SoSe 2010

Exercises to the course "Stochastic Processes"

Tutors: Ute Lenz, Christian Böinghoff

Assignment 10

Stationary renewals, Gamma distribution, Compound Poisson processes Please hand in your written solutions on Friday, June 25, 2010, at the beginning of the course

37. Waiting for the next renewal. a) Let X be binomial(10, 1/4)-distributed. Find its second moment $\mathbf{E}[X^2]$.

b) Let G be a random variable whose distribution is the size-biasing of the binomial (10, 1/4)distribution. Compute $\mathbf{E}[G]$.

c) In a stationary renewal process on \mathbb{Z} whose lifetime distribution is binomial(10, 1/4)-distributed, what is the expected time to the next renewal from the time point 100? And how many renewals do you expect between times 101 and 110 (boundaries included)?

38. The Gamma Distribution

For $k \in (0, \infty)$, the Gamma(k)-distribution has density $g_k(y) dy$ with

$$g_k(y) := \frac{1}{\Gamma(k)} y^{k-1} e^{-y}, \quad y > 0$$

(Recall that $\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$)

a) Let Y be Gamma(k)-distributed, k > 0. Show that

$$\mathbf{E} e^{-\beta Y} = (1+\beta)^{-k}, \quad \beta > 0.$$

b) Let Y_i (i = 1, 2) be $\text{Gamma}(k_i)$ -distributed and independent. What is the distribution of $Y_1 + Y_2$? (Hint: You may use that the distribution of an \mathbb{R}_+ -valued random variable Z is determined by its *Laplace transform*, i.e. the collection of all expectations $\mathbf{E}[e^{-\beta Z}], \beta > 0.$)

c) (optional, for gourmets) Apparently, the size-biasing of the Gamma(5)-distribution is the Gamma(6)-distribution. Can you interpret this in the light of a stationary renewal process on the real time axis? (Hint: Think of a stationary renewal process on \mathbb{R} whose lifetimes arise as sums of 5 independent standard exponential random variables. One of these covers the origin of the time axis)

39. Three Poisson points. Let V_1, V_2, V_3 be independent standard exponential random variables, and put $T_1 := V_1, T_2 := V_1 + V_2, T_3 := V_1 + V_2 + V_3$.

a) What is the conditional density of (T_1, T_2) given T_3 ?

b) What is the conditional density of (T_1, T_2) given the event $E := \{T_3 > 3\} \cap \{T_2 < 3\}$?

c) What is the conditional probability of the event $\{T_1 \in [0,1]\} \cap \{T_2 \in [2,3]\}$, given the event E from part b)?

40. Compound Poisson processes. Let $Z = \sum \delta_{T_i}$ be a stationary Poisson point process on \mathbb{R}_+ with intensity $\lambda \in \mathbb{R}_+$, and H_1, H_2, \ldots be i.i.d. real-valued random variables with mean μ and variance σ^2 . We define the Poisson counting process $X_t := Z([0,t]), t \ge 0$, and the compound Poisson process $Y_t := \sum_{i:T_i \le t} H_i, t \ge 0$.

a) Find $\mathbf{E}[Y_t|X_t]$ and $\mathbf{E}[Y_t]$.

b) Using the variance decomposition as stated in Handout 3, compute $\operatorname{Var}[Y_t]$.