Ubungen zur Vorlesung "Stochastik für die Informatik"

Abgabe der Lösungen zu den S-Aufgaben: Donnerstag, 22. Dezember 2011, zu Beginn der Vorlesung

29. (Zur Erinnerung an die AnaLina). D sei der vom Vektor $(1,1,1)^T$ aufgespannte (eindimensionale) Teilraum des \mathbb{R}^3 (die *Hauptdiagonale* des \mathbb{R}^3). Wir betrachten eine Orthonormalbasis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ mit $\vec{v}_1 := \frac{1}{\sqrt{3}}(1, 1, 1)^T$. (Für die beiden Vektoren \vec{v}_2, \vec{v}_3 bleiben dann gewisse Freiheiten, auf die es hier nicht weiter ankommt.) Es sei D^{\perp} der zu D orthogonale Teilraum; D^{\perp} wird also von $\{\vec{v}_2, \vec{v}_3\}$ aufgespannt.

Für $\vec{a}=(a_1,a_2,a_3)^T$ sei $\bar{a}:=\frac{1}{3}(a_1+a_2+a_3)$. Mit \vec{a}_D und $\vec{a}_{D^{\perp}}$ bezeichnen wir die Orthogonalprojektionen des Vektors \vec{a} auf D und auf D^{\perp} . Zeigen Sie: (i) $\vec{a}_D = \bar{a}(1,1,1)^T$ (ii) $|\vec{a}_{D^{\perp}}|^2 = (a_1 - \bar{a})^2 + (a_2 - \bar{a})^2 + (a_3 - \bar{a})^2$.

(i)
$$\vec{a}_D = \bar{a}(1,1,1)^T$$

(ii)
$$|\vec{a}_{D^{\perp}}|^2 = (a_1 - \bar{a})^2 + (a_2 - \bar{a})^2 + (a_3 - \bar{a})^2$$
.

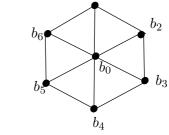
- **30.** X_1 sei Exp(2)-verteilt, X_2 sei Exp(3)-verteilt, und X_1 und X_2 seien unabhängig. Wir betrachten die beiden Zufallsvariablen $R := \min(X_1, X_2)$ und $S := \max(X_1, X_2)$.
- a) Berechnen Sie $\mathbf{P}(R > t)$, $t \ge 0$.
- b) Berechnen Sie P(S > t), $t \ge 0$.

Hinweis: $\{\max(X_1, X_2) > t\} = \{X_1 > t\} \cup \{X_2 > t\}$. Verwenden Sie die Einschluss-Ausschlussregel.

- c) Berechnen und skizzieren Sie die Dichte von R und die von S.
- (X_1, X_2) sei ein zufälliges Paar mit Werten in $\{a,b\} \times \{1,2,3\}$ mit Verteilungsgewichten wie in der Tabelle angegeben.

	1	2	3
\overline{a}	0	0.4	0.2
b	0.1	0.2	0.1

- (i) Finden Sie Übergangswahrscheinlichkeiten $P(c, .), c \in \{a, b\}$, so, dass (X_1, X_2) als zweistufiges Zufallsexperiment entsteht.
- (ii) Veranschaulichen Sie dieses zweistufige Zufallsexperiment durch einen Baum der Tiefe 2.
- (iii) Berechnen Sie den bedingten Erwartungswert und die bedingte Varianz von X_2 gegeben ${X_1 = b}.$ b_1
- **32.** S Die Menge $S := \{b_0, \ldots, b_6\}$ trägt die in der Skizze angebene Nachbarschaftsstruktur. Für jedes $a \in S$ sei P(a,.) die uniforme Gewichtung auf den Nachbarn von a (mit P(a,b) := 0 falls b kein Nachbar von a ist).
- a) (i) Finden Sie eine Verteilung π auf S so, dass die Gewichte $\pi(a)$, $a \in S$, proportional zu den von a ausgehenden Kanten sind.



(ii) Zeigen Sie für das in (i) gefundene π :

$$\pi(a)P(a,b) = \pi(b)P(b,a), \quad a,b \in S.$$

(iii) Überprüfen Sie die folgende Gleichheit (am besten durch direkte Folgerung aus (ii)):

$$\pi(b) = \sum_{a \in S} \pi(a) P(a, b), \quad b \in S$$

- b) (X_1, X_2) sei ein zufälliges Paar mit Wertebereich $S \times S$ und Übergangswahrscheinlichkeiten $P(a,.), a \in S$. Die Verteilung π sei die aus Teil a).
- (i) Zeigen Sie: Hat X_1 die Verteilung π , dann hat auch X_2 die Verteilung π .
- (ii) Es sei X_1 uniform verteilt auf S. Berechnen Sie $\mathbf{P}(X_2 = b_0)$.