Übungen zur Vorlesung "Elementare Stochastik"

Ausgabe am 17. Juni 2014

- **37 S.** X_1, X_2, \ldots seien unabhängig und standard-exponentialverteilt, $T_n := X_1 + \cdots + X_n$.
- i) Zeigen Sie mit Induktion: Die Dichte von T_n ist $\frac{1}{(n-1)!}a^{n-1}e^{-a} da$.
- ii) Berechnen Sie (nach dem in der Vorlesung vorgestellen Muster) die bedingte Dichte von T_2 gegeben $\{T_5 = b\}$. Was ergibt sich speziell für b = 1?
- iii) Berechnen Sie den bedingten Erwartungswert von T_2 gegeben $\{T_5 = b\}$. Sie dürfen dabei verwenden, dass (auch) bedingt unter $\{T_5 = b\}$ die Zufallsvariablen X_1, \ldots, X_5 identisch verteilt sind.
- **38.** U, U_1, U_2, \ldots seien unabhängige, auf [0, 1] uniform verteilte Zufallsvariable. Wir betrachten das Ereignis $E := \{U_1 \geq U, U_2 \geq U, U_3 < U, U_4 < U, U_5 < U, U_6 \geq U, U_7 \geq U\}$. Berechnen Sie (i) $\mathbf{P}(E)$, (ii) $\mathbf{P}(\{U_8 \geq U\}|E)$.

Hinweis zu (i): Wie wahrscheinlich ist bei einer rein zufälligen Permutation Π von $0, 1, \dots, 7$ das Ereignis $\{\Pi(0) = 3\}$? Was hat dieses Ereignis mit dem Ereignis E zu tun?

- **39 S.** Es sei $(Z_1, Z_2, ...)$ ein Münzwurf mit zufälligem, uniform auf [0, 1] verteiltem Parameter, und es sei $T := \min\{n : Z_n = 1\}$ der Zeitpunkt des ersten Erfolgs.
- a) Finden Sie $P(Z_n = 1 | Z_1 = \dots Z_{n-1} = 0), n = 2, 3, \dots$

(Hinweis: Stellen Sie Z_i - wie in der Vorlesung gelernt - in der Form $I_{\{U_i < U\}}$ dar.)

- b) Berechnen Sie die Verteilungsgewichte und den Erwartungswert von T.
- 40. In zwei verschlossenen Schachteln liegen jeweils m bzw. n Euro, wobei man von m und n erst einmal nur weiß, dass es zwei verschiedene natürliche Zahlen sind. Lea behauptet: "Ich kenne eine Methode, mit der ich nach Öffnen einer rein zufällig ausgewählten Schachtel, ohne Öffnen der anderen Schachtel, mit Wahrscheinlichkeit > 1/2 richtig entscheide, ob das die Schachtel mit dem kleineren Betrag ist." Jakob ist bass erstaunt und kann das kaum glauben. Lea wird konkreter. "Sagen wir, in der geöffneten Schachtel sind X Euro. Ich werfe eine faire Münze so oft, bis zum ersten Mal Kopf kommt und wähle V als die Anzahl meiner Würfe. Ist V > X, dann sage ich, dass in der gewählten Schachtel der kleinere Betrag ist." Hat Lea recht?

Gehen Sie bei der Beantwortung folgendermaßen vor. Sei $k := \min(m, n)$. Zeigen Sie für die Ereignisse $E_1 := \{X = k\}$ und $E_2 := \{V > X\}$:

- a) $\mathbf{P}(E_2|E_1) > \mathbf{P}(E_2)$.
- b) Die beiden Indikatorvariablen I_{E_1} und I_{E_2} sind positiv korreliert.
- c) $\mathbf{P}(E_1|E_2) > \mathbf{P}(E_1)$.

Und wieder ist hier eine zur Bearbeitung empfohlene **Extraaufgabe**: Z_1, Z_2, Z_3 seien unabhängige und standard-normalverteilte Zufallsvariable auf \mathbb{R} , und \vec{Z} sei der zufällige Vektor in \mathbb{R}^3 mit Standardkoordinaten Z_1, Z_2, Z_3 . Es sei $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ eine Orthonormalbasis in \mathbb{R}^3 .

- a) Warum sind die $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ -Koordinaten von \vec{Z} unabhängig und standard-normalverteilt? Geben Sie eine anschauliche Begründung ohne formalen Beweis.
- b) Warum sind $\bar{Z} := \frac{1}{3}(Z_1 + Z_2 + Z_3)$ und $Y := (Z_1 \bar{Z})^2 + (Z_2 \bar{Z})^2 + (Z_3 \bar{Z})^2$ unabhängig? Warum ist Y so verteilt wie die Summe der Quadrate von zwei unabhängigen, standard-normalverteilten Zufallsvariablen? (Hinweis: Durch geschickte Wahl von \vec{v}_1 wird das mit Rückgriff auf Teil a) ganz einfach!)