Exercises to the course "Stochastic Processes"

Tutors: Ute Lenz, Christian Böinghoff

Assignment 5

Hitting probabilities via stopped (super-)martingales

Please hand in your written solutions on Friday, May 21, 2010, at the beginning of the course

- 17. How improbable is a large detour on the way to $-\infty$? Let Y be a standard exponential random variable, and V := Y 2.
- a) Compute and sketch the graphs of $s \mapsto \mathbf{E}e^{sY}$ and $s \mapsto \mathbf{E}e^{sV}$.
- b) Let $V_1, V_2,...$ be independent copies of V. For a>0, let p(a) denote the probability of the event $\{V_1+\cdots+V_n>a \text{ for some } n\}$. Using a result of the Friday May 7 course, show that $p(a) \leq e^{-a/2}$. Is the exponent 1/2 the best possible constant in this estimate?
- 18. Hitting probabilities for the p-q-random walk. Let p and q be nonnegative with p+q=1. We consider the p-q-random walk $X=(X_n)$, with $X_n=Z_1+\cdots+Z_n, n=0,1,\ldots$, and Z_1,Z_2,\ldots independent, identically distributed random variables with $\mathbf{P}(Z_1=1)=p$, $\mathbf{P}(Z_1=-1)=q$.
- a) Is $M = (M_n)$ with $M_n := \left(\frac{q}{p}\right)^{X_n}$ a martingale?
- b) For p = 1/4 and q = 3/4, compute the probability that X hits +10 before it hits -10.
- 19. Predicting along a path: the Doob decomposition. Let $\mathbb{F} = (\mathcal{F}_n)_{n \geq 0}$ be a filtration.
- a) Let $(D_n)_{n\geq 1}$ be an \mathbb{F} -adapted sequence of integrable random variables. Assume $\mathbf{E}[D_n|\mathcal{F}_{n-1}]=0$ a.s. for all $n=1,2,\ldots$ Show that $D_1+\cdots+D_n,\ n=0,1,\ldots$ is a martingale.
- b) Let (Y_n) be an \mathbb{F} -adapted sequence of integrable random variables. Show that $D_n:=Y_n-Y_{n-1}-\mathbf{E}[Y_n-Y_{n-1}|\mathcal{F}_{n-1}],\ n=1,2,\ldots$ fulfills the requirements of a) and conclude that $M_n:=Y_n-Y_0-\sum_{i=1}^n\mathbf{E}[Y_i-Y_{i-1}|\mathcal{F}_{i-1}],\ n=0,1,\ldots$ is a martingale.
- c) For a p-q-random walk as in Exercise 18, and a given function $f: \mathbb{Z} \to \mathbb{R}$, find a function $g: \mathbb{Z} \to \mathbb{R}$ such that $f(X_n) \sum_{i=1}^n g(X_{i-1}), n = 0, 1, \ldots$ is a martingale.
- 20. Making friends with \exp , $\mathbf{E}[\exp(sV)]$ and dominated convergence
- a) Let v^+, v^- be nonnegative numbers. By sketching the graphs of the functions $s \mapsto e^{sv^+}$ and $s \mapsto e^{-sv^-}$, argue that for $0 < s \le \alpha$

$$v^{+} \le \frac{e^{sv^{+}} - 1}{s} \le v^{+} e^{sv^{+}} \le \frac{1}{\alpha} \alpha v^{+} e^{\alpha v^{+}} \le \frac{1}{\alpha} e^{2\alpha v^{+}}$$
 and $\left| \frac{e^{-sv^{-}} - 1}{s} \right| \le v^{-}$

b) Conclude from a) that for $v \in \mathbb{R}$ and $0 < s \le \alpha \in \mathbb{R}$,

$$\left| \frac{e^{sv} - 1}{s} \right| \le \frac{1}{\alpha} e^{2\alpha v} + |v|.$$

c) Let V be an integrable random variable and assume $\mathbf{E}[e^{\eta V}] < \infty$ for some $\eta > 0$. Use b) and dominated convergence to show that

$$\lim_{s\downarrow 0} \frac{1}{s} \left(\mathbf{E}[e^{sV}] - 1 \right) = \mathbf{E}[V].$$