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BLOW-UP OF SEMILINEAR PDE’S AT THE CRITICAL
DIMENSION. A PROBABILISTIC APPROACH

MATTHIAS BIRKNER, JOSÉ ALFREDO LÓPEZ-MIMBELA,

AND ANTON WAKOLBINGER

Abstract. We present a probabilistic approach which proves blow-up of so-

lutions of the Fujita equation ∂w/∂t = −(−∆)α/2w + w1+β in the critical
dimension d = α/β. By using the Feynman-Kac representation twice, we con-

struct a subsolution which locally grows to infinity as t→∞. In this way, we
cover results proved earlier by analytic methods. Our method also applies to
extend a blow-up result for systems proved for the Laplacian case by Escobedo

and Levine [2] to the case of α-Laplacians with possibly different parameters
α.

1. Introduction and overview

Consider the semilinear equation

∂wt
∂t

= ∆αwt + γw1+β
t ,(1.1)

w0 = ϕ,

in Rd, where ∆α := −
(
−∆α/2

)
, 0 < α ≤ 2, denotes the α-Laplacian, β and γ are

positive numbers and the initial condition ϕ is a nonnegative function on Rd.
In Fujita’s pioneering work [4] it was shown (originally for the case α = 2) that

d = α/β is the critical dimension for blow-up of (1.1): if d > α/β then (1.1) admits
a global solution for all sufficiently small initial conditions, whereas if d < α/β, then
for any non-vanishing initial condition the solution is infinite for suitably large t.

For the case d = α/β it was proved by Sugitani [12] by subtle analytic arguments
that (1.1) blows up. Using different, partly probabilistic methods, this was also
proved by Portnoy ([9, 10]) for the special case α = 2, β = 1. Related results on
systems where the space variable is restricted to a bounded domain in Rd can be
found in the recent paper of Wang [13] and the references therein.

In this note we give a short probabilistic proof for blow-up at the critical dimen-
sion, using the Feynman-Kac representation. Here is an outline.

Recall that the solution w of the initial value problem on [0, T )× Rd

∂wt
∂t

= ∆αwt + wtvt,(1.2)
w0 = ϕ,

2000 Mathematics Subject Classification. 60H30, 35K57, 35B35, 60J57.
Key words and phrases. Blow-up of semilinear systems, Feynman-Kac representation, sym-

metric stable processes.

c©1997 American Mathematical Society

1
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with v : [0, T ) × Rd 7→ R+ locally bounded has by the Feynman-Kac formula (cf.
Stroock [11], §4.3, Freidlin [3], Thm. 2.2, or Dynkin [1], Thm. 9.7) a probabilistic
interpretation as the density (with respect to Lebesgue measure on R

d) of the
measure

(1.3)
∫
Ex

[
1 (Wt ∈ dy) exp

∫ t

0

vs(Ws) ds
]
ϕ(x) dx = wt(y) dy

where Ex denotes expectation with respect to the symmetric α-stable process (Wt)
started at W0 = x. This shows in particular that any solution w̃ of (1.2) with v
replaced by ṽ ≤ v and w̃0 = w0 fulfills w̃ ≤ w.

Consider for i = 0, 1, 2 the initial value problems
∂wt,i
∂t

= ∆αwt,i + γwt,iw
β
t,i−1(1.4)

w0,i = ϕ

where wt,−1 = 0. Then ft := wt,0, gt := wt,1 and ht := wt,2 are all subsolutions
of (1.1). Since ft(y) = Ey[ϕ(Wt)], where (Wt) is a symmetric α-stable process,
ft(y) decays like const · t−d/α (see Section 2). Since “typically” fs(Ws) should be
bounded from below by const · s−d/α, and also Px {Wt ∈ dy} ≥ const · t−d/α dy as
long as ‖y − x‖ ≤ t1/α, one should expect (using (1.3) with vs = fβs to express the
solution of (1.4) for i = 1) that

gt(y) =
∫
Ex

[
exp

∫ t

0

fs(Ws)β ds
∣∣∣∣ Wt = y

]
ϕ(x) dx

≥ ct−d/α exp
(

const
∫ t

1

s−dβ/αds

)
= ct−d/α exp (const · log t) ≥ ct−d/α+ε(1.5)

as long as ‖y‖ ≤ t1/α. This intuition can be turned into a proof basically by
applying Jensen’s inequality and scaling arguments.

After dealing in this way in Proposition 2.1 with the case i = 1, we then turn to
the case i = 2 in (1.4). Like gt, also ht = wt,2 has a Feynman-Kac representation,
but now with fβs replaced by gβs in the exponent. By (1.5), the integrand gs(Ws)β

in this exponent should “typically” remain bounded from below by const · s−1+εβ .
Thus we expect that

ht(y) ≥ const · t−d/α exp
(
−c
∫ t

0

s−1+εβds

)
,

and in fact we will prove this in Proposition 2.3. In particular, ht is a subsolution
of (1.1) which locally grows to infinity. This fact suffices to show blow up, as we
will recall in Section 3.

Section 4 comments briefly on the case of subcritical dimensions, and Section 5
on Portnoy’s method. In Section 6 we give some extensions. Apart from re-proving
Sugitani’s result, we show that blow-up of (1.1) with a certain time-dependent
nonlinearity, which was recently proved by Gedda and Kirane [5], arises as an easy
corollary of our probabilistic approach.

In Section 7 we obtain conditions for blow-up of a class of semilinear systems.
We are able to extend a blow-up result of Escobedo and Levine [2] and show blow-
up at the critical dimensions of a system which we were able to analyze before only
in the case of sub– and supercritical dimensions [7, 8].
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2. Constructing subsolutions by the Feynman-Kac formula

In this and the following section we consider d = α/β and prove that (1.1) blows
up in this case. Furthermore assume without loss of generality that the initial
condition ϕ of (1.1) does not vanish a.s. on the unit ball. Let pt(x) denote the
transition density of the symmetric α-stable process, and write

(2.1) ft(y) :=
∫
pt(y − x)ϕ(x) dx = Ey [ϕ(Wt)] .

For all t ≥ 1 we have the inequality

(2.2) ft(y) ≥ c0t
−d/α1B1(t−1/αy)

∫
B1

ϕ(x) dx

for some c0 > 0, where Br denotes the ball in Rd with radius r centered at the
origin. Indeed, let y ∈ Bt1/α . Then we have by the scaling property of Wt

ft(y) = E0 [ϕ(Wt + y)] = E0

[
ϕ
(
t1/α(W1 + t−1/αy)

)]
≥

∫
B1

p1(x− t−1/αy)ϕ(t1/αx) dx ≥ c0
∫
B1

ϕ(t1/αx) dx = c0t
−d/α

∫
B
t1/α

ϕ(x) dx.

This argument also shows that, for sufficiently large t

(2.3) ft(y) ≥ c′0t
−d/α1B1(t−1/αy).

for some c′0 > 0.

2.1. The first iteration: a subsolution with a slow decay. We are going to
obtain a lower bound for the solution gt of

∂gt
∂t

= ∆αgt + γgtf
β
t ,(2.4)

g0 = ϕ,

where ft is defined in (2.1). Since ft is a subsolution of (1.1), gt is a subsolution of
(1.1) as well.
Proposition 2.1. There exist ε, c > 0 such that, for all t ≥ 2 and all y ∈ Rd
obeying ‖y‖ ≤ t1/α,

(2.5) gt(y) ≥ c t−d/α+ε.

Proof. By the Feynman-Kac formula, gt arises as the density of the measure defined
in (1.3) (with vs replaced by fβs ). We therefore have, using (2.2) and Jensen’s
inequality,

gt(y) =
∫
ϕ(x) pt(y − x)Ex

[
exp

∫ t

0

γfs(Ws)β ds
∣∣∣∣Wt = y

]
dx

≥
∫
ϕ(x) pt(y − x)Ex

[
exp

∫ t/2

1

c2s
−βd/α1B

s1/α
(Ws) ds

∣∣∣∣∣Wt = y

]
dx

≥
∫
B1

ϕ(x) pt(y − x) exp

(
c2

∫ t/2

1

s−βd/α Px {Ws ∈ Bs1/α |Wt = y} ds

)
dx

≥ c3t
−d/α exp

(
c4

∫ t/2

1

s−βd/αds

)
(2.6)
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where the last estimate relies on Lemma 2.2 below. (Here and below ci, i = 1, 2, . . .
denote “locally defined” positive constants). The assertion now follows from our
assumption d = α/β. �

The intuition behind the following assertion is clear: conditioning on some “typ-
ical” state at time t does not much affect the behavior of (Wt) between times 0 and
t/2.

Lemma 2.2. There exists a c > 0 such that for all t ≥ 2, y ∈ Bt1/α , x ∈ B1 and
s ∈ [1, t/2],

(2.7) Px {Ws ∈ Bs1/α |Wt = y} ≥ c.

Proof. First note that (2.7) is equivalent to

(2.8)
∫
B
s1/α

ps(z − x)pt−s(y − z) dz ≥ c5pt(y − x).

Next, let us state the following facts, which are easy consequences of the scaling
property of (Wt):

(i) For all z ∈ Bs1/α and r := t− s

pr(y − z) dz = P0

{
r1/αW1 + y ∈ dz

}
≥ inf
a∈B

21/α

P0

{
W1 ∈ 21/αt−1/α dz − a

}
≥ c5t

−d/αdz.

(ii) Similarly, for all z ∈ Bs1/α , ps(z − x) ≥ c6s−d/α.
Combining (i) and (ii) we see that the LHS of (2.8) is bounded from below by

c7t
−d/α. Since pt(·) is bounded above by const · t−d/α the claim is proved. �

2.2. The second iteration: a subsolution growing to infinity. We are now
aiming at a lower estimate for the solution ht of

∂ht
∂t

= ∆αht + htg
β
t ,(2.9)

h0 = ϕ

where gt is the subsolution of (1.1) constructed in the previous subsection. Clearly,
also ht is a subsolution of (1.1).

Proposition 2.3. inf {ht(y) | ‖y‖ ≤ 1} → ∞ as t → ∞, more specifically there
exist constants ε, c′, c′′ > 0 such that

ht(y) ≥ c′t−d/α exp(c′′tεβ)1B1(y).

Proof. We proceed as in the proof of Proposition 2.1. First we note that the
Feynman-Kac formula gives

(2.10) ht(y) =
∫
ϕ(x)pt(y − x)Ex

[
exp

∫ t

0

γgs(Ws)βds
∣∣∣∣Wt = y

]
dx.
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Using Jensen’s inequality and (2.5), we see that the RHS of (2.10) is bounded from
below by∫

ϕ(x)pt(y − x) exp

(
γ

∫ t/2

2

Ex

[
gs(Ws)β

∣∣Wt = y
]
ds

)
dx

≥
∫
B1

ϕ(x)pt(y − x)

· exp

(
γ

∫ t/2

2

cs−βd/α+εβ
Px {Ws ∈ Bs1/α |Wt = y} ds

)
dx(2.11)

≥ c8t
−d/α exp(c9tεβ).(2.12)

Here, we used Lemma 2.2 and the assumption d = α/β in the last inequality. �

3. Completion of the proof of blow-up

From Proposition 2.3 we know that

(3.1) K(t) := inf
x∈B1

wt(x)→∞ as t→∞

where B1 denotes the unit ball. In fact this is enough to guarantee blow-up. Here
is an easy argument which is borrowed from [6] §4, and which we include for con-
venience.

We are going to re-start (1.1) with the initial condition wt0 , with a suitable
choice of t0 given below. Writing ut := wt0+t we first recall the integral form of
(1.1)

(3.2) ut(x) =
∫
pt(y − x)u0(y) dy +

∫ t

0

γ ds

∫
pt−s(y − x)us(y)1+β dy.

Noting that ζ := minx∈B1 min0≤s≤1 Px {Ws ∈ B1} is strictly positive, we obtain for
all t ∈ [0, 1] from (3.1) the estimate

(3.3) min
x∈B1

ut(x) ≥ ζK(t0) + γζ

∫ t

0

(
min
y∈B1

us(y)
)1+β

ds.

Now choose t0 so big that the blow-up time of the equation

(3.4) v(t) = ζK(t0) + γζ

∫ t

0

v(s)1+β ds

is smaller than 1. Then, a fortiori, minx∈B1 u1(x) =∞, which shows blow-up of w.

4. Subcritical dimensions: one iteration suffices

In the case d < α/β, (2.6) shows that already the first subsolution gt (constructed
in Section 2.1) grows to infinity on the unit ball B1 in the sense that inf{gt(y)| ‖y‖ ≤
1} → ∞ as t→∞. Thus, in view of the previous section, for subcritical dimensions
a single application of the Feynman-Kac formula suffices to show blow-up of (1.1).
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5. A remark on Portnoy’s method

Portnoy [9] studies the iteration scheme

vn+1(x) = (Π1vn) (x) + (Π1vn)2 (x)(5.1)
v0 = ϕ ≥ 0

where Π1 is a transition probability on Rd. He shows that under suitable assump-
tions on Π1 (which include the case of a standard Brownian transition probability),
(5.1) admits no bounded solution for d = 1 and d = 2 provided ϕ does not a.s.
vanish.

A closer look on his proofs shows that he achieves this by analyzing subsolutions
v

(i)
n of (5.1) which are given by the scheme

v
(0)
n+1 = Π1v

(0)
n = Πn+1ϕ

v
(i)
n+1 = Π1v

(i)
n +

(
Π1v

(i)
n

)(
Π1v

(i−1)
n

)
, i = 1, 2.(5.2)

The analysis of (5.2) is carried through probabilistically in terms of random walks,
which is much in the spirit of a discrete time Feynman-Kac approach.

It can be extracted from Portnoy’s arguments that, for the Brownian case, say,

(5.3) v(1)
n grows to infinity for d = 1,

and

(5.4) v(2)
n grows to infinity for d = 2.

An easy application of Jensen’s inequality plus induction shows that wn is bounded
from below by vn (where wt is the solution of (1.1) with β = 1). Indeed,

wn = Π1wn−1 +
∫ 1

0

Πsw
2
n−s ds ≥ Π1wn−1 +

(∫ 1

0

Πswn−s ds

)2

≥ Π1wn−1 +
(∫ 1

0

ΠsΠ1−swn−1 ds

)2

≥ Π1vn−1 + (Π1vn−1)2 = vn.

Together with the argument in Section 3 above, (5.3) and (5.4) thus imply blow-up
of w for β = 1 and α = 2 in one and two dimensions. (In [10], a more complicated
argument is used to show wn ≥ vn and the blow-up of w.)

6. Extensions

6.1. Sugitani’s condition. Sugitani [12] considers instead of (1.1) the slightly
more general equation

∂wt
∂t

= ∆αwt + F (wt)(6.1)
w0 = ϕ,

where F : R+ → R+ is increasing and convex, and F (u) ∼ γu1+β as u → 0. This
requires only slight modifications in Section 2:

In (2.4) and below, ft(u)β has to be replaced by F (ft(u))/ft(u), which by as-
sumption can be bounded from below by cft(u)β .

Similarly, in (2.9) and below, gt(u)β has to be replaced by F (gt(u))/gt(u).
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6.2. A time dependent nonlinearity. Recently, Guedda and Kirane [5] showed
by analytic methods blow-up of the equation

(6.2)
∂wt
∂t

= ∆αwt + γtσw1+β
t , w0 = ϕ (≥ 0, 6≡ 0)

for σ ≥ βd/α− 1. This result also follows quickly from our probabilistic approach.
In fact, it suffices to consider the case σ = βd/α− 1.
Lemma 6.1. The solution of

∂wt
∂t

= ∆αwt + vtw
1+β
t ,(6.3)

w0 = ϕ (≥ 0, 6≡ 0)

with v : R+ × Rd 7→ R+, vt(x) ≥ const · tβd/α−11B1(t−1/αx) for t ≥ 1 blows up in
finite time.

We briefly indicate the changes required in the arguments presented in sections
2 and 3 in order to prove Lemma 6.1.

1. Concerning the subsolution gt, all what happens is that a factor sσ1B
s1/α

(·)
enters into the exponentials in the Feynman-Kac representation in the RHS of (2.6).
Since s−βd/α in the RHS of (2.6) cancels against sσ, the lower bound (2.6) remains
unchanged, and so does the estimate (2.5).

2. Concerning the subsolution ht, again a factor sσ enters into the exponentials
in (2.10) and (2.11). Since again (s−d/α)β cancels against sσ, the lower bound
(2.12) remains unchanged, and so does the assertion in Proposition 2.3.

3. Concerning the argument in Section 3, from the space-time-inhomogeneity in
(6.3) a factor (t0 + t)σ enters in front of the integral in (3.3) (Observe that by our
assumption vt ≥ const · tσ uniformly on B1 for t ≥ 1). Still, since (2.12) guarantees
a super-algebraic growth of K(t), we can choose t0 so big that the blow-up time of
the equation

v(t) = ζK(t0) + γζ(t0 + 1)σ
∫ t

0

v(s)1+βds

is smaller than 1, so that the argument of Section 3 remains valid.

7. Blow-up of systems

In this section we apply our probabilistic approach to extend a blow-up result
of Escobedo and Levine [2] (Theorem 7.1 and Remark 7.2). In Theorem 7.3 we
show that a system which we investigated in [8] in high dimensions blows up at the
critical dimension.
Theorem 7.1. Assume that (u, v) solves

∂ut
∂t

= ∆α1ut + u1+β1
t vβ2

t

∂vt
∂t

= ∆α2vt + F (ut, vt)(7.1)
u0 = ϕ1, v0 = ϕ2,

where α1, α2 ∈ (0, 2], β1 > 0, β2 ≥ 0, F ≥ 0, ϕ1 ≥ 0, ϕ2 ≥ 0 and both ϕ1 and ϕ2

do not a.s. vanish. Then u blows up if

(7.2) α2 ≤ α1 and d ≤
(
β1

α1
+
β2

α2

)−1

.
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Remark 7.2. For α1 = α2 =: α, (7.2) turns into the condition d ≤ α/(β1 + β2),
which is also the condition for blow-up of the partial differential equation

∂u

∂t
= ∆αu+ u1+β1+β2 .

For α = 2, this specializes to one of the main results in Escobedo and Levine’s
paper [2]. They investigate by analytic tools the system

∂u

∂t
= ∆u+ u1+β1vβ2 ,

∂v

∂t
= ∆v + uθ1vθ2

and prove blow-up under the condition d ≤ 2/(β1 + β2).

Proof of Theorem 7.1. Let ft,j(y) :=
∫
ϕj(x)pt,j(y − x) dx, j = 1, 2, where pt,j

denotes the symmetric αj-stable transition density. Obviously, (ft,1, ft,2) is a sub-
solution of (7.1), and from (2.2) we have for t ≥ 1

(7.3) ft,1(y) ≥ Ct−d/α11B1(t−1/α1y)

and

(7.4) ft,2(y) ≥ Ct−d/α21B1(t−1/α1y),

where we used the assumption α2 ≤ α1 to obtain (7.4). Consequently for t ≥ 1 and
||y|| ≤ t1/α1

vt(y)β2 ≥ C ′t−dβ2/α2 ≥ C ′tdβ1/α1−1

where we used the assumption (7.2) in the last inequality. Now we infer blow-up
of u using Lemma 6.1. �

Theorem 7.3. Assume that (u, v) solves

∂ut
∂t

= ∆α1ut + utvt

∂vt
∂t

= ∆α2vt + utvt(7.5)
u0 = ϕ1, v0 = ϕ2,

where α1, α2 ∈ (0, 2], ϕ1 ≥ 0, ϕ2 ≥ 0 and both ϕ1 and ϕ2 do not a.s. vanish. Then
(u, v) blows up if d ≤ min(α1, α2).
Remark 7.4. It was shown in [8] that (7.5) admits global solutions if d > min(α1, α2)
and ϕ1 and ϕ2 are sufficiently small.

Before proving Theorem 7.3, we prepare with a lemma which is an easy gen-
eralization of Lemma 2.2. Here and below, (W (i)

t ) denotes the symmetric stable
process with index αi and pt,i(x) its transition density, i = 1, 2.
Lemma 7.5. Assume that α := α2 ≤ α1. There exists a c > 0 such that for all
t ≥ 2, y ∈ Bt1/α , x ∈ B1 and s ∈ [1, t/2],

Px

{
W (2)
s ∈ Bs1/α1

∣∣∣W (2)
t = y

}
≥ csd/α1−d/α2

Proof. It suffices to show (2.8) with csd/α1−d/α2 instead of c5 and pt,2 instead of pt.
Again we have (i) and (ii) from the proof of Lemma 2.2, now with (W (2)

t ) instead
of (Wt). Integrating the bound s−d/α2 over Bs1/α1 then gives the factor const ·
sd/α1−d/α2 . �
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Proof of Theorem 7.3. The proof proceeds in three steps. First we prove using
the Feynman-Kac representation (see (1.3)) that (at least one component of) the
solution (u, v) locally grows to ∞. In a second step we show that (u, v) can be
bounded below uniformly in B1 × B1 similarly as in Section 3 but this time by
comparison with the solution of a suitable coupled pair of ODEs. Finally, in step 3
we show that this system of ODEs blows up.

1. From (2.3) we have

(7.6) ut ≥ c1t
−d/α11B

t1/α1

and

(7.7) vt ≥ c2t
−d/α21B

t1/α2

for all t ≥ t0 for some sufficiently large t0. Let us now assume without loss of
generality that α2 ≤ α1. By the Feynman-Kac formula we have

ut(y) =
∫
ϕ1(x)pt,1(y − x)Ex

[
exp

∫ t

0

vs(W (1)
s ) ds

∣∣∣∣W (1)
t = y

]
dx.

For t ≥ 2t0, by Jensen’s inequality and (7.7), this can be bounded from below by∫
ϕ1(x)pt,1(y − x) exp

(∫ t/2

t0

c2s
−d/α2

Px

{
W (1)
s ∈ Bs1/α2

∣∣∣W (1)
t = y

}
ds

)
dx.

Noting that Bs1/α2 ⊇ Bs1/α1 and using Lemma 2.2, we thus arrive at the lower
bound

(7.8) c3t
−d/α1 exp

(
c4

∫ t/2

t0

s−d/α2ds

)
.

If d < α2, then this lower bound grows super-algebraically from which we will infer
blow-up in steps 2 and 3.

Let us now assume d = α2. Then (7.8) turns into the lower bound

(7.9) ut(y) ≥ c5t
−d/α1+ε

(uniformly in y ∈ Bt1/α1 for t sufficiently large). Another application of the
Feynman-Kac formula gives

(7.10) vt(y) =
∫
ϕ2(x)pt,2(y − x)Ex

[
exp

∫ t

0

us(W (2)
s ) ds

∣∣∣∣W (2)
t = y

]
dx.

Using Jensen’s inequality and (7.9), we can bound this from below by∫
ϕ2(x)pt,2(y − x) exp

∫ t/2

t0

c1s
−d/α1+ε

Px

{
W (2)
s ∈ Bs1/α1

∣∣∣W (2)
t = y

}
ds dx.

In view of Lemma 7.5 we thus obtain as a lower bound for vt(y) (as long as t is
sufficiently large and y ∈ Bt1/α2 ):

c6t
−d/α2 exp

∫ t/2

t0

c7s
−d/α1+εsd/α1−d/α2ds = c6t

−d/α2 exp
∫ t/2

t0

c7s
−d/α2+εds

= c6t
−d/α2 exp (c8tε) .

Thus in this case v grows (super-algebraically).
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2. Rewriting (7.5) in integral form we obtain for t, t0 ≥ 0

ut+t0(x) =
∫
dy pt,1(y − x)ut0(y) +

∫ t

0

ds

∫
dy pt−s,1(y − x)ut0+s(y)vt0+s(y)

vt+t0(x) =
∫
dy pt,2(y − x)vt0(y) +

∫ t

0

ds

∫
dy pt−s,2(y − x)ut0+s(y)vt0+s(y).

Let ζ := minx∈B1 min0≤s≤1

(
Px(W (1)

s ∈ B1) ∧ Px(W (2)
s ∈ B1)

)
> 0 and ũ(t) :=

minx∈B1 ut(x), ṽ(t) := minx∈B1 vt(x). This allows us to estimate for t ∈ [0, 1]

ũ(t0 + t) ≥ ζũ(t0) + ζ

∫ t

0

ds ũ(t0 + s)ṽ(t0 + s),(7.11)

ṽ(t0 + t) ≥ ζṽ(t0) + ζ

∫ t

0

ds ũ(t0 + s)ṽ(t0 + s).

In step 1 we saw that (ũ ∨ ṽ)(t0)→∞ super-algebraically while (ũ ∧ ṽ)(t0) decays
at most algebraically. Thus, t0 can be chosen so big that the blow-up time of

(7.12) U(t) = ζũ(t0) + ζ

∫ t

0

dsU(s)V (s), V (t) = ζṽ(t0) + ζ

∫ t

0

dsU(s)V (s)

is less than 1 (see step 3). We conclude that (u, v) blows up.
3. It remains to study (7.12) which in ODE form is

U ′(t) = ζU(t)V (t) = V ′(t)

and WLOG assume that U0 := U(0) ≥ V (0) =: V0. The solution is given by

(
U(t)
V (t)

)
=


U0 − V0

1− (V0/U0) exp(ζ(U0 − V0)t)

(
1
1

)
+
(

0
V0 − U0

)
if U0 > V0

1
1/U0 − ζt

(
1
1

)
if U0 = V0

for 0 ≤ t < τ with explosion time

τ =


logU0 − log V0

ζ(U0 − V0)
if U0 > V0

1
ζU0

if U0 = V0.

In our scenario we have U0 ≥ exp(ε1t0), V0 ≥ t−ε20 for some ε1, ε2 > 0, which allows
to chose t0 big enough to enforce τ < 1. Indeed if V0 ≥ U0/2 we have τ ≤ 2/(ζU0),
and if 1 ≤ V0 < U0/2 we can estimate τ ≤ (2 logU0)/(ζU0). Finally, if V0 < 1 we
have τ ≤ (logU0)/(ζ(U0 − 1)) + ε2 log t0/(ζ(exp(ε1t0)− 1)). �

Remark 7.6. Consider instead of (7.5) the more general system
∂ut
∂t

= ∆α1ut + utv
β1
t

∂vt
∂t

= ∆α2vt + uβ2
t vt(7.13)

u0 = ϕ1, v0 = ϕ2,

where α1, α2, ϕ1, ϕ2 are as in Theorem 7.3, and β1, β2 > 0. Assume that α2 ≤ α1.
Proceeding as in the proof of Theorem 7.3 but using the simple bound (7.6) instead
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of (7.9) in the Feynman-Kac representation corresponding to (7.10) one obtains
quickly that (7.13) has a growing subsolution if

(7.14) d < max

(
α2

β1
,

(
β2 − 1
α1

+
1
α2

)−1
)
.

As before, from this one infers blow-up, this time by comparing with the ODE
system U ′(t) = U(t)V β1(t), V ′(t) = V (t)Uβ2(t).

It remains an interesting question whether the RHS of (7.14) is the critical dimen-
sion for blow-up of (7.13) and whether there is blow-up at the critical dimension.
We conjecture that this is the case at least for α1 = α2 =: α, in which case the
RHS of (7.14) turns into α/min(β1, β2). Indeed, for the special case α = 2, this
was proved by Escobedo and Levine [2].
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Centro de Investigación en Matemáticas, Apartado Postal 402, Guanajuato 36000,

Mexico.

E-mail address: jalfredo@cimat.mx

FB Mathematik, J.W. Goethe Universität, D-60054 Frankfurt am Main, Germany.

E-mail address: wakolbinger@math.uni-frankfurt.de


