Vorlesung 10a

Schätzen mit Verlass

Schätzen von Anteilen

Große Population (\bigcirc und \bigcirc) mit unbekanntem Weibchenanteil p

In einer Stichprobe vom Umfang n=53 gab es 23 Weibchen.

Wie zuverlässig ist der Schätzwert $\frac{23}{53}$?

Eine sanfte Einführung in die Statistik von Anteilen findet man auf http://ismi.math.uni-frankfurt.de/schneider/StatBiol/V5_Web.pdf

Goldene Idee der Statistik:

In einem idealisiert gedachten Szenario interpretiert man den Schätzwert als Realisierung einer Zufallsvariable und rechnet mit deren Variabilität.

Deutung der Stichprobenziehung als p-Münzwurf

$$\widehat{p} = \frac{B}{n}$$
, mit $B :=$ Anzahl der "Erfolge"

$$\sigma_{\widehat{p}} = \frac{1}{\sqrt{n}} \sqrt{p(1-p)}$$

(B ist Bin(n, p)-verteilt.)

Ein hübsche Illustration dieser Formel

(und ein Weg, wie man sie experimentell entdecken kann)

findet sich auf

http://math.uni-frankfurt.de/ ferebee/explorativ/Woche5.html

Der Zentrale Grenzwertsatz besagt:

 \widehat{p} ist approximativ normalverteilt mit Erwartungswert p und Standardabweichung $\sigma_{\widehat{p}}$.

Also insbesondere:

$$\mathbf{P}_p(|p-\widehat{p}| \le 2\sigma_{\widehat{p}}) \approx 0.95$$

$$\mathbf{P}_p(p \in [\hat{p} - 2\sigma_{\hat{p}}, \, \hat{p} + 2\sigma_{\hat{p}}]) \approx 0.95$$

In der Praxis ist auch $\sigma_{\widehat{p}}$ (aus der *einen* vorliegenden Stichprobe) zu schätzen.

$$\sigma_{\widehat{p}} = \frac{1}{\sqrt{n}} \sqrt{p(1-p)}$$

wird geschätzt durch

$$g := \frac{1}{\sqrt{n}} \sqrt{\widehat{p}(1-\widehat{p})}$$

$$\mathbf{P}_p(p \in [\hat{p} - 2\sigma_{\hat{p}}, \, \hat{p} + 2\sigma_{\hat{p}}]) \approx 0.95$$

überträgt sich auf

$$P_p(p \in [\hat{p} - 2g, \hat{p} + 2g]) \approx 0.95$$

Das zufällige Intervall

$$I := [\hat{p} - \frac{2}{\sqrt{n}}\sqrt{\hat{p}(1-\hat{p})}, \, \hat{p} + \frac{2}{\sqrt{n}}\sqrt{\hat{p}(1-\hat{p})}]$$
 ist ein

Konfidenzintervall für p

mit approximativer Überdeckungswahrscheinlichkeit 0.95 oder kurz ein

approximatives 95%-Konfidenzintervall für p.

Faustregel für die Anwendbarkeit: $n\hat{p} \ge 9$ und $n(1-\hat{p}) \ge 9$.

R-Programme und Illustrationen zur exakten Überdeckungswahrscheinlichkeit von *I* findet man auf http://math.uni-frankfurt.de/ ferebee/explorativ/Woche6.html

Schätzung des Erwartungswertes

einer Verteilung auf R (Lageschätzung)

$$m := \frac{1}{n}(x_1 + \dots + x_n)$$

wird gedacht als eine Realisierung der Zufallsvariablen

$$\bar{X} := \frac{1}{n}(X_1 + \dots + X_n)$$

mit X_1, \ldots, X_n unabhängig, identisch verteilt mit Erwartungswert μ und Standardabweichung σ .

Anders als bei der Anteilschätzung ist hier σ i.a. keine Funktion von μ .

Der Zentrale Grenzwertsatz besagt:

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$
 ist approximativ N(0, 1)-verteilt.

Bei bekanntem σ ist also

$$\left[\bar{X} - \frac{2\sigma}{\sqrt{n}}, \bar{X} + \frac{2\sigma}{\sqrt{n}}\right]$$

ein approximatives 95%-Konfidenzintervall für μ .

In der Praxis hat man auch σ aus den Daten zu schätzen.

Wir wissen schon:

$$s^2 := \frac{1}{n-1} ((X_1 - \bar{X})^2 + \dots + (X_n - \bar{X})^2)$$

ist ein "erwartungstreuer" Schätzer für σ^2

Satz (W. Gosset (alias "Student", 1908), R. Fisher (1924)) Sind X_1, \ldots, X_n unabhängig und $N(\mu, \sigma^2)$ -verteilt,

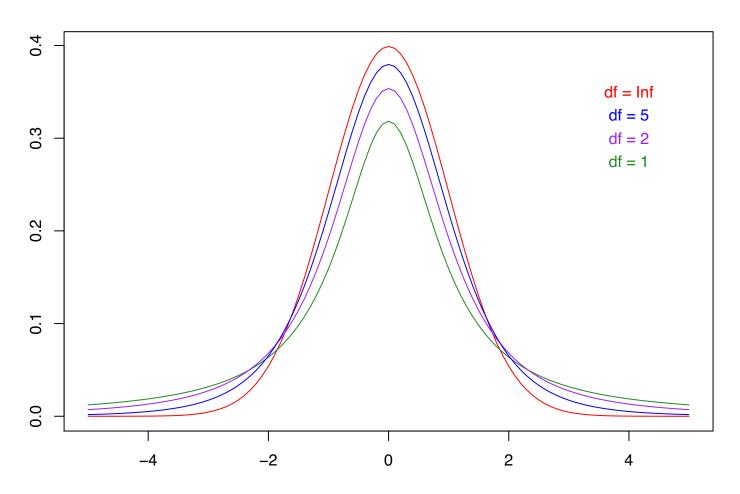
dann ist $T:=rac{ar{X}-\mu}{s/\sqrt{n}}$ so verteilt wie

$$T_{n-1} := \frac{N_0}{\sqrt{\frac{1}{n-1} \left(N_1^2 + \dots + N_{n-1}^2\right)}}$$

mit unabhängigen und N(0,1) verteilten N_0, \ldots, N_{n-1} .

Bezeichnung: Die Verteilung von T_{n-1} heißt t-Verteilung (oder Student-Verteilung) mit n-1 Freiheitsgraden.

Student's t: Dichtefunktionen



$$T_{n-1} := \frac{N_0}{\sqrt{\frac{1}{n-1}\left(N_1^2 + \dots + N_{n-1}^2\right)}}$$

Für $n \to \infty$ ist T_{n-1} asymptotisch N(0, 1)-verteilt (Gesetz der großen Zahlen im Nenner von T_{n-1}).

Je kleiner n, um so mehr schwankt der Nenner, und um so *breitschultriger* ist die Verteilung von T_{n-1} Z.B. für n=6: $P(|T_5| \le 2.57) = 0.95$.

Satz (W. Gosset (alias "Student", 1908), R. Fisher (1924)) Sind X_1, \ldots, X_n unabhängig und $N(\mu, \sigma^2)$ -verteilt,

dann ist $T:=rac{ar{X}-\mu}{s/\sqrt{n}}$ so verteilt wie

$$T_{n-1} := \frac{N_0}{\sqrt{\frac{1}{n-1} \left(N_1^2 + \dots + N_{n-1}^2\right)}}$$

mit unabhängigen und N(0, 1) verteilten N_0, \ldots, N_{n-1} .

Folgerung: Sind X_1, \ldots, X_n unabhängig und $N(\mu, \sigma^2)$ -verteilt, dann ist für jedes c > 0:

$$\mathbf{P}(|T_{n-1}| \le c) = \mathbf{P}\left(\left|\frac{\bar{X} - \mu}{s/\sqrt{n}}\right| \le c\right) = \mathbf{P}\left(\mu \in \left[\bar{X} - \frac{cs}{\sqrt{n}}, \bar{X} + \frac{cs}{\sqrt{n}}\right]\right)$$

Für ein 95%-Konfidenzintervall bestimme c so, dass sich hier 0.95 ergibt.

Z.B. für n = 6: $P(|T_5| \le 2.57) = 0.95$.

Der passende R-Befehl ist qt (0.975, 5),

mit der Ausgabe 2.57

Denn: $P(T_5 \le 2.57) = 0.975$.

Man sagt: Das 0.975-Quantil der t(5)-Verteilung ist 2.57.

Beweis des Satzes von Gosset und Fisher: X_1, \ldots, X_n ist von der Form $X_1 = \mu + \sigma Z_1, \ldots, X_n = \mu + \sigma Z_n$

mit Z_1, \ldots, Z_n unabhängig und standard-normalverteilt. Also:

$$\bar{X} - \mu = \sigma \bar{Z}$$

$$s = \sigma \sqrt{\frac{1}{n-1}(Z_1 - \bar{Z})^2 + \dots + (Z_n - \bar{Z})^2}$$

$$\frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{\sqrt{n}\bar{Z}}{\sqrt{\frac{1}{n-1}\left((Z_1 - \bar{Z})^2 + \dots + (Z_n - \bar{Z})^2\right)}}$$

 $\sqrt{n}\bar{Z}$ ist die Koordinate von $\vec{Z}:=(Z_1,\ldots,Z_n)$ bzgl. des Einheitsvektors in Richtung $(1,\ldots,1)$,

 $(Z_1 - \bar{Z})^2 + \cdots + (Z_n - \bar{Z})^2$ ist das Längenquadrat der Projektion orthogonal dazu.

Die Behauptung des Satzes folgt dann aus der Rotationssymmetrie der Verteilung von \vec{Z} wie in Aufgabe 36 (siehe auch Seite 138 im Buch).

Ein Konfidenzintervall für den Median

Eine Zahl ν heißt *Median* der Verteilung ρ auf \mathbb{R} , wenn $\rho((-\infty, \nu]) \geq 1/2$ und $\rho([\nu, \infty)) \geq 1/2$ gilt.

Die Ordnungsstatistiken $X_{(1)} \leq \cdots \leq X_{(n)}$ sind die aufsteigend geordneten X_1, \ldots, X_n

Ein Kandidat für ein Konfidenzintervall für den Median ist

$$[X_{(1+j)}, X_{(n-j)}]$$

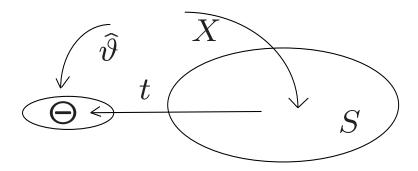
mit $0 \le j < n/2$.

$$P_{\rho}(\nu \notin [X_{(1)}, X_{(n)}]) = P_{\rho}(X_{(1)} > \nu) + P_{\rho}(X_{(n)} < \nu)$$
.

$$P_{\rho}(X_{(1)} > \nu) \le 2^{-n}$$

$$\mathbf{P}_{\rho}(X_{(n)} < \nu) \le 2^{-n}$$
. Also: $\mathbf{P}_{\rho}(\nu \in [X_{(1)}, X_{(n)}]) \ge 1 - \frac{1}{2^{n-1}}$.

Ein Logo der Statistik:



$$\mathbf{P}_{\vartheta}(X \in da) = \rho_{\vartheta}(da), \quad \vartheta \in \Theta$$

⊖ ... Parameterraum

 $S \dots$ Beobachtungsraum

 $\widehat{\vartheta} := t(X) \dots Schätzer$ für den Parameter ϑ

Sei $m(\vartheta)$ ein reelles Parametermerkmal und I=I(X) ein aus den Daten konstruiertes Intervall.

Gilt für ein
$$\alpha \in (0,1)$$

$$P_{\vartheta}(m(\vartheta) \in I) \geq 1 - \alpha$$
 für jedes $\vartheta \in \Theta$

dann sagt man:

I ist ein Konfidenzintervall für $m(\vartheta)$ mit Niveau $1-\alpha$, es hält die Überdeckungswahrscheinlichkeit $1-\alpha$ ein.