Übungen zu "Stochastische Modelle der Populationsgenetik"

8. Sei (X_i) ein zeitlich inhomogener Münzwurf, mit $p_i := \mathbf{P}(X_i = 1) := \frac{1}{i}$ für $i = 1, 2, \ldots$ Zeigen Sie: Für die Anzahl K von Erfolgen bei den ersten n Würfen gilt

 $P(K = k) = s_n^{(k)}/n!, \qquad k = 1, ..., n.$

Dabei ist $s_n^{(k)}$ die Anzahl der *n*-Permutationen mit k Zyklen. (Tipp: Stellen Sie eine Beziehung zur Hoppe-Urne her.)

- **9.** Es seien Z_1, \ldots, Z_K die Größen der absteigend nach ihrem Alter geordneten Allele in einer Stichprobe vom Umfang n im Infinite-Alleles-Modell. Der Einfachheit halber betrachten wir den Fall $\theta = 1$. Begründen Sie: Z_1 ist uniform verteilt auf $\{1, \ldots, n\}$; gegeben $Z_1 = z$ mit z < n ist Z_2 uniform verteilt auf $\{1, \ldots, n-z\}$; u. s. w.
- 10. Rekapitulieren Sie, warum ein Standard-Yule Prozess, der zur Zeit 0 mit einem Individuum startet, zur Zeit t eine $\text{Geom}(e^{-t})$ -verteilte Größe hat.
- 11. $T_1 < T_2 < \cdots$ seien die Punkte eines homogenen Poissonprozesses auf \mathbb{R}_+ mit Intensität $\theta > 0$. Zu den Zeiten T_i starten unabhängige Standard-Yule Prozesse. Für t > 0 sei $K_t := \max\{i : T_i < t\}$ und (für $1 \le i \le K_t$) sei Z_t^i die Größe des i-ten Yule-Prozesses zur Zeit t. Begründen Sie, dass für jedes t > 0 und $n \in \mathbb{N}$ gilt:
- a) Gegeben $\sum_{i:T_i < t} Z_t^i = n$ ist $(Z_t^1, \dots, Z_t^{K_t})$ so verteilt wie die nach ihrem Alter geordneten Allelgrößen in einer n-Stichprobe im Infinite Alleles Modell.
- b) Für $j=1,2,\ldots$ sei $B_j(t)$ die Anzahl der i aus $\{1,\ldots,K_t\}$ mit $Z_t^i=j$. Zeigen Sie: Die $B_j(t)$ sind unabhängige Poissonverteilte Zufallsvariable mit Parameter $\frac{\theta}{j}(1-e^{-t})^j$. (Hinweis: Denken Sie sich die Punkte T_i "markiert" mit Z_t^i und verwenden Sie einen bekannten Satz über das "unabhängige Markieren" von Poissonpunkten.)

Folgern Sie aus a) und b) (mit Grenzübergang $t \to \infty$): Sind B_1, \ldots, B_n unabhängig mit Pois $(\frac{\theta}{j})$ -verteiltem B_j , dann ist die unter $\{\sum_{j=1}^n jB_j = n\}$ bedingte Verteilung von (B_1, \ldots, B_n) gleich der Ewens (n, θ) -Verteilung.