Übungen zur Vorlesung "Elementare Stochastik"

Ausgabe am 24. Juni 2014

- **41 S.** In einer Serie von Buchstaben aus dem Alphabeth A, B, C kommen die Buchstaben unabhängig, und zwar mit den Wahrscheinlichkeiten $\rho(A) = 1/5$, $\rho(B) = 2/5$, $\rho(C) = 2/5$.
- (i) Mit welcher Wahrscheinlichkeit erscheint das Muster AAB, bevor das Muster ABC erscheint?
- (ii) Was ist die erwartete Anzahl der Buchstaben, bis erstmals das Muster AB erscheint? (Zur Verdeutlichung: Kommt gleich das Muster AB, dann fällt diese Anzahl als 2 aus.)
- **42 S.** Es sei $S := \{0, 1, ..., 10\} \times \{0, 1, ..., 10\}$. Von jedem $a \in S$ wählt man für den nächsten Schritt rein zufällig eines unter denjenigen $b \in S$, die einen euklidischen Abstand von a hat, der echt zwischen 0 und 2 liegt. Dadurch entsteht eine Markovkette. Berechnen Sie deren Gleichgewichtsverteilung.
- **43.** Unter einer Nordostwanderung à la Pólya wollen wir eine Markovkette auf \mathbb{N}^2 mit Übergangswahrscheinlichkeiten $P((k,\ell),(k+1,\ell))=\frac{k}{k+\ell}$ und $P((k,\ell),(k,\ell+1))=\frac{\ell}{k+\ell}$ verstehen. Demgegenüber sei eine gewöhnliche Nordost-Irrfahrt eine Markovkette auf \mathbb{N}^2 mit Übergangswahrscheinlichkeiten $P((k,\ell),(k+1,\ell))=P((k,\ell),(k,\ell+1))=1/2$. Es sei V eine Nordostwanderung à la Pólya und W eine gewöhnliche Nordost-Irrfahrt, jeweils mit Start in (1,1).
- a) Begründen Sie, warum für jedes $n \in \mathbb{N}$ und jedes $k \in \{0, ..., n\}$ die bedingte Verteilung von $(V_0, V_1, ..., V_n)$, gegeben $\{V_n = (1 + k, 1 + (n k))\}$ übereinstimmt mit der bedingte Verteilung von $(W_0, W_1, ..., W_n)$, gegeben $\{W_n = (1 + k, 1 + (n k))\}$.
- b) U, U_1, U_2, \ldots seien unabhängige, auf [0,1] uniform verteilte Zufallsvariable. Aufgabe 38 legt nahe, dass die zufällige Folge $Z_n := I_{\{U_n < U\}}, n = 1, 2, \ldots$ so verteilt ist wie die Folge der Zähler der Nordschritte in einer Nordostwanderung à la Pólya. Nehmem Sie das als bewiesen an. Was lässt sich daraus über das Konvergenzverhalten der relativen Anzahl der Nordschritte einer Nordostwanderung à la Pólya folgern?
- **44.** T sei eine Zufallsgröße ("Lebensdauer") mit Werten in $0, 1, 2, \ldots$

$$\theta(n) = \mathbf{P}(T = n \,|\, T \geq n) =$$
 "die Ausfallrate zur Zeit n ".

- a) Beweisen Sie, dass $\mathbf{P}(T=n) = \theta(n) \cdot \prod_{k=0}^{n-1} (1 \theta(k)).$
- b) Berechnen Sie $\theta(\cdot)$ für den Fall, dass T geometrisch verteilt ist.

Extraaufgabe $f:[0,1] \to \mathbb{R}$ sei stetig.

Es sei X_1, X_2, \ldots eine Münzwurffolge zum Parameter p, und $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ die relative Häufigkeit der Erfolge in den ersten n Würfen.

- a) Zeigen Sie, dass für jedes n die Abbildung $B_n: p \mapsto \mathbb{E}_p f(\overline{X}_n)$ ein Polynom auf [0,1] ist. $(B_n$ heißt Bernsteinpolynom auf [0,1] vom Grad n).
- b) Zeigen Sie unter Benützung der Chebyshev-Ungleichung und der gleichmäßigen Stetigkeit von f, dass B_n für $n \to \infty$ gleichmäßig gegen f konvergiert (d.h. dass $\sup_{p \in [0,1]} |B_n(p) f(p)|$ für $n \to \infty$ gegen Null konvergiert).
- c) Gratulation, Sie haben soeben den Approximationssatz von Weierstraß bewiesen, der da lautet: "Zu jeder auf einem kompakten Intervall [a,b] stetigen Funktion f existiert eine Folge B_1, B_2, \ldots von Polynomen, die gleichmäßig in [a,b] gegen f konvergiert." Wieso stellt die Wahl $a=0,\ b=1$ keinen Verlust der Allgemeinheit dar?