PROF. A. WAKOLBINGER

SoSe 2010

Exercises to the course "Stochastic Processes"

Tutors: Ute Lenz, Christian Böinghoff

Assignment 4

Martingale convergence

Please hand in your written solutions on Friday, May 14, 2010, at the beginning of the course

13. Constant expectations - and yet no martingale. We know that every martingale has constant expectation. What about the converse? (*Hint: Let Z be uniform on* $\{-1,1\}$, and put $X_n := nZ$.)

14. A geometric random walk. Let $X = (X_0, X_1, \ldots)$ be a simple random walk on \mathbb{Z} , and \mathbb{F} be its natural filtration.

a) For which sequence (c_n) is $\exp(X_n - c_n)$ a martingale?

b) For that (c_n) , what is the a.s. limit of $\exp(X_n - c_n)$ as $n \to \infty$?

15. Predicting backwards.

Let X_1, X_2, \ldots be i.i.d., integrable random variables, and

a) Compute i) $\mathbf{E}[X_1|X_1 + X_2]$ ii) $\mathbf{E}[X_1|(S_n, S_{n+1}, \ldots)].$

b) Show that $(X_1 + \ldots + X_n)/n$ converges a.s. as $n \to \infty$

Hints: a) i) Use a symmetry argument.

a) ii) Use the equality $\mathcal{F}(S_n, S_{n+1}, S_{n+2}, \ldots) = \mathcal{F}(S_n, X_{n+1}, X_{n+2}, \ldots)$, and recall Exercise 9. b) Use Exercise 16 c). By the way, Exercise 16 is quite easy if you followed the Friday April 30 course.

16. Backward martingales.

Let $(\mathcal{F}_{-n})_{n\geq 0}$ be a family of sub- σ -fields which is *decreasing* in the following sense:

$$\mathcal{F}_0 \supseteq \mathcal{F}_{-1} \supseteq \mathcal{F}_{-2} \supseteq \dots$$

For an integrable \mathcal{F}_0 -measurable random variable Z, put

$$M_{-n} := \mathbf{E}[Z \,|\, \mathcal{F}_{-n}].$$

Show that

a) $(M_{-n}, M_{-n+1}, \ldots, M_0)$ is a martingale with respect to the filtration $(\mathcal{F}_{-n}, \mathcal{F}_{-n+1}, \ldots, \mathcal{F}_0)$,

b)
$$\mathbf{E}U_n \le \frac{|a| + \mathbf{E}|Z|}{b-a}$$

where a < b, and U_n is the number of [a, b]-upcrossings of the path $(M_{-n}, M_{-n+1}, \ldots, M_0)$,

c) M_{-n} converges a.s. as $n \to \infty$.