Vorlesung 3b

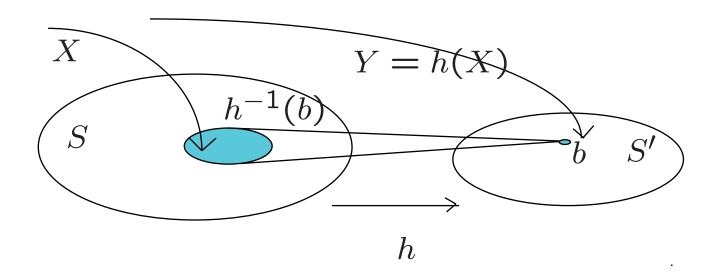
Indikatorvariable und Ereignisse,

und das Rechnen mit Wahrscheinlichkeiten.

1. Verschiedene Darstellungen eines Ereignisses

Wir wissen schon:

Ein- und dasselbe Ereigniss kann man auf verschiedene Weise darstellbar:



$${Y = b} = {h(X) = b} = {X \in h^{-1}(B)}$$

Beispiel 1:

Sei $X = (X_1, X_2)$ das Paar der Augenzahlen beim zweimaligen (gewöhnlichen) Würfeln.

$$\{X_1 = 3\}$$

$$= \{(X_1, X_2) \in \{(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)\}\}$$

$$\{X_1 + X_2 = 3\} = \{(X_1, X_2) \in \{(1, 2), (2, 1)\}\}$$

Beispiel 2: Kollisionen (vgl. Vorlesung 1b):

Wir stellen uns vor, dass die Individuen der Reihe nach ihr Kennzeichen bekommen.

 X_i ... zufälliges Kennzeichen des i-ten Individuums T sei der Moment der ersten Kollision:

$$T = \min\{i \geq 1 : X_i = X_j \text{ für ein } j < i\}$$
.

Dann gilt für das Ereignis

"keine Kollision unter den ersten n Individuen":

$$\{X_i \neq X_j \text{ für } j < i \le n\} = \{T > n\} .$$

Allgemeiner gilt

für die "Verarbeitung" h(X) einer Zufallsvariablen X:

$${h(X) \in B} = {X \in h^{-1}(B)}.$$

Ereignisse und Indikatorvariable (Reprise)

Wir erinnern an eine Definition aus Vorlesung 3a (vgl. Buch S. 36-38):

Für eine Zufallsvariable X mit Wertebereich S und $A \subset S$ betrachten wir die Zufallsvariable $\mathbf{1}_A(X)$.

Sie nimmt den Wert 1 an, wenn das Ereignis $\{X \in A\}$ eintritt, und den Wert 0, wenn das Ereignis $\{X \in A^c\}$ eintritt.

$$I_{\{X \in A\}} := \mathbf{1}_A(X)$$

heißt *Indikatorvariable* des Ereignisses $\{X \in A\}$.

$${X \in A} = {I_{{X \in A}} = 1},$$

Für jedes Ereignis E gilt: $E = \{I_E = 1\}$.

Ereignisse sind gleich,

wenn das für ihre Indikatorvariablen zutrifft.

3. Sicheres und unmögliches Ereignis

Für jede S-wertige Zufallsvariable X gilt:

$$I_{\{X \in S\}} = \mathbf{1}_S(X)$$

ist eine Zufallsvariable, die "sicher" auf den Ausgang 1 fällt.

$$I_{\{X\in\varnothing\}}=\mathbf{1}_\varnothing(X)$$

ist eine Zufallsvariable, die "sicher" auf den Ausgang 0 fällt.

Das sichere Ereignis E_S ist dadurch charakterisiert, dass seine Indikatorvariable sicher den Wert 1 annimmt.

$$I_{E_{\rm S}} = 1$$

Das unmögliche Ereignis E_{u} ist dadurch charakterisiert, dass seine Indikatorvariable sicher den Wert 0 annimmt:

$$I_{E_{\Pi}} = 0.$$

4. Verknüpfungen und Beziehungen von Ereignissen

Für zwei Ereignisse E_1, E_2

hat deren "Oder-Ereignis" die Indikatorvariable

$$I_{E_1 \cup E_2} := \max(I_{E_1}, I_{E_2})$$

und deren "Und-Ereignis" die Indikatorvariable

$$I_{E_1 \cap E_2} := \min(I_{E_1}, I_{E_2}).$$

Man spricht auch von "Vereinigung" und "Durchschnitt" der Ereignisse E_1 und E_2 .

Für
$$b_1, b_2 \in \{0, 1\}$$
 gilt die Identität:
 $b_1 + b_2 = \max(b_1, b_2) + \min(b_1, b_2)$.

Dies überträgt sich auf

$$I_{E_1} + I_{E_2} = I_{E_1 \cup E_2} + I_{E_1 \cap E_2}$$

Falls

$$E_1 \cap E_2 = E_{\mathsf{u}} \; ,$$

so heißen E_1 und E_2 disjunkte oder sich ausschließende Ereignisse.

Gilt $E_1 = E_1 \cap E_2$, so schreiben wir

 $E_1 \subset E_2$.

und sagen:

"Mit E_1 tritt sicher auch E_2 ein"

oder auch

"Das Ereignis E_1 zieht das Ereignis E_2 nach sich."

Für jedes Ereignis E ist sein Komplementärereignis

$$E^{c}$$

definiert durch

$$I_{E^c} := 1 - I_E$$
 bzw. $E^c := \{I_E = 0\}$.

Wegen
$$1_{A^c} = 1 - 1_A$$
 gilt

$${X \in A}^c = {X \in A^c}.$$

5. Die Aussage X = Y und das Ereignis $\{X = Y\}$

Seien X, Y Zufallsvariable mit demselben Wertebereich S.

$$D := \{(x, y) \in S^2 : x = y\}$$
, die "Diagonale" in S^2 .

$$\{X = Y\} := \{(X, Y) \in D\}$$
 bzw.

$$I_{\{X=Y\}} = \mathbf{1}_D(X,Y)$$

Es gilt:

$$X = Y \Leftrightarrow \{X = Y\} = E_{S}$$

Für reellwertige Zufallsvariable X, Y setzen wir

$${X \le Y} := {(X, Y) \in H}$$

mit
$$H := \{(x, y) \in \mathbb{R}^2 : x \le y\},\$$

der Halbraum über (und einschließlich) der Diagonalen.

Wir schreiben

$$X \leq Y \quad :\Leftrightarrow \quad \{X \leq Y\} = E_{S} .$$

5. Das Rechnen mit Wahrscheinlichkeiten.

Für Indikatorvariablen und Ereignisse gilt die Beziehung

$$E[Z] = P(Z = 1),$$

 $E[I_E] = P(I_E = 1) = P(E).$

Aus dem Rechnen mit Indikatorvariablen und aus der Linearität des Erwartungswertes ergeben sich die Regeln für das Rechnen mit Wahrscheinlichkeiten (Buch S. 57-58):

(i)
$$P(E_S) = 1$$
, $P(E_U) = 0$.

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$

Die Formel (ii) sieht man aus der Identität

$$I_{E_1} + I_{E_2} = I_{E_1 \cup E_2} + I_{E_1 \cap E_2}$$

zusammen mit der Linearität des Erwartungswertes.

(i)
$$P(E_S) = 1$$
, $P(E_U) = 0$.

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$
, insbesondere $P(E_1 \cup E_2) \le P(E_1) + P(E_2)$.

(iii) $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ falls E_1 und E_2 disjunkt.

(iv)
$$P(E^c) = 1 - P(E)$$
.

(v) $P(E_1) \leq P(E_2)$, falls $E_1 \subset E_2$.

6. Die Einschluss-Ausschluss-Formel

Die Eigenschaft

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$

bzw. äquivalent dazu

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

wird verallgemeinert durch die

Einschluss-Ausschluss-Formel:

$$\mathbf{P}(E_1 \cup \cdots \cup E_n)$$

$$= \sum_{i} \mathbf{P}(E_i) - \sum_{i < j} \mathbf{P}(E_i \cap E_j) + \cdots \pm \mathbf{P}(E_1 \cap \cdots \cap E_n).$$

Beweis:

$$1 - I_{E_1 \cup \cdots \cup E_n}$$

fällt genau dann als 0 aus, wenn mindestens eines der I_{E_i} als 1 ausfällt, ist also gleich dem Produkt

$$(1 - I_{E_1}) \cdots (1 - I_{E_n})$$

Ausmultiplizieren ergibt

$$1 - \sum_{i} I_{E_i} + \sum_{i < j} I_{E_i \cap E_j} - \cdots$$

Gehe dann über zum Erwartungswert.

Beispiel (vgl Buch S. 58) $X = (X_1, ..., X_n)$ sei eine rein zufällige Permutation von (1, ..., n).

Was ist die W'keit, dass X mindestens einen Fixpunkt hat?

Sei
$$E_i := \{X_i = i\}$$
 das Ereignis

"X hat Fixpunkt an der Stelle i". Offenbar gilt:

$$P(E_{i_1} \cap \cdots \cap E_{i_k}) = (n-k)!/n!$$
, falls $i_1 < \cdots < i_k$

Mit der E-A-Formel folgt für die gefragte W'keit

$$P(E_1 \cup \cdots \cup E_n) = 1 - \frac{1}{2!} + \cdots \pm \frac{1}{n!}.$$

(Für $n \to \infty$ konvergiert das übrigens gegen $1 - e^{-1}$.)

7. Zwei weitere fundamentale Eigenschaften des Erwartungswerts:

Positivität und Monotonie:

(vgl. Buch S. 55)

Positivität

Für die reellwertige Zufallsvariable X gelte $X \ge 0$. Dann gilt

(i)
$$\mathbf{E}[X] \geq 0$$
,

(ii) E[X] = 0 genau dann, wenn P(X = 0) = 1.

Monotonie

Für reellwertige Zufallsvariable $X_1 \leq X_2$ mit wohldefiniertem Erwartungswert gilt $\mathbf{E}[X_1] \leq \mathbf{E}[X_2].$

Positivität

Für die reellwertige Zufallsvariable X gelte $X \ge 0$. Dann gilt (i) $\mathbf{E}[X] \ge 0$,

(ii) E[X] = 0 genau dann, wenn P(X = 0) = 1.

Wir geben hier einen Beweis nur im diskreten Fall:

"X reellwertig und $X \ge 0$ " ist äquivalent dazu, dass der

Wertebereich von X eine Teilmenge des Intervalls $[0, \infty)$ ist.

Weil X als diskret vorausgesetzt war, existiert eine abzählbare Teilmenge S des Wertebereichs mit

$$P(X \in S) = 1.$$

Positivität

Für die reellwertige Zufallsvariable X gelte $X \ge 0$. Dann gilt (i) $\mathbf{E}[X] > 0$,

(ii) E[X] = 0 genau dann, wenn P(X = 0) = 1.

Für diese Menge S gilt: $S \subset [0, \infty)$. Daraus folgt

$$E[X] = \sum_{a \in S} aP(X = a) = 0 + \sum_{a \in S: a > 0} aP(X = a),$$

Monotonie

Für reellwertige Zufallsvariable $X_1 \leq X_2$ mit wohldefiniertem Erwartungswert gilt $\mathbf{E}[X_1] \leq \mathbf{E}[X_2].$

Beweis:

 $X_1 \leq X_2$ ist gleichbedeutend mit $X_2 - X_1 \geq 0$.

Aus der Positivität und der Linearität des Erwartungswertes

folgt
$$E[X_2] - E[X_1] \ge 0$$
. \square

8. Die Ungleichung von Markov

Beispiel:

X reellwertige Zufallsvariable, c > 0.

Dann gilt
$$c1_{[c,\infty)}(a) \le a$$
, $a \in \mathbb{R}_+$ und daher $cI_{\{|X| \ge c\}} = cI_{\{|X| \in [c,\infty)\}} = c1_{[c,\infty)}(|X|) \le |X|$.

Aus Linearität und Monotonie des Erwartungswertes folgt:

$$c\mathbf{E}[I_{\{|X|>c\}}] \le \mathbf{E}[|X|]$$

$$\mathbf{P}(|X| \ge c) \le \frac{1}{c} \mathbf{E}[|X|]$$

Dies ist die Ungleichung von Markov.