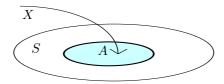
σ -algebras, measurable mappings, and σ -fields of events

Recall our logo of Elementare Stochastik, see [KW] p. 3:



For certain subsets $A \subset S$, we considered the *events* $\{X \in A\}$, and assigned to them *probabilities* in a consistent (countably additive) way. If S is countable, it does not cause trouble to do this for *all* subsets A of S. If, however, S is uncountable, it turns out that admitting *all* subsets A of S would exclude any non-trivial theory. One thus restricts to a (large enough) class of "interesting" subsets of S. Here and below, S is always a non-empty set.

Definition: A collection \mathfrak{S} of subsets of S is called a σ -algebra on $S :\iff$ (i) $S \in \mathfrak{S}$, (ii) together with A, also $S \setminus A =: A^c \in \mathfrak{S}$,

(ii) together with A_1, A_2, \dots , also $\bigcup_{i=N} A_i \in \mathfrak{S}$.

The pair (S, \mathfrak{S}) is then called a *measurable space*. A subset A of S is called \mathfrak{S} -measurable if it belongs to \mathfrak{S}^{1}

Usually, a collection \mathfrak{C} of subsets of S is specified which one wants to have in \mathfrak{S} by all means. Then \mathfrak{S} can be defined as the smallest of all σ -algebras on S that contain \mathfrak{C} as a sub-collection. This is called the σ -algebra generated by \mathfrak{C} (on S), and denoted by the symbol $\sigma(\mathfrak{C})$.

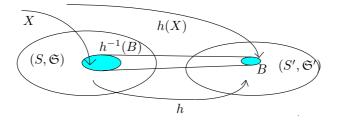
The most prominent example is the σ -algebra of Borel sets² on \mathbb{R} , usually denoted by \mathcal{B} . It is generated by the collection of all intervals on the real line.

The only upgrade of our basic logo (see top of this page) was to endow S with a σ -algebra \mathfrak{S} . Also, the figure in [KW] page 19 needs an upgrade, as shown on next page.

We consider two measurable spaces (S, \mathfrak{S}) , (S', \mathfrak{S}') , and a mapping $h : S \to S'$. We want h(X) to be an S'-valued random variable, with the equality $\{h(X) \in B\} = \{X \in h^{-1}(B)\}$ for all $B \in \mathfrak{S}'$. So there is a requirement on h:

For all $B \in \mathfrak{S}'$, the preimage $h^{-1}(B)$ must belong to \mathfrak{S} .

A mapping h with this property is called $(\mathfrak{S}-\mathfrak{S}'-)$ measurable.



¹Note that we are here speaking of measurability before speaking of any concrete measure. The idea is that σ -algabras are good candidates for collections of subsets on which measures can be defined.

Handout 1

 $^{^{2}}$ named after Émile Borel (1873-1956)

The collection of events

$$\mathcal{F}(X) := \{\{X \in A\} : A \in \mathfrak{S}\}$$

is called the σ -field of events generated by X. It has the following properties:

(i) it contains the *certain event* and the *impossible event*³,

- (ii) together with an event E, it contains also the complementary event E^c ,
- (iii) together with a countable family of events E_1, E_2, \ldots , it contains also their "union" $\bigcup E_i$.

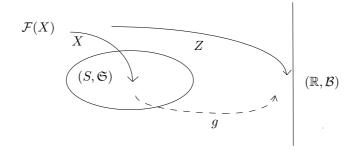
Any collection of events with the properties (i)-(iii) is called a σ -field of events. Henceforth we work with a basic σ -field \mathcal{A} of events, assuming that \mathcal{A} contains the σ -fields generated by all the random variables that come into play.

Any σ -field \mathcal{F} of events with the property $\mathcal{F} \subset \mathcal{A}$ is briefly called a *sub-\sigma-field* ("Teilfeld").

Let \mathcal{F} be a sub- σ -field, and Z be a random variable. Z is called \mathcal{F} -measurable if $\mathcal{F}(Z) \subset \mathcal{F}$.

Intuitively, this means that all possible information about Z is contained in \mathcal{F} . For example, with an arbitrary S-valued random variable X, a random variable Z of the form Z = h(X) is $\mathcal{F}(X)$ -measurable. (Indeed, $\{h(X) \in B\} = \{X \in h^{-1}(B)\} \in \mathcal{F}(X)$ for all $B \in \mathfrak{S}$.) At least for real-valued Z, also the converse is true:

If a real-valued random variable Z is $\mathcal{F}(X)$ -measurable, then it is of the form Z = g(X) for some measurable mapping $g: S \to \mathbb{R}$.



³denoted by Ω and \emptyset , respectively