Vorlesung 4b

Indikatorvariable und Ereignisse.

Das Rechnen mit Erwartungswerten und Wahrscheinlichkeiten.

Seien X, Y Zufallsvariable mit demselben Wertebereich S.

$$D := \{(x, y) \in S^2 : x = y\}$$
, die "Diagonale" in S^2 .

Seien X, Y Zufallsvariable mit demselben Wertebereich S.

$$D := \{(x, y) \in S^2 : x = y\}$$
, die "Diagonale" in S^2 .

$${X = Y} := {(X, Y) \in D}$$

Seien X, Y Zufallsvariable mit demselben Wertebereich S.

$$D := \{(x, y) \in S^2 : x = y\}$$
, die "Diagonale" in S^2 .

$${X = Y} := {(X, Y) \in D}$$

bzw.

$$I_{\{X=Y\}} = \mathbf{1}_D(X,Y)$$

Für reellwertige Zufallsvariable X, Y setzen wir

$${X \le Y} := {(X, Y) \in H}$$

mit dem Halbraum $H := \{(x, y) \in \mathbb{R}^2 : x \leq y\}.$

Wir schreiben

$$X \leq Y \quad :\Leftrightarrow \quad \{X \leq Y\} = E_{\mathsf{S}} \ .$$

Bringen wir jetzt wieder Wahrscheinlichkeiten ins Spiel.

Für Indikatorvariablen Z und Ereignisse E gelten die Beziehungen

$$E[Z] = P(Z = 1),$$

Für Indikatorvariablen Z und Ereignisse E gelten die Beziehungen

$$E[Z] = P(Z = 1),$$

 $E[I_E] = P(I_E = 1) = P(E).$

Für Indikatorvariablen Z und Ereignisse E gelten die Beziehungen

$$E[Z] = P(Z = 1),$$

 $E[I_E] = P(I_E = 1) = P(E).$

Aus dem Rechnen mit Indikatorvariablen und aus der Linearität des Erwartungswertes ergeben sich die Regeln für das Rechnen mit Wahrscheinlichkeiten (Buch S. 57-58):

(i)
$$P(E_S) = 1$$
, $P(E_U) = 0$.

(i)
$$P(E_S) = 1$$
, $P(E_U) = 0$.

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$
, insbesondere $P(E_1 \cup E_2) \le P(E_1) + P(E_2)$.

(i)
$$P(E_S) = 1$$
, $P(E_U) = 0$.

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$
, insbesondere $P(E_1 \cup E_2) \le P(E_1) + P(E_2)$.

(iii)
$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

falls E_1 und E_2 disjunkt.

(i)
$$P(E_S) = 1$$
, $P(E_U) = 0$.

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$
, insbesondere $P(E_1 \cup E_2) \le P(E_1) + P(E_2)$.

(iii)
$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

falls E_1 und E_2 disjunkt.

(iv)
$$P(E^c) = 1 - P(E)$$
.

(i)
$$P(E_S) = 1$$
, $P(E_U) = 0$.

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$
, insbesondere $P(E_1 \cup E_2) \le P(E_1) + P(E_2)$.

(iii) $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ falls E_1 und E_2 disjunkt.

(iv)
$$P(E^c) = 1 - P(E)$$
.

(v) $P(E_1) \leq P(E_2)$, falls $E_1 \subset E_2$.

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$

Zum Beweis verwendet man die Identität

$$I_{E_1} + I_{E_2} = I_{E_1 \cup E_2} + I_{E_1 \cap E_2}$$

(ii)
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$

Zum Beweis verwendet man die Identität

$$I_{E_1} + I_{E_2} = I_{E_1 \cup E_2} + I_{E_1 \cap E_2}$$

(ii) wird verallgemeinert durch die

Einschluss-Ausschluss-Formel:

$$\mathbf{P}(E_1 \cup \cdots \cup E_n)$$

$$= \sum_{i} \mathbf{P}(E_i) - \sum_{i < j} \mathbf{P}(E_i \cap E_j) + \cdots \pm \mathbf{P}(E_1 \cap \cdots \cap E_n).$$

$$1 - I_{E_1 \cup \cdots \cup E_n}$$

fällt genau dann als 0 aus,

$$1 - I_{E_1 \cup \cdots \cup E_n}$$

fällt genau dann als 0 aus,

wenn mindestens eines der I_{E_i} als 1 ausfällt,

$$1 - I_{E_1 \cup \cdots \cup E_n}$$

fällt genau dann als 0 aus,

wenn mindestens eines der I_{E_i} als 1 ausfällt,

ist also gleich dem Produkt

$$(1 - I_{E_1}) \cdots (1 - I_{E_n})$$

$$1 - I_{E_1 \cup \cdots \cup E_n}$$

fällt genau dann als 0 aus,

wenn mindestens eines der I_{E_i} als 1 ausfällt,

ist also gleich dem Produkt

$$(1 - I_{E_1}) \cdots (1 - I_{E_n})$$

Ausmultiplizieren ergibt

$$1 - \sum_{i} I_{E_i} + \sum_{i < j} I_{E_i \cap E_j} - \cdots$$

$$1 - I_{E_1 \cup \cdots \cup E_n}$$

fällt genau dann als 0 aus,

wenn mindestens eines der I_{E_i} als 1 ausfällt,

ist also gleich dem Produkt

$$(1 - I_{E_1}) \cdots (1 - I_{E_n})$$

Ausmultiplizieren ergibt

$$1 - \sum_{i} I_{E_i} + \sum_{i < j} I_{E_i \cap E_j} - \cdots$$

Gehe dann über zum Erwartungswert.

Beispiel (vgl Buch S. 58) $X = (X_1, ..., X_n)$ sei eine rein zufällige Permutation von (1, ..., n).

Was ist die W'keit, dass X mindestens einen Fixpunkt hat?

Beispiel (vgl Buch S. 58) $X = (X_1, ..., X_n)$ sei eine rein zufällige Permutation von (1, ..., n).

Was ist die W'keit, dass X mindestens einen Fixpunkt hat?

Sei $E_i := \{X_i = i\}$ das Ereignis

"X hat Fixpunkt an der Stelle i". Offenbar gilt:

$$P(E_{i_1} \cap \cdots \cap E_{i_k}) = (n-k)!/n!$$
, falls $i_1 < \cdots < i_k$

Beispiel (vgl Buch S. 58) $X = (X_1, \dots, X_n)$ sei eine rein zufällige Permutation von $(1, \dots, n)$.

Was ist die W'keit, dass X mindestens einen Fixpunkt hat?

Sei
$$E_i := \{X_i = i\}$$
 das Ereignis

"X hat Fixpunkt an der Stelle i". Offenbar gilt:

$$P(E_{i_1} \cap \cdots \cap E_{i_k}) = (n-k)!/n!$$
, falls $i_1 < \cdots < i_k$

Mit der E-A-Formel folgt für die gefragte W'keit

$$P(E_1 \cup \cdots \cup E_n) = 1 - \frac{1}{2!} + \cdots \pm \frac{1}{n!}.$$

Beispiel (vgl Buch S. 58) $X = (X_1, \dots, X_n)$ sei eine rein zufällige Permutation von $(1, \dots, n)$.

Was ist die W'keit, dass X mindestens einen Fixpunkt hat?

Sei
$$E_i := \{X_i = i\}$$
 das Ereignis

"X hat Fixpunkt an der Stelle i". Offenbar gilt:

$$P(E_{i_1} \cap \cdots \cap E_{i_k}) = (n-k)!/n!$$
, falls $i_1 < \cdots < i_k$

Mit der E-A-Formel folgt für die gefragte W'keit

$$P(E_1 \cup \cdots \cup E_n) = 1 - \frac{1}{2!} + \cdots \pm \frac{1}{n!}.$$

(Für $n \to \infty$ konvergiert das übrigens gegen $1 - e^{-1}$.)

(Buch S. 54)

Positivität

Für die reellwertige Zufallsvariable X gelte $X \geq 0$. Dann gilt

(i)
$$\mathbf{E}[X] \geq 0$$
,

(ii) E[X] = 0 genau dann, wenn P(X = 0) = 1.

(Buch S. 54)

Positivität

Für die reellwertige Zufallsvariable X gelte $X \geq 0$. Dann gilt

(i)
$$\mathbf{E}[X] \geq 0$$
,

(ii) E[X] = 0 genau dann, wenn P(X = 0) = 1.

Monotonie

Für reellwertige Zufallsvariable $X_1 \leq X_2$

mit wohldefiniertem Erwartungswert gilt

$$\mathbf{E}[X_1] \leq \mathbf{E}[X_2].$$

(Buch S. 54)

Positivität

Für die reellwertige Zufallsvariable X gelte $X \geq 0$. Dann gilt

(i)
$$\mathbf{E}[X] \geq 0$$
,

(ii) E[X] = 0 genau dann, wenn P(X = 0) = 1.

(Buch S. 54)

Positivität

Für die reellwertige Zufallsvariable X gelte $X \geq 0$. Dann gilt

(i)
$$E[X] \ge 0$$
,

(ii) E[X] = 0 genau dann, wenn P(X = 0) = 1.

Wir geben hier einen Beweis nur im diskreten Fall:

 $X \ge 0$ ist gleichbedeutend mit $\{X < 0\} = E_{\mathsf{U}}$.

 $X \ge 0$ ist gleichbedeutend mit $\{X < 0\} = E_{\mathsf{U}}$.

Für alle $a \in S$ mit a < 0 gilt dann $\{X = a\} \subset E_{U}$,

 $X \ge 0$ ist gleichbedeutend mit $\{X < 0\} = E_{U}$.

Für alle $a \in S$ mit a < 0 gilt dann $\{X = a\} \subset E_{\mathsf{U}}$, also insbesondere $\mathbf{P}(X = a) = 0$.

 $X \ge 0$ ist gleichbedeutend mit $\{X < 0\} = E_{\mathsf{u}}$.

Für alle $a \in S$ mit a < 0 gilt dann $\{X = a\} \subset E_{\mathsf{U}}$,

also insbesondere P(X = a) = 0.

Daraus folgt

$$\mathbf{E}[X] = \sum_{\{a \in S: a \le 0\}} a\mathbf{P}(X = a) + \sum_{\{a \in S: a > 0\}} a\mathbf{P}(X = a)$$

 $X \ge 0$ ist gleichbedeutend mit $\{X < 0\} = E_{\mathsf{U}}$.

Für alle $a \in S$ mit a < 0 gilt dann $\{X = a\} \subset E_{\mathsf{U}}$,

also insbesondere P(X = a) = 0.

Daraus folgt

$$\mathbf{E}[X] = \sum_{\{a \in S: a \le 0\}} a\mathbf{P}(X = a) + \sum_{\{a \in S: a > 0\}} a\mathbf{P}(X = a)$$

$$= 0 + \sum_{\{a \in S: a > 0\}} a \mathbf{P}(X = a).$$

 $X \ge 0$ ist gleichbedeutend mit $\{X < 0\} = E_{\mathsf{U}}$.

Für alle
$$a \in S$$
 mit $a < 0$ gilt dann $\{X = a\} \subset E_{\mathsf{U}}$, also insbesondere $\mathbf{P}(X = a) = 0$.

Daraus folgt

$$\mathbf{E}[X] = \sum_{\{a \in S: a \le 0\}} a\mathbf{P}(X = a) + \sum_{\{a \in S: a > 0\}} a\mathbf{P}(X = a)$$

$$= 0 + \sum_{\{a \in S: a > 0\}} a \mathbf{P}(X = a).$$

Monotonie

Für reellwertige Zufallsvariable $X_1 \leq X_2$ mit wohldefiniertem Erwartungswert gilt $\mathbf{E}[X_1] \leq \mathbf{E}[X_2].$

Monotonie

Für reellwertige Zufallsvariable $X_1 \le X_2$ mit wohldefiniertem Erwartungswert gilt $\mathrm{E}[X_1] < \mathrm{E}[X_2].$

Beweis:

 $X_1 \leq X_2$ ist gleichbedeutend mit $X_2 - X_1 \geq 0$.

Aus der Positivität und der Linearität des Erwartungswertes

folgt
$$E[X_2] - E[X_1] \ge 0$$
. \square