PROF. A. WAKOLBINGER

Exercises to the course "Stochastic Processes"

Tutors: Ute Lenz, Christian Böinghoff

Assignment 7 Markov chains and martingales Please hand in your written solutions on Friday, June 4, 2010, at the beginning of the course

25. A simple random walk on a finite graph. Consider the simple random walk on the graph with vertex set $S := \{a, b, c, d, e\}$ and edges as in the figure.

26. *Martingales and harmonic functions* Let *S* be a countable set, *P* be a transition matrix on *S*, and *h* be a real-valued function defined on *S*. Assume that for all $n \in \mathbb{N}_0$ and $i \in S$,

$$\sum_{k \in S} (P^n)_{ik} |h(k)| < \infty$$

or in other words that $h(X_n)$ is \mathbf{P}_i -integrable.

(a) Show that the following two assertions are equivalent:

(1) For all $i \in S$, $(h(X_n))_{n \geq 0}$ is an \mathbb{F}^X -martingale under \mathbf{P}_i ,

(2) h is *P*-harmonic, that is Ph = h.

(b) In the situation of Exercise 25, use the martingale convergence theorem to show that every P-harmonic function h is constant.

27. Conditioning a Markov chain on its future. Let X be simple random walk on $\{0, 1, \ldots, 10\}$ stopped when first hitting $\{0, 10\}$, and let T be the first hitting time of $\{0, 10\}$.

a) Let X start in state 2. What is the probability that X makes its first step to state 1, given $\{X_T = 10\}$?

b) Argue that, when conditioned on the event $\{X_T = 10\}$, X remains a Markov chain, and compute the transition matrix of this conditioned chain on its state space $\{1, 2, ..., 10\}$.

28. Critical branching processes die out a.s. Let ξ_k , k = 1, 2, ..., be i.i.d. copies of an \mathbb{N}_0 -valued random variable ξ , with $\mathbf{E}[\xi] = 1$ and $\mathbf{P}(\xi = 0) > 0$. We define a transition matrix P on \mathbb{N}_0 by putting for $i, j \in \mathbb{N}_0$

$$P_{ij} := \mathbf{P}(\sum_{k=1}^{i} \xi_k = j) \,.$$

(a) Which are the transient, and which the recurrent states?

(b) Let (Z_n) be a Markov chain with transition matrix P. Why does Z_n converge a.s. to some random variable Z_{∞} as $n \to \infty$?

(c) Why is $Z_{\infty} = 0$ a.s.?