Übungen zur Vorlesung "Elementare Stochastik"

Abgabe der Lösungen zu den S-Aufgaben: Freitag, 13. Mai 2011, zu Beginn der Vorlesung

- **9.S** Von 100 Kugeln sind 20 blau, 30 grün und 50 gelb gefärbt. 10 Kugeln werden rein zufällig nacheinander ohne Zurücklegen gezogen.
- a) Welches der beiden Ereignisse ist wahrscheinlicher:
- i) die erste gezogene Kugel ist blau
- ii) die zehnte gezogene Kugel ist blau.
- b) Bestimmen Sie den Erwartungswert der Anzahl der gezogenen blauen Kugeln.
- c) Welches der beiden Ereignisse ist wahrscheinlicher:
- i) 2 der gezogenen Kugeln sind blau, 3 sind grün und 5 sind gelb,
- ii) alle 10 gezogenen Kugeln sind gelb.
- d) Begründen Sie ohne Rechnung die Identität

$$\sum_{(i,j,k)\in\mathbb{N}_0^3:\,i+j+k=10} \binom{20}{i} \binom{30}{j} \binom{50}{k} = \binom{100}{10}$$

- 10. S_1 und S_2 seien zwei endliche Mengen, $X := (X_1, X_2)$ sei eine $S_1 \times S_2$ -wertige Zufallsvariable mit der Eigenschaft, dass X_1 uniform verteilt ist auf S_1 und X_2 uniform verteilt ist auf S_2 .
- a) Ist dadurch die Verteilung von X bereits festgelegt?
- b) Zeigen Sie: (X_1, X_2) ist uniform verteilt auf $S_1 \times S_2$ genau dann, wenn für alle $B_1 \subset S_1$ und $B_2 \subset S_2$ gilt:

$$\mathbf{P}(X \in B_1 \times B_2) = \mathbf{P}(X_1 \in B_1) \cdot \mathbf{P}(X_2 \in B_2).$$

- **11.S** $X := (X_1, \dots, X_{20})$ sei eine rein zufällige Permutation der Zahlen $1, \dots, 20$. Für $i \in \{2, \dots, 19\}$ sagen wir: X hat ein lokales Minimum bei i, falls $X_i = \min(X_{i-1}, X_i, X_{i+1})$.
 - (i) Mit welcher Wahrscheinlichkeit ist X_2 das Kleinste von X_1, X_2 und X_3 ?
 - (ii) Berechnen Sie den Erwartungswert der Anzahl der lokalen Minima von X.
- 12. (Aus: J. Pitman, Probability, 7th ed., Springer 1999.) Suppose that counts (N_1, \ldots, N_r) are the numbers of results in r categories in n repeated trials. So (N_1, \ldots, N_r) has a multinomial distribution with parameters n and p_1, \ldots, p_r . Let $1 \le i < j \le r$. Answer the following questions with an explanation, but no calculation.
- a) What is the distribution of N_i ? b) What is the distribution of $N_i + N_j$?
- c) What is the joint distribution of N_i , N_j , and $n N_i N_j$?