (n) for the error functions in Eq. 6.

Proof We have

�p(Xn, X) ≤ �p(Xn, X̃n) + �p(X̃n, X)

≤ ∥∥〈X̃n
〉
n − X̃n

∥∥
p
+ �p(X̃n, X). (9)

The first summand is bounded by Eq. 6 and for the second summand we have

�p(X̃n, X) ≤ ∥∥X̃n − X
∥∥

p = ∥∥A(n) Xn−1 + b (n) − AX − b
∥∥

p

≤ ∥∥A(n) Xn−1 − AX
∥∥

p + ∥∥b (n) − b
∥∥

p

= ∥∥A(n)(Xn−1 − X) − (A − A(n))X
∥∥

p + ∥∥b (n) − b
∥∥

p

≤ ∥∥A(n)
∥∥

p ‖Xn−1 − X‖p + ∥∥A − A(n)
∥∥

p ‖X‖p + ∥∥b (n) − b
∥∥

p ,
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where in the last step we use that A(n) and (Xn−1 − X) as well as (A − A(n)) and X
are independent by assumption.

Now we use that the infimum in the definition of �p in Eq. 4 is attained and
assume additionally, that Xn−1 and X are chosen with ‖Xn−1 − X‖p = �p(Xn−1, X).
Combining this with Eq. 9 and using the bounds given in Eqs. 6 and 7, we obtain

�p(Xn, X) ≤ RX(n) + ξ p �p(Xn−1, X) + RA(n) ‖X‖p + Rb (n),

and the claim then follows by induction. �

To make these estimates explicit we have to specify bounds for RA(n), Rb (n), and
RX(n). We do so in two different ways, one representing a polynomial discretisation
of the corresponding random variables and one representing an exponential discreti-
sation. Better asymptotic results are obtained by the latter one.

Corollary 2.2 Let Xn, n ∈ N0 be defined by Eq. 5 and ξ p as in Eq. 7, and assume

RA(n) ≤ CA
1

nr
, Rb (n) ≤ Cb

1

nr
, RX(n) ≤ CX

1

nr
,

for some r ≥ 1. Then, we have

�p(Xn, X) ≤ Cr
1

nr
,

where

Cr := rr ‖X − X0‖p(
e log

(
1/ξ p

))r + r! (CX + Cb + CA ‖X‖p

)
(
1 − ξ p

)r+1 . (10)

Proof Using Lemma 2.1 we get

�p(Xn, X) ≤ ξ n
p ‖X − X0‖p + (CX + CA ‖X‖p + Cb )

n−1∑

i=0

ξ i
p

(n − i)r . (11)

For the first summand, we use that the function x �→ xrξ x
p has its maximum at x =

r/ log(1/ξ p).
To see that the second summand is of order n−r, note that 1/(n − i) ≤ (i + 1)/n

for all n ≥ 1 and 0 ≤ i ≤ n − 1. This implies that for ξ p < 1,

n−1∑

i=0

ξ i
p

(n − i)r ≤ 1

nr

n−1∑

i=0

(i + 1)r ξ i
p

≤ 1

nr

∞∑

i=0

(i + r)(i + r − 1) · · · (i + 1)ξ i
p

= r!
(
1 − ξp

)r+1

1

nr
,

where the last equality is obtained by differentiating the geometric series r times. �
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Remark 2.3 In Corollary 2.2, we are merely interested in the order of magnitude of
�p(Xn, X) without a sharp estimate of the constant Cr. When evaluating the error in
an explicit example, we can evaluate Eq. 11 directly to obtain sharper estimates.

Corollary 2.4 Let Xn, n ∈ N0 be defined by Eq. 5 and ξ p as in Eq. 7, and assume

RA(n) ≤ CA
1

γ n
, Rb (n) ≤ Cb

1

γ n
, RX(n) ≤ CX

1

γ n
,

for some 1 < γ < 1/ξ p. Then, we have

�p(Xn, X) ≤ Cγ

1

γ n
,

where

Cγ := ‖X − X0‖p +
(
CX + Cb + CA ‖X‖p

)

1 − ξ pγ
. (12)

Proof Using Lemma 2.1 we get

�p(Xn, X) ≤ ξ n
p ‖X − X0‖p + (CX + CA ‖X‖p + Cb )γ −n

n−1∑

i=0

ξ i
pγ

i, (13)

and the assumption on γ implies that both summands are O(γ −n) with the constant
given in the lemma. �

Lemma 2.5 Let Xn and Cr be as in Corollary 2.2 and X have a bounded density fX.
Then, the distance in the Kolmogorov metric can be bounded by

�(Xn, X) ≤ (Cr (p + 1)1/p ‖ fX‖∞
)p/(p+1)

n−rp/(p+1). (14)

Similarly, for Xn and Cγ as in Corollary 2.4, we have

�(Xn, X) ≤ (Cr (p + 1)1/p ‖ fX‖∞
)p/(p+1)

γ pn/(p+1). (15)

Proof We use Lemma 5.1 in Fill and Janson (2002), which states, that for X with
bounded density fX and any Y,

�(Y, X) ≤ ((p + 1)1/p ‖ fX‖∞ �p(Y, X)
)p/(p+1)

for p ≥ 1.

Using Corollaries 2.2 and 2.4 respectively, we get the stated result. �
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Remark 2.6 In some cases, we can give a similar bound, although the density of X is
not bounded or no explicit bound is known. Instead, it is sufficient to have a bound
for the modulus of continuity of the distribution function FX of X, cf. Knape (2006).

To approximate the density of the fixed-point, we define

fn(x) = Fn(x + δn) − Fn(x − δn)

2δn
, (16)

where Fn is the distribution function of Xn. For this approximation we can give a
rate of convergence, depending on the modulus of continuity of the density of the
fixed-point, which is defined by


 fX (δ) := sup
u,v∈R

|u−v|≤δ

∣∣ fX(u) − fX(v)
∣∣ , δ ≥ 0.

Lemma 2.7 Let X have a density fX and let Xn, n ∈ N0 be defined by Eq. 5. Then, for
fn defined by (16) and all δn > 0,

∥∥ fn − fX
∥∥∞ ≤ 1

δn
�(Xn, X) + 
 fX (δn) .

Proof For any x, we have

∣∣ fn(x) − fX(x)
∣∣ ≤

∣∣∣∣
Fn(x + δn) − Fn(x − δn)

2δn
− F(x + δn) − F(x − δn)

2δn

∣∣∣∣+

+
∣∣∣∣

F(x + δn) − F(x − δn)

2δn
− fX(x)

∣∣∣∣

≤ 1

δn
�(Xn, X) + 1

2δn

∫ δn

−δn

∣∣ fX(x + y) − fX(x)
∣∣dy

≤ 1

δn
�(Xn, X) + 1

δn

∫ δn

0

 fX(y) dy.

The assertion follows since 
 fX is monotonically increasing. �

Corollary 2.8 Let X have a bounded density fX, which is Hölder continuous with
exponent α ∈ (0, 1]. For polynomial discretisation Xn and Cr as in Corollary 2.2 and
fn defined by Eq. 16 with

δn := L n−rp/((α+1)(p+1))

with an L > 0, we have

‖ fn − fX‖∞ ≤
((

Cr (p + 1)1/p ‖ fX‖∞
)p/(p+1)

/L + c Lα
)

n−αrp/((α+1)(p+1)).
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For exponential discretisation Xn and Cγ as in Corollary 2.4 and fn defined by
Eq. 16 with

δn := L γ −pn/((α+1)(p+1)),

with an L > 0, we obtain

‖ fn − fX‖∞ ≤
((

Cγ (p + 1)1/p ‖ fX‖∞
)p/(p+1)

/L + c Lα
)

γ αpn/((α+1)(p+1)).

Remark 2.9 If X is bounded and bounds for the density fX and its modulus of
continuity are known explicitly, the last result is strong enough to construct a perfect
simulation algorithm based on von Neumann’s rejection method. Corollary 2.8 can
be turned into such an algorithm as done in Devroye (2001) for the case of infinitely
divisible perpetuities with approximation of densities by Fourier inversion, Devroye
et al. (2000) for the case of the Quicksort limit distribution and Devroye and
Neininger (2002) for more general fixed-point equations of type (2) .

3 Algorithm and Complexity

In this section, we will give an algorithm for an approximation satisfying the assump-
tions in the last section for many important cases. We assume that the distributions
of A and b are given by Skorohod representations, i.e. by measurable functions
ϕ,ψ : [0, 1]→R, such that

A = ϕ(U) and b = ψ(U), (17)

U being uniformly distributed on [0, 1]. Furthermore, we assume that ‖ϕ‖∞ ≤ 1 and
that both functions are Lipschitz continuous and can be evaluated in constant time.
Now we define the discretisation 〈·〉n by

〈Y〉n := �s(n) Y�/s(n), (18)

where s(n) can be either polynomial, i.e. s(n) = nr or exponential, s(n) = γ n. Defining

A(n) := ϕ(〈U〉n) and

b (n) := ψ(〈U〉n) ,

the conditions on ϕ and ψ ensure that Corollary 2.2 and 2.4 can be applied.
We keep the distribution of Xn in an array An, where

An[k] := P
[
Xn = k/s(n)

]

for k ∈ Z. Note however, that as A and b are bounded, An[k] = 0 at least for |k| >

s(n)Qn, where Qn can be computed recursively as Qn = �‖A‖∞ Qn−1 + ‖b‖∞� and
Q0 = �‖X0‖∞�= �EX�.
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For simplicity we assume that s(0) = s(1) = 1 and that s(n) ∈ N for all n. The core
of the implementation is the following update procedure:

procedure UPDATE(An−1,An)

for i ← 0 to s(n)−1 do
for j ← − s(n − 1) Qn−1 to s(n − 1) Qn−1 do

u ← i
s(n)

k ←
⌊

s(n)

(
ϕ(u)

j
s(n − 1)

+ ψ(u)

)⌋

An[k] ← An[k] + 1

s(n)
An−1[ j]

end for
end for

end procedure

Furthermore, we use a procedure initialize(An, n), which creates An as vector
with 2s(n)Qn components with An[k] = 0 for −s(n)Qn ≤ k ≤ s(n)Qn.

The whole algorithm then looks like this:

initialize (A0, 0)

A0

[ ⌊
s(0) EX

⌋]
← 1 (19)

for n ← 1 to N do
initialize(An, n)
update(An−1,An)

end for
return AN

Note, that Eq. 19 determines that we start the approximation with X0 as defined
in Eq. 5.

The complete code for polynomial discretisation for the example in Section 5,
implemented in C++, can be found in Knape (2006).

To approximate the density as in Eq. 16 with δN = d/s(N) for some d ∈ N, we
compute a new array DN by setting

DN[k] = s(N)

2d

k+d∑

j=k−d+1

AN[ j].

To measure the complexity of our algorithm, we estimate the number of steps
needed to approximate the distribution function and the density up to an accuracy of
1/n. For the case that X has a bounded density fX which is Hölder continuous, we
give asymptotic bounds for polynomial as well as for exponential discretisation. We
assume the general condition (17).
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Lemma 3.1 Assume that X has a bounded density fX, which is Hölder continu-
ous with exponent α ∈ (0, 1]. Using polynomial discretisation with exponent r, cf.
Corollary 2.2, we can calculate for any n ∈ N approximations F̂, f̂ of the distribution
function F and the density f of X with

∥∥∥F̂ − F
∥∥∥∞

≤ 1

n
,

∥∥∥ f̂ − f
∥∥∥∞

≤ 1

n

in time TF(n) and Tf (n) respectively with

TF(n) = O
(
n(2+2/r)(p+1)/p) and T f (n) = O

(
n2(1+1/α)(r+1)(p+1)/(rp)

)
.

Using exponential discretisation with parameter γ as in Corollary 2.4, approxima-
tion to the same accuracy takes time

T ′
F(n) = O

(
n(p+1)/p log n

)
and T ′

f (n) = O
(
n(1+1/α)(p+1)/p log n

)

for the distribution function and the density of X respectively.

Proof In one execution of update(Ak−1,Ak), the outer loop is executed s(k) times.
The assumptions on A and b ensure that Qk = O(k), so we have O(k s(k)) runs of
the inner loop and the whole procedure takes time O

(
k s(k)2

)
. Hence, for any N ∈ N,

finding AN costs time

O

(
N∑

k=1

k s(k)2

)
= O

(
N2 s(N)2) . (20)

For discretisations with s(n) = nr we get a running time of O(N2r+2) to find AN ,
and Eq. 14 in Lemma 2.5 ensures that for the corresponding distribution function FN

of XN ,

‖FN − F‖∞ ≤ CN−rp/(p+1).

Setting N = (Cn)(p+1)/(rp) and F̂ := FN , we get an approximation of the stated
accuracy in time

TF(n) = O(N2r+2) = O(n(2+2/r)(p+1)/p).

For the density of X we use Corollary 2.8 and N′ = (C′n
)(α+1)(p+1)/(αrp) to obtain the

stated bound.
When using exponential discretisation, s(n) = γ n, we need time O(N2γ N) to find

AN . Using the corresponding results in Lemma 2.5 and Corollary 2.8 ensures the
stated running times. �

Corollary 3.2 Assume Eq. 17 and that X has a bounded density fX, which is Hölder
continuous with exponent α ∈ (0, 1]. Then, using exponential discretisation as in
Corollary 2.4, approximation to an accuracy of 1/n takes time O(n1+ε) for the
distribution function and time O(n1+1/α+ε) for the density of X for all ε > 0.

Proof Note that ‖ϕ‖∞ ≤ 1 and ‖A‖p < 1 for some p ≥ 1 implies that ‖A‖p < 1 for
all p ≥ 1. Thus, in Lemma 3.1, p can be chosen arbitrarily large. �
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4 A Simple Class of Perpetuities

In order to make the bounds of Section 2 explicit in applications, we need to bound
the absolute value and modulus of continuity of the density of the fixed-point. For
a simple class of fixed-point equations, we give universal bounds in this section. For
more complicated cases, bounds have to be derived individually, which we work out
for one example in Section 5.

For fixed-point equations of the form

X d= AX + 1 with A ≥ 0, (21)

where A and X are independent, we can bound the density and modulus of
continuity of X using the corresponding values of A.

Lemma 4.1 Let X satisfy fixed-point equation (21) and A have a density fA. Then X
has a density fX satisfying

fX(u) =
∫ ∞

1

1

x
fA

(
u − 1

x

)
fX(x)dx, for u ≥ 1, (22)

and fX(u) = 0 otherwise.

Proof From the fixed-point equation we can see that X ≥ 1 almost surely. Now let
PX be the distribution of X. Conditioning on X, we get for any Borel set B:

P[X ∈ B] =
∫ ∞

1
P
[
Ax + 1 ∈ B

]
dPX(x)

=
∫ ∞

1

∫

B
fxA+1(u)du dPX(x)

=
∫ ∞

1

∫

B

1

x
fA

(
u − 1

x

)
du dPX(x)

=
∫

B

∫ ∞

1

1

x
fA

(
u − 1

x

)
dPX(x) du,

where we can use Fubini’s theorem in the last step, because the integrand is product
measurable. The claim follows, as this is just the definition of a Lebesgue density. �

Corollary 4.2 Let A have a bounded density fA. Then X has a density fX satisfying

‖ fX‖∞ ≤ ‖ fA‖∞ .

Proof Using Lemma 4.1 we get

‖ fX‖∞ ≤ ‖ fA‖∞ E

[
1

X

]
,

but X ≥ 1 implies E
[
1/X

] ≤ 1, so the claim follows. �
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Corollary 4.3 Let A have a density fA, and 
 fA be its modulus of continuity. Then
the modulus of continuity 
 fX of fX satisfies


 fX (δ) ≤ 
 fA(δ), δ > 0.

Proof Using Eq. 22, we obtain for any u, v ∈ R

∣∣ fX(u) − fX(v)
∣∣ ≤

∫ ∞

1

1

x
fX(x)

∣∣∣∣ fA

(
u − 1

x

)
− fA

(
v − 1

x

)∣∣∣∣dx. (23)

But x ≥ 1 and the modulus of continuity 
fA is monotonically increasing by
definition, so we can bound

∣∣∣∣ fA

(
u − 1

x

)
− fA

(
v − 1

x

)∣∣∣∣ ≤ 
 fA

(|u − v|
x

)
≤ 
 fA(|u − v|),

and plugging this into inequality (23), we obtain

∣∣ fX(u) − fX(v)
∣∣ ≤ E

[
1

X

]

 fA(|u − v|).

Now we use that E
[
1/X

] ≤ 1 and take the supremum over all suitable u, v. �

This result is only useful if the density of A is continuous, but we can extend it to
many practical examples, where fA has jumps at points in a set IA. We use the jump
function of fA, defined by

JfA(s) = fA(s) − lim
x↑s

fA(x), s > 0

and a modification of fA where we remove all jumps,

f̄A := fA −
∑

s∈IA\{0}
JfA(s)�[s,∞).

Since X ≥ 1, we now denote by 
 fX the modulus of continuity of the restriction of
fX to (1,∞).

Lemma 4.4 Let A have a bounded càdlàg density fA. Then, for all δ > 0,


 fX (δ) ≤ 
 f̄A
(δ) + ‖ fX‖∞

∑

s∈IA\{0}

∣∣JfA(s)
∣∣ δ

s
.

Proof We give the proof for the case that fA has only one jump, say in s0 > 0. The
general case then follows similarly. For 1 ≤ u < v, we have

∣∣ fX(u) − fX(v)
∣∣ ≤

∫ ∞

1

1

x
fX(x)

∣∣∣∣ fA

(
u − 1

x

)
− fA

(
v − 1

x

)∣∣∣∣dx.

We define

α := u − 1

s0
∨ 1, β := v − 1

s0
∨ 1
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and divide the range of integration into the three intervals (1, α], [α, β], and [β, ∞).
Now, in the first and third interval, differences of values of fA and f̄A coincide.
Moreover, for x ∈ [α, β] we have

∣∣∣∣ fA

(
u − 1

x

)
− fA

(
v − 1

x

)∣∣∣∣ ≤
∣∣∣∣ f̄A

(
u − 1

x

)
− f̄A

(
v − 1

x

)∣∣∣∣+
∣∣JfA(s0)

∣∣ .

Putting everything together we obtain

| fX(v)− fX(u)| ≤

≤
∫ ∞

1

1

x
fX(x)

∣∣∣∣ f̄A

(
u − 1

x

)
− f̄A

(
v − 1

x

)∣∣∣∣dx+
∫ β

α

1

x
fX(x)

∣∣JfA(s0)
∣∣dx

≤
∫ ∞

1

1

x
fX(x)

∣∣∣∣ f̄A

(
u − 1

x

)
− f̄A

(
v − 1

x

)∣∣∣∣dx+‖ fX‖∞
v − u

s0

∣∣JfA(s0)
∣∣ .

We now bound the latter integral by 
 f̄A
(v − u) as in Corollary 4.3, and the claim

follows by taking the supremum over all v − u ≤ δ. �

5 Example: Number of Key Exchanges in Quickselect

In this section, we apply our algorithm to the fixed-point equation

X d= U X + U(1 − U), (24)

where U and X are independent and U is uniformly distributed on [0, 1]. This equa-
tion appears in the analysis of the selection algorithm Quickselect. The asymptotic
distribution of the number of key exchanges executed by Quickselect when acting
on a random equiprobable permutation of length n and selecting an element of rank
k = o(n) can be characterized by the above fixed-point equation, see Hwang and Tsai
(2002).

We use our algorithm to get a discrete approximation of the fixed point. The
plot of a histogram, generated with 80 iterations of the algorithms using for the
discretisation s(n) = n3, can be found in Fig. 1.

In the following, we specify how the bounds in Section 2 can be made explicit for
this example.

Lemma 5.1 Let X be a solution of Eq. 24. Then, we have 0 ≤ X ≤ 1 almost surely,
and the moments are recursively given by E

[
X0
] = 1 and

E
[
Xk] = (k + 1)! (k − 1)!

k−1∑

j=0

E
[
X j
]

j!(2k − j + 1)! , k ≥ 1,

in particular, E[X] = 1/3.
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Fig. 1 Histogram of approximation for X d= U X + U(1 − U)

Proof Both claims follow directly from the fixed-point equation in Eq. 24, using that
the solution is unique. To compute the moments, note that E

[
Uk(1 − U)k− j

]
is equal

to the Beta function B(k + 1, k − j + 1), so we have

E
[
Xk] = 1

1 − E
[
Uk
]

k−1∑

j=0

(
k
j

)
E
[
X j]B(k + 1, k − j + 1)

= k + 1

k

k−1∑

j=0

k!
j!(k − j!)

k!(k − j)!
(2k − j + 1)! E

[
X j]

and the assertion follows. �

Lemma 5.2 Let X be a solution of Eq. 24. Then, for all κ ∈ N and ε > 0,

P[X ≥ 1 − ε] ≤ 2(κ2−κ)/4 εκ/2.

Proof Using that X is supported by [0, 1], it is easy to show that for all ε > 0

P[X ≥ 1 − ε] = P[U X + U(1 − U) ≥ 1 − ε]

≤ P[X ≥ 1 − 2ε] P
[
U ≥ 1 − √

ε
]
,

and this inequality can be translated into

P[X ≥ 1 − 2ε] ≥ P[X ≥ 1 − ε]√
ε

. (25)
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Applying Eq. 25 κ times, we get

1 ≥ P
[
X ≥ 1 − 2κε

] ≥ P[X ≥ 1 − ε]

2κ(κ−1)/4 εκ/2
.

This implies the assertion. �

Lemma 5.3 Let X be a solution of Eq. 24. Then X has a Lebesgue density f satisfying
f (t) = 0 for t < 0 or t > 1 and

f (t) = 2
∫ t

pt

g(x, t) f (x)dx +
∫ 1

t
g(x, t) f (x)dx for t ∈ [0, 1], (26)

where

pt := 2
√

t − 1, g(x, t) := 1√
(1 + x)2 − 4t

.

Proof Let PX be the distribution of X. Then we get for any Borel set B by
conditioning on X as in the proof of Lemma 4.1,

P[X ∈ B] = P
[
U X + U(1 − U) ∈ B

]

=
∫ 1

0
P
[
Ux + U(1 − U) ∈ B

]
dPX(x)

=
∫ 1

0

∫

B
ϕx(t)dt dPX(x)

=
∫

B

∫ 1

0
ϕx(t)dPX(x) dt

where ϕx is a Lebesgue density of (1 + x)U − U2. The last step is valid by Fubini’s
theorem as (x, t) �→ ϕx(t) is product measurable, cf. Eq. 28.

Hence, X has a Lebesgue-density f (x) satisfying

f (t) =
∫ 1

0
ϕx(t) f (x)dx. (27)

To find ϕx, we observe that (1 + x)U − U2 ≤ (1 + x)2/4 and get

P
[
(1 + x)U − U2 ≤ t

] =

= P

[
U ≤ 1 + x −√(1 + x)2 − 4t

2
or U ≥ 1 + x +√(1 + x)2 − 4t

2

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t < 0,

1 + x −√(1 + x)2 − 4t
2

for 0 ≤ t < x,

1 −√(1 + x)2 − 4t for x ≤ t ≤ (1 + x)2/4,

1 otherwise.
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To get a density, we differentiate with respect to t and rewrite as a function of x
yielding

ϕx(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2√
(1 + x)2 − 4t

for 2
√

t − 1 < x ≤ t,

1√
(1 + x)2 − 4t

for t < x ≤ 1,

0 otherwise.

(28)

Plugging this into Eq. 27 we get the stated integral equation. �

Remark 5.4 The integral of g(x, t) with respect to x can explicitly be evaluated:
∫

g(x, t) dx = log
(

1 + x +
√

(1 + x)2 − 4t
)

. (29)

Remark 5.5 We will see in Lemma 5.7 that f (x) has a version that is continuous on
[0, 1]. For this version we have

f (0) = E

[
1

1 + X

]
= 0.759947956 . . .

Proof Using integral equation (26) we have

f (0) =
∫ 1

0

1

1 + x
f (x)dx,

and by expanding the geometric series we obtain

E

[
1

1 + X

]
=

∞∑

k=0

(−1)k
E
[
Xk] ,

which we can calculate to any accuracy using for the kth moments the formula given
in Lemma 5.1. �

In order to use Lemma 2.5 to bound the deviation of our approximation, we need
an explicit bound for the density of X. We derive a rather rough bound here and see
later, that we can use the resulting bound from our approximation to improve it.

Lemma 5.6 Let f be the density of X as in Lemma 5.3. Then

‖ f‖∞ ≤ 18.

Proof To get an explicit bound for t ∈ [0, 1] we simplify the integral equation and
obtain

f (t) ≤ 2
∫ 1

pt

g(x, t) f (x)dx. (30)
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We know f (t) for t < 0, and we can bound g(x, t), if x is bounded away from pt.
Hence we split the integral into a left part for which we already have a bound for f
and a right part, in which we can bound g. For any γ ∈ (pt, 1], we have

f (t) ≤ 2
∫ γ

pt

g(x, t)dx + 2
∫ 1

γ

g(x, t) f (x)dx, (31)

where in the second integral, we can use that g is decreasing in x for any fixed t and
bound g(x, t) ≤ g(γ, t).

For t < 1/4, we can use that pt is negative, and set γ = 0. So the first integral
vanishes and only the second remains and we obtain

f (t) ≤ 2
∫ 1

0
g(x, t) f (x)dx ≤ 2 g(0, t)

∫ 1

0
f (x)dx = 1√

1
4 − t

. (32)

To go on, we set γ = γt := (pt + t)/2 and get with Eq. 31

f (t) ≤ 2 μt

∫ γt

pt

g(x, t)dx + 2 g(γt, t)
∫ 1

γt

f (x)dx,

where μt := sup{ f (τ ) : τ ∈ (pt, γt)}.
We can calculate the first integral using the integral of g given in Eq. 29,

∫ γt

pt

g(x, t)dx = log

(
1 + (1 − √

t)2 + (1 − √
t)
√

1 + 6
√

t + t

4
√

t

)
=: h(t), (33)

and for the second integral, we obtain

∫ 1

γt

f (x)dx ≤
∫ 1

pt

f (x)dx = P

[
X ≥ 1 − 2

(
1 − √

t
)]

.

Putting everything together we get

f (t) ≤ 2 μt h(t) + 4
P
[
X ≥ 1 − 2(1 − √

t)
]

(1 − √
t)
√

1 + 6
√

t + t
. (34)

For t = 1/4 we have γ1/4 = 1/8, and μ1/4 ≤ 2
√

2 by Eq. 32, so

f (1/4) ≤ 4
√

2 log

(
1 + 1 + √

17

8

)
+ 16√

17
≤ 7. (35)

From the integral equation we get for 0 ≤ s < t ≤ 1/4

f (t) − f (s) =
∫ 1

0

(
g(x, t) − g(x, s)

)
f (x)dx +

+
∫ s

0

(
g(x, t) − g(x, s)

)
f (x)dx +

∫ t

s
g(x, t) f (x)dx

> 0,
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so f is strictly increasing on [0, 1/4]. Therefore, the bound for t = 1/4 extends to all
t ∈ [0, 1/4

] =: I0. To go on, we recursively define b 0 := 0 and

bi :=
(

1 + bi−1

2

)2

, i ≥ 1,

and

I2k−1 :=
(

b k,
b k + b k+1

2

]
, I2k :=

(
b k + b k+1

2
, b k+1

]
, k ≥ 1.

For each interval In we find a corresponding bound Mn for f , using that pbi = bi−1

and therefore (pt, γt) ⊂ In−1 ∪ In−2 for t ∈ In.
Furthermore we get for 1/4 ≤ t ≤ 1 by differentiating the function h defined in

Eq. 33

h′(t) = ct

(
d
dt

(1 − √
t)2

4
√

t
+ d

dt
(1 − √

t)
√

1 + 6
√

t + t

4
√

t

)
,

where ct ≥ 1. But the first summand is negative and for the second observe that

d
dt

(1 − √
t)
√

1 + 6
√

t + t =
(
1 − √

t
) (

3 + √
t
)− (1 + 6

√
t + t

)

2
√

t
√

1 + 6
√

t + t

= 1 − 4
√

t − t√
t
√

1 + 6
√

t + t

< 0,

hence h(t) is decreasing.
The second summand in Eq. 34 can be bounded using Lemma 5.2 with κ = 2

yielding

4
P
[
X ≥ 1 − 2(1 − √

t)
]

(1 − √
t)
√

1 + 6
√

t + t
≤ 4

P
[
X ≥ 1 − 2 (1 − √

t)
]

2 (1 − √
t)

≤ 4
√

2. (36)

So for t ∈ In = (αn, βn] we have

f (t) ≤ Mn :=
⌈

2 h(αn) max{Mn−1, Mn−2} + 4
√

2
⌉

. (37)

Evaluating this we obtain

M0 = 7, M1 = 13, M2 = 17, M3 = 18, M4 = 17.

But for t > b 3 we have h(t) < 2/7 so the sequence (Mn)n≥0 is decreasing for n ≥ 4.
�

Lemma 5.7 Let f be the density of X as in Lemma 5.3. Then f is Hölder continuous
on [0, 1] with Hölder exponent 1/2:

∣∣ f (t) − f (s)
∣∣ ≤ 9 ‖ f‖∞

√
t − s, for 0 ≤ s < t ≤ 1. (38)
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Proof Using the integral equation given in Lemma 5.3, we have

∣∣ f (t) − f (s)
∣∣ ≤ 2

∣∣∣∣
∫ t

pt

g(x, t) f (x)dx −
∫ s

ps

g(x, s) f (x)dx

∣∣∣∣+

+
∣∣∣∣
∫ 1

t
g(x, t) f (x) −

∫ 1

s
g(x, s) f (x)dx

∣∣∣∣ . (39)

With explicit calculations we find
∣∣∣∣
∫ t

pt

g(x, t) f (x)dx −
∫ s

ps

g(x, s) f (x)dx

∣∣∣∣ ≤ 4 ‖ f‖∞
√

t − s

and
∣∣∣∣
∫ 1

t
g(x, t) f (x)dx −

∫ 1

s
g(x, s) f (x)dx

∣∣∣∣ ≤ ‖ f‖∞
√

t − s.

For details see Knape (2006). �

Remark 5.8 The latter lemma cannot be substantially improved, as in t = 1/4, the
density f (t) is not Hölder continuous with Hölder exponent 1/2 + ε for any ε > 0,
see Knape (2006).

6 Explicit Error Bounds for X d= UX + U(1 − U)

We can now combine the bounds for the density and its modulus of continuity with
Lemma 2.5 and Lemma 2.7 to bound the deviation of an approximation from the
solution of the fixed-point equation.

To approximate the density f we set

fn(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (0) for 0 ≤ x ≤ δn,

Fn(x + δn) − Fn(x − δn)

2δn
for δn < x ≤ 1,

0 otherwise,

where f (0) is given in Remark 5.5 and Fn denotes the distribution function of Xn.
For the values used for the plot in Fig. 1, i.e. s(n) = n3 and N = 80, we can apply

Corollary 2.2 and obtain:

Corollary 6.1 We have �(X80, X) ≤ 1.162 · 10−4, and ‖ f80 − f‖∞ ≤ 0.931. Further-
more, we can improve the bound of Lemma 5.6 and bound ‖ f‖∞ ≤ 3.561.

Proof We have CA = Cb = CX = 1, hence combining Lemma 5.6 and Lemma 2.5,
we obtain

�(Xn, X) ≤
((

ξ n
p ‖X‖p + (2 + ‖X‖p

) n−1∑

i=0

ξ i
p

(n − i)r

)
(p + 1)1/p ‖ f‖∞

)p/(p+1)

.
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The moments of X can be computed using Lemma 5.1 and we set [U]n := ⌊n3U
⌋

/n3,
hence

ξ p = ‖U‖p =
(

1

p + 1

)1/p

.

Optimizing over p for n = 80, r = 3, and ‖ f‖∞ ≤ 18 yields

�(X80, X) ≤ 5.1842 · 10−4 (40)

for p = 12.
Using for f (0) the value given in Remark 5.5, we obtain for the density

‖ fn − f‖∞ ≤ 1

δn
�(Xn, X) + 9 ‖ f‖∞

√
δn,

and optimizing over δn, using for the Kolmogorov metric the bound in Eq. 40, yields

‖ f80 − f‖∞ ≤ 4.512

for δ80 = 3.44 · 10−4 (averaging 352 values).
We can now use this to improve our bound for ‖ f‖∞: Reading off the maximal

value of our approximation (‖ f80‖∞ ≤ 2.630), we can now bound

‖ f‖∞ ≤ ‖ f80‖∞ + ‖ f80 − f‖∞ ≤ 7.142,

and this in turn enables us to improve our bounds for the approximation, leading
to �(X80, X) ≤ 2.2085 · 10−4 and ‖ f80 − f‖∞ ≤ 1.8331 for δ80 = 3.6 · 10−4. Repeating
this strategy a few times, we get the stated values for p = 13 and δ80 = 3.7 · 10−4

(averaging 378 values). �

Remark 6.1 Using the realistic (but yet unproven) bound of ‖ f‖∞ ≤ 2.7 would give
�(X80, X) ≤ 8.9809 · 10−5 (p = 13) and ‖ f80 − f‖∞ ≤ 0.7101. Hence, our approach
works well for the distribution function. However, we cannot show strong error
bounds for the approximation of densities with our arguments.

However, in the next section we see that for another example the algorithm
approximates the densities much better than the error bounds indicate.

In Table 1, the resulting error bounds for several possible discretisations with
similar running time can be found.

7 An Experimental View on Error Bounds

We now apply our algorithm to another fixed-point equation for which the solution is
explicitly known. We can then compare the approximation of our algorithm with the
true density and distribution function and evaluate the actual error to get an idea of
the quality of the error bounds proven in Section 2. Further examples can be found
in Knape (2006). It appears that the error bounds in Section 2 are rather loose and
that the approximation is much better than indicated by our bounds.
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Table 1 Bounds for �(Xn, X) for comparable total running times (about 20 h on a laptop
computer each)

Discret. N �(XN, X) opt. p s(N)

n 22,000 0.00178 14 22,000
n2 430 0.00025 16 184,900
n3 80 0.00012 13 512,000
n4 30 0.00050 3 810,000
1.5n 35 0.00070 3 1,456,110
1.7n 27 0.00187 2 1,667,712

The discretisations are according to Corollaries 2.2 and 2.4. By s(N) the number of atoms of the
discrete approximation is denoted, cf. Section 3

In the analysis of certain random interval splitting procedures the following fixed-
point equation characterizes the distribution of a point to which a random sequence
of nested intervals shrinks:

X d= 1 + U
2

X + G
1 − U

2
,

where G, U , and X are independent, G is Bernoulli(1/2) distributed and U is
uniformly distributed on [0, 1], see Chen et al. (1981, 1984), Devroye et al. (1986),
and Neininger (2001) for details of the interval splitting context.

To approximate the fixed-point, we use a symmetric discretisation for (A, b)

instead of Eq. 18, setting

〈U〉n := (2 �s(n)U� + 1)/2s(n) (41)

and s(n) = n3.
To compute the bounds as given in Section 2, we can set CA = Cb = 1/4,

ξ p = ‖A‖p, and A is uniformly distributed on [1/2, 1], so

‖A‖p
p = 2p+1 − 1

2p (p + 1)
for p ∈ N.

It is known that X is beta(2, 2) distributed, so we have the moments:

‖X‖p
p =

p−1∏

s=0

2 + s
4 + s

, p ∈ N.

Furthermore, X has the density f (x) = 6 x(1 − x), so ‖ f‖∞ = 1.5. We can now use
Lemma 2.5 and Corollary 2.2 to obtain

�(XN, X) ≤
(

1.5 (p + 1)1/p
(

‖A‖N
p ‖X‖p + 5 + ‖X‖p

4

N−1∑

i=0

‖A‖i
p

(N − i)3

)) p
p+1

.

For N = 50 we minimize over p and get pmin = 5 and

�(X50, X) ≤ 0.001043. (42)
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As we know the limit distribution, we can read off the true error from the output
of our simulation and find

�(X50, X) ≈ 0.000012.

It is quite exactly of the order expected for a discretisation of step size 1/n3.
Note that when approximating a differentiable function by a step function, step
size and derivative impose an unavoidable error. Comparing our approximation to a
direct discretisation by a step function of the same step size, the deviation is at most
1.5 · 10−8.

Now we look at the density. The modulus of continuity of the density of the
beta(2, 2) distribution can be bounded by 
 f (ε) ≤ 6 ε for all positive ε. So for the
function fN , which we get by averaging over 2δN as in Eq. 16, we get with Lemma 2.7

∥∥ fN − f
∥∥∞ ≤ 1

δN
�(XN, X) + 6 δN.

We evaluate for N = 50, use the bound in Eq. 42, and minimizing over δ50 we obtain
∥∥ f50 − f

∥∥∞ ≤ 0.1583

for δ50 = 0.01318, so we take the average over 3 296 values.
Reading off the true error from the simulation we obtain

∥∥( fn − f )�[0.015;0.985]
∥∥∞ ≈ 0.0003

and | fn(x) − f (x)| ≤ 0.02 for x < 0.015 or x > 0.985. The larger errors at the bound-
ary are caused by the averaging procedure used to obtain fn.

Acknowledgements We thank the referee for careful reading, pointing out some inaccuracies and
helping improve the presentation of the paper.
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