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Summary. The reconstruction of the history of a set of sequences is a central
problem in molecular evolutionary biology. Typically this history is summarized
in a phylogenetic tree. In current practice the estimation of a phylogenetic tree
is a two-step procedure: first a multiple alignment is computed and subsequently
a phylogenetic tree is reconstructed, based on the alignment. However, it is well
known that the alignment and the tree reconstruction problem are intertwined. Thus,
it is of great interest to estimate alignment and tree simultaneously. We present
here a stochastic framework for this joint estimation. We discuss a variant of the
Thorne-Kishino-Felsenstein model, having equal rates of insertions and of deletions
of sequence fragments, for ` ≥ 2 sequences related by a phylogenetic tree. Finally, we
review novel approaches to tree reconstruction based on insertion-deletion models.

1 Introduction

Sequence Evolution and Alignments

Biological (DNA or amino acid) sequences change over time due to the random
process of evolution. Two ingredients play a major role:

(i) a process of substitutions, which in biological parlance replace a nucleotide or
an amino acid by another one, or, more formally, change the labels of the positions
in the sequence,

(ii) a process of insertions and deletions (briefly called indel process) of single
positions or (more generally) sequence fragments.

The evolutionary process leading to observed sequences is modelled by a stochas-
tic process indexed by a binary tree T . The states of the process are the labelled
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sequences (a1, ..., an), n ∈ N0, ai ∈ A, where A is a finite alphabet. (In case of DNA,
A = {A, C, G, T}.) We will refer to ai as the label of position no. i in the sequence. The
sequences are thought to evolve from an ancestral sequence placed in an inner node
which figures as the root of T . What is observed are the sequences appearing at the
leaves of T . The edge lengths of T are measured in units of “evolutionary distance”
(or time for simplicity). T is called phylogenetic tree, and the graph structure (or
“tree topology”) of T is called the phylogeny of the observed sequences. Positions
in the observed sequences which are connected by a path of the evolution process
without insertion or deletion are called homologous. An alignment of the observed
sequences is an array each of whose lines consist of one of the sequences, possibly
augmented by “gaps”, such that positions assumed to be homologous appear in one
and the same column.

It is a widespread practice in biology to construct in a first step an “optimal”
alignment of the observed sequences through some scoring rule which penalizes mis-
matches (i.e. aligned positions carrying different labels) and gaps ([5]), and in a
second step to infer, on the basis of the aligned positions without gaps, the under-
lying phylogenetic tree ([17]). With the advent of powerful computer technology it
became more popular to incorporate some model for the substitution process, and to
estimate a maximum likelihood tree that relates the observed sequences. To model
the substitution process one usually considers a Markovian jump dynamics on A
which acts independently from position to position ([19]).

However, the reliability of an alignment which optimizes some score is hard to
judge. Also, basing the analysis on a single alignment may result in underestimating
the variability of the parameter estimates of the substitution process and of the
reconstructed phylogeny. Finally, ignoring the gaps and their clues about insertion
and deletion events may lead to a considerable loss of valuable information ([15]).
All these problems call for an explicit stochastic modelling of the insertion-deletion
process.

Outline of the Paper

In section 2 we will review various models of insertion-deletion processes and discuss
a number of their basic properties. We will start from the nowadays classical models
of Thorne, Kishino and Felsenstein for the insertion and deletion of single positions
(“TKF”, [21]) and of indivisible fragments (“TKF2”, [22]). As will become clear,
both models can be extended to the case of equal rates of insertion and deletion.
We will show that although these dynamics have no equilibrium distribution on the
sequences of finite length, reversibility is guaranteed, which appeases a caveat in
the recent monograph [2] of J. Felsenstein. These models are building blocks for
describing the evolution of sequences along a phylogenetic tree, and for obtaining a
“multiple statistical alignment” of ` observed sequences.

In section 3 we turn to tree-indexed insertion-deletion processes, which form the
mathematical basis for multiple statistical alignment. Indeed, a remarkable progress
in multiple statistical alignment (based on the TKF model) was recently made by the
group around J. Hein in Oxford. The basic idea is to think of the random multiple
alignment as being generated by T -indexed “events” which are brought into a well-
defined order. Stimulated by recent communication with G. Lunter and I. Miklós
in Oxford, we describe how this can be understood through a reading of the (now
T -indexed) indel genealogy “from left to right” and we show how to extend this
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approach from the TKF model to the fragment insertion-deletion model defined in
[11].

Finally, in section 4 we will review some novel approaches to tree reconstruction
based on insertion-deletion models.

2 Sequence Evolution Models with Insertion and
Deletion

2.1 Stochastic Indel Dynamics

In the prototype insertion-deletion (“indel”) model suggested by Thorne, Kishino
and Felsenstein [21] in 1991 (see subsection 2.2), single positons are inserted with
rate λ and deleted with rate µ, independently of each other. The assumption λ < µ
is a tribute to the existence of a reversible equilibrium distribution. We will refer
to this as the TKF model for short. It is assumed that the rate of insertions and
deletions is not influenced by the labels of the positions, which makes it possible to
construct the substitution process “on top” of the indel process.

Consider first the case of ` = 2 observed sequences. It turns out that one can read
a nice “genealogical” structure into the TKF dynamics, which enriches the insertion-
deletion path of the evolutionary process and renders a forest of Galton-Watson trees
with immigration, see subsection 2.3. Reading the forest from left to right allows to
generate the alignment by a Markov chain with three states

`
p
p

´
,
`−
p

´
,
`
p
−

´
, where`

p
p

´
stands for a homologous pair of positions, and

`−
p

´
and

`
p
−

´
denote positions

appearing in only one of the two observed sequences. This chain is “hidden” in the
sense that its path cannot be observed from the data. What is observed is the result
of all the states’ emissions. E.g. for the sequence of states

`
p
p

´
,
`
p
−

´
,
`
p
p

´
,
`−
p

´
,
`−
p

´
the

result of emissions could be
`
AGT
ACGG

´
. This hidden Markov structure allows to apply

dynamic programming, which is a powerful tool not only for computing likelihoods
but also for the sampling of alignments from the conditional distribution, given
the observed sequences. Alternating the sampling of alignments with a Metropolis-
Hastings algorithm for sampling the evolution parameters gives a Markov chain
Monte Carlo method which makes it possible to assess the variability of the joint
estimation of parameters and alignments [12].

In [11], a variant of the TKF model was introduced which assumes equal insertion
and deletion rates λ = µ. In the present paper, this will be referred to as the cTKF
model (c for critical). The cTKF model is a special case of the fragment insertion
deletion (“FID”) model ([11]), which in turn is a “critical” variant of an indel model
introduced by Thorne et al. in [22]. This “TKF2” model assumes insertion (at rate λ)
and deletion (at rate µ > λ) of (indivisible) fragments whose lengths are independent,
geometrically distributed with expectation (1−ρ)−1. In his recent monograph [2], J.
Felsenstein quotes the FID model (with reference to [11]) with the caveat: “ It is not
clear that equality [of λ and µ] is tenable, as the resulting model of sequence-length
variation then has no equilibrium distribution, and reversibility of the process is not
guaranteed.” However, as we will see in Proposition 1, these doubts can be remedied.
In fact, the FID process which takes a sequence of length n1 into a sequence of length
n2 can be thought of as “cut out” from an indel process on infinite sequences, with
the condition that the development between the two sequences is flanked by an
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(invisible) homologous pair to the left, and another one to the right of the observed
sequences.

The assumption made in FID (and TKF2) that inserted pieces are unbreakable
entities is unrealistic. Abandoning this assumption, one arrives at a more general
insertion-deletion model (introduced in [11] as “GID”), which however is computa-
tionally much less tractable. In [11], the FID and GID models were compared with
regard to robustness of estimates. Computer simulations showed that estimation
procedures for the parameters which are based on the FID assumptions also work
well when applied to data generated without the fragmentation restrictions.

The GID model, in turn, is related to the class of long indel models recently
studied by Miklós et al [13] (see also [14]).

2.2 TKF Bridges

In the pioneering paper [21], Thorne, Kishino and Felsenstein introduced the fol-
lowing evolution model for finite sequences (where a sequence consists of positions,
arranged in linear order).

Definition 1. (TKF(λ, µ) dynamics for finite sequences)
Each position is deleted at rate µ and between any two neighbouring positions (as
well as to the left and to the right of the current sequence), a new position is inserted
at rate λ.

The insertion-deletion path records the ordering of all the positions alive at
any time s. In particular, the indel path keeps track of the times of insertions and
deletions. For fixed parameters λ, µ > 0 we will write TKFn,[0,t] for the distribution
of an indel path starting from a sequence of length n and evolving over time t (or
“evolutionary distance”) according to the TKF(λ, µ)-dynamics.

Remark 1. For µ > λ, the TKF(λ, µ) dynamics has a reversible equilibrium, the ran-
dom sequence length L in equilibrium being geometrically distributed with weights
γn(1− γ), n ∈ N0, where γ = λ/µ. Consequently, L has expectation λ/(µ− λ).

Thorne et al. [21] consider only the case µ > λ. In this case let us write

TKF[0,t] =
X
n≥0

γn(1− γ)TKFn,[0,t]

for the equilibrium distribution of an indel path evolving in the time interval [0, t]
under the TKF(λ, µ)-dynamics. The following definition makes sense also for general
λ, µ > 0.

Definition 2. Let λ, µ, t > 0. For given natural numbers n1, n2, we define the TKF
bridge TKFn1,n2;[0,t] as the distribution of the TKF(λ, µ) process, conditioned to
take a sequence of length n1 into a sequence of length n2 over time t.

The TKF bridge for λ = µ is a special case of the fragment insertion deletion
model introduced in [11], see subsection 2.5 below. Although for λ ≥ µ the TKF
process has no equilibrium on the finite sequences, the distribution of the TKF
bridge does not depend on the chosen direction of time, as the corollary to the
following proposition tells.
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Proposition 1. For λ, µ > 0 and γ = λ/µ, the measure

M :=
X
n≥0

γnTKFn,[0,t]

is invariant under time reversal (where the insertions and deletions in an indel path
interchange roles).

Proof. Since, given the birth and death times, the birth and death positions
within the current sequence are exchangeable, it suffices to consider the process
L = (Ls)0≤s≤t of sequence lengths. Under the TKF(λ, µ) dynamics, this is a birth
and death process on N0 with birth rates b(n) := (n + 1)λ, n ≥ 0, and death rates
d(n) := nµ, n ≥ 1, hence

b(n) = γd(n+ 1), n ≥ 0. (1)

Write
Ps(m,n) := P[Ls = n|L0 = m]

for the transition probability of L, and define the measure g on N0 by

g(n) = γn, n ≥ 0 (2)

The detailed balance condition (1) guarantees reversiblity of the measure g:

g(m)Ps(m,n) = g(n)Ps(n,m), m, n ∈ N0, s ≥ 0. (3)

This extends to reversibility of the measure

M(L ∈ (.)) =
X
m≥0

g(m)P[L ∈ (.)|L0 = m] :

M(L0 = m,L ∈ B,Lt = n) = M(L0 = n,L ∈ R(B), Lt = m). (4)

Here, B is a measurable set of N0-valued (right continuous) paths with jump size
1, and R is the time reversal operator mapping a path (xs)0≤s≤t into the right
continuous modification of its time reversal (xt−s)0≤s≤t.

Corollary 1. For all λ, µ > 0 the bridge TKFn1,n2;[0,t] with parameters λ, µ equals
the time reversal of the bridge TKFn2,n1;[0,t] with parameters λ, µ.

Proof. For any (measurable) set A of indel paths,

γn1P[Lt = n2|L0 = n1]TKFn1,n2;[0,t](A) = M(A;L0 = n1, Lt = n2),

where M is the measure defined in Proposition 1. Hence the claim follows from the
reversibility of M .

Let us in particular single out the “critical” case λ = µ. In this case we will speak
of the cTKF(λ) (instead of the TKF(λ, λ)) dynamics, and denote the measure M
in Proposition 1 by

cTKF[0,t] :=
X
n≥0

TKFn;[0,t].

Proposition 1 then specializes to

Corollary 2. For each λ > 0, the (infinite) measure cTKF[0,t] with parameter λ is
invariant under time reversal.
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2.3 A Genealogy of Positions

Following Thorne et al [21], we upgrade an indel path with a genealogy of positions
by decreeing that each inserted position is born by its left neigbour. A position
which inserted to the very left of the sequence is declared to be born by an invisible,
immortal position to its left. Equivalently, one can interprete an insertion of this
type as an immigration at the left end of the current sequence. Thus, the TKF(λ, µ)
process turns into a (binary, continuous time) Galton-Watson process with birth
rate and immigration rate equal to λ, and death rate equal to µ.

reversed
time

time

Fig. 1. Galton-Watson forest for a TKF-process. Applying the TKF-convention
to the time-reversed realization changes the alignment (as seen at the right end)
but not the homology structure. The immigrant (leftmost line in the forward-time
figure) is considered to be born by an immortal position to its left (dashed line).

This can be illustrated with a graphical construction (see Figure 1, upper part):
Let time run downwards. If a newly inserted position has a left neigbour in the
sequence (that is, does not appear at the left end of the sequence), then draw a
horizontal line at the time of insertion between the newly inserted position and its
left neighbour. If a new insertion happens at the left end of the sequence, then draw
a horizonal line to the invisible, immortal position thought to sit left of the sequence.

In this way the TKFn1,n2;[0,t] distribution gives rise to a Galton-Watson forest
with immigration, starting with n1 mother positions at time 0, and conditioned to
a total number of n2 positions living at t. The picture can be reversed: at each
deletion, draw a horizontal line to the current left neighbour, or to the invisible,
immortal position if the deletion happens at the left end. Corollary 1 then turns
into a statement about conditional Galton-Watson forests: a forest generated by
TKFn1,n2;[0,t] (with parameters λ, µ > 0), when reversed in the described manner,
equals in distribution a forest generated by TKFn2,n1;[0,t], with the same parameters
λ, µ (see Figure 1).

2.4 Reading an indel forest from left to right

Let us read the branches of an indel forest over the time interval [0, t] from left to
right, and write

`
p
p

´
for a position which is conserved over the time interval [0, t],`

p
−

´
for a position present at time 0 and deleted before time t, and

`−
p

´
for a position

inserted after time 0 and surviving till time t. The indel forest generated by cTKF[0,t]
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(or by TKF[0,t] if λ < µ) leads to a Markov chain with state space
`
p
p

´
,
`
p
−

´
,
`−
p

´
. The

transition probabilities of this chain can be phrased (and easily computed, see [11])
in terms of a binary Galton-Watson process.

For further use, let us think of time 0 as corresponding to the root, and time t
to the daughter node of a “tree” consisting of a single edge.

Following a clever convention introduced in [9] we write a B for every position in
the root, and the following symbols in the daughter node: H for

`
p
p

´
, N for

`
p−
−p

´
, E

for
`
p
−

´
not followed by

`−
p

´
, and B for

`−
p

´
not preceded by

`
p
−

´
. Whereas H means

that the position survives, N means that the position dies but leaves a (leftmost)
child. In both cases H and N we will address the successor position as the heir
of the ancestor position. The symbol B in the daughter node stands for either an
immigrant position or a descendant position which is not an heir (these will be
called β-children for short). For example, the indel history

`−−p−p p−−
pp pp−−pp

´
translates

into F =
`

B BB
BBHBENB

´
, or (BBHBENB) for short (see Figure 2). Every F starts

B B B B

B B B H B B BN B H B E N E H

B BB

time

Fig. 2. {B,H,N,E}-notation of an alignment for a pair of sequences.

with an initial block F (0) (of immigrants) of the form
`
B...B

´
, followed by n blocks

F (1), ..., F (n), where n is the length of the sequence in the root. Each of these blocks
is of type H, N or E, that is, of the form

`
B
HB...B

´
,

`
B
NB...B

´
or

`
B
E

´
. A block of the

latter type means that the ancestral position is extinct. In the type H and type
N blocks, the number k of B’s in the second line is geometrically distributed with
probability weight (1 − πt)π

k
t , where the parameter πt depends also on λ and µ.

In other words, right to any H,N or B in the second line, the current block is
continued (with a B in the second line) with probability πt; otherwise (as long as
the current number of blocks is ≤ n, a new block starts. Independently of what
is to its left, a new block is of type H, N or E with probability πHt , π

N
t and πEt ,

where these three probabilites depend on λ and µ, and sum to 1. Under the infinite
measure cTKF[0,t] every n is assigned mass 1, whereas under the probability measure
TKF[0,t], n gets mass γn(1 − γ) (where γ = λ/µ). The latter can of course also be
realized by an independent stopping, which, after each n, continues with a new block
with probability γ and jumps to an End state with probability 1− γ.

Note that an alignment under the cTKF dynamics can be produced by an
{B,H,N,E}-valued Markov chain with transition probabilities

πHBt = πNBt = πBBt = πt; πHHt = πNHt = πBHt = (1− πt)π
H
t

πHNt = πNNt = πBNt = (1− πt)π
N
t ; πHEt = πNEt = πBEt = (1− πt)π

E
t ;

πEHt = πHt , πENt = πNt , πEEt = πEt , πEBt = 0.
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This chain starts in the initial distribution giving weight πt to B and weights
(1− πt)π

H
t , (1− πt)π

N
t , (1− πt)π

E
t to H,N and E, respectively.

2.5 A Fragment Insertion-Deletion Model

Let us consider the analogue of the cTKF dynamics (with parameter λ) acting on
indivisible fragments whose lengths are independent and geometrically distributed
with expectation (1 − ρ)−1, ρ ∈ [0, 1). The resulting indel dynamics on the finite
sequences will be called fragment insertion deletion dynamics with parameters λ and
ρ , abbreviated as FID(λ, ρ). The indel histories will be coded in a similar way as de-
scribed in the previous subsection. For example, imagine a fragment of length 4 which
survives and leaves one daughter fragment with length 3, say. Then the “second line”
of the indel history reads as (HHHHBBB). In case the mother fragment dies and
leaves one daughter fragment with length 3, we would have (EEENBB). Thanks to
the properties of the geometric distribution, under the FID measure the alignment
builds up as a Markov chain with transition probabilites πIJt , I, J ∈ {H,N,E,B},
which are only slightly more complicated than those in the cTKF case, see [11] for
details. Notably, for ρ > 0 one has πNNt = πHNt = πBNt but πHHt > πBHt = πNHt , and
πBBt = πNBt > πHBt , because compared to the cTKF model there is some additional
probability for a position to be in the same fragment as its left neighbour.

3 Tree Indexed Indel Processes

3.1 Multiple TKF Bridges

Let T be a finite binary tree with ` leaves. Its sets of edges, nodes and leaves will be
denoted by E , N , and L. The edges ε are labelled by positive numbers (lengths) tε.
The branch bε is represented as {ε}× (0, tε), and the (labelled) tree T is represented
as

T = N ∪
[
ε∈E

bε,

equipped with the obvious tree distance along the branches.
For the moment, one of the nodes of T is distinguished as the root of T and

denoted by r. This choice assigns to each edge ε a direction (from the root to the
leaves), and to each node ν 6= r its mother node and its mother edge. We will write
t(ν) for the length of the mother edge of ν, and Tr for the pair (T , r).

Fix 0 < λ ≤ µ, and consider the TKF(λ, µ) indel dynamics on the finite se-
quences.

Definition 3. The indel process indexed by Tr starts with an ancestral sequence
at the root and lets a copy of this sequence evolve independently according to the
TKF(λ, µ) dynamics along each branch leading away from the root. In every inner
node (different from the root), the process continues with two identical copies which
evolve independently along the two branches descending from this node.

The Tr-indexed indel process induces a distribution TKFn;T ,r on the T -indexed
indel paths starting with length n in the root r. As in section 2 we put
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cTKFT =
X
n≥0

TKFn;T ,r if λ = µ,

TKFT =
X
n≥0

γn(1− γ)TKFn;T ,r if λ < µ.

Note that due to Proposition 1 these measures indeed do not depend on the choice of
the root. The same is true for the multiple TKF bridge TKFn1,....,n`;T which arises
by conditioning the tree-indexed indel process to produce given sequence lengths
n1, ..., n` in the leaves.

3.2 Decomposing a Tree Indexed Indel Path Into Heirs Lines

Let us consider a Tr-indexed indel path w, and the Tr-indexed indel history w̃
induced by w along the nodes of T. As described in subsection 2.4, each position p
at a node ν ∈ N , ν 6= r, is either an immigrant or an heir or a β-child, depending
on its genealogy along the mother edge of ν. Immigrant positions and positions at
the root are called founder positions. Founder positions are marked with B, whereas
heirs are marked by H or N , depending whether they are survivors or not (see
subsection 2.4).

For a fixed node ν, T(ν) denotes the subtree of T which is rooted in ν. Let p be
a position at node ν which is marked by B. Following the heirs (and heirs of heirs...)
descending from p along the nodes of T(ν) we obtain a mapping from the nodes
of T(ν) which assigns a B to ν and an H, N , E or “-” to the other nodes of T(ν)
(where the convention is such that any node descending from a node which carries
an E is assigned a “-”). We call this mapping the tree indexed heirs line (“tihl”) e
initiated by p, and say that the node ν is the origin re of the tihl e.

Let Te be the subtree of T(ν) consisting of all the nodes to which e assigns a
B,H or N . Denote by supp(e) the support of e, i.e. the set of all those nodes which
are connected with p by an heirs line, or in other words, the set of all those nodes
of T(ν) to which e assigns H or N . The set supp(e) ∪ {re} will be called the rooted
support of e, and by supp(e) we will denote the extended support of e, i.e. the set of
all those nodes of T(ν) to which e assigns H, N or E.

A tihl initiated by a founder position will be called a founder tihl. If p is a
β-child, then it has a left neighbour p′, and we call the tihl e′ to which p′ belongs
the mother of the tihl e initiated by p, and e a daughter of e′. Every tihl in the
tree-indexed indel history w̃ has an ancestral line tracing back to a founder tihl,
and in this sense we obtain a “family decomposition” of all the tihls in w̃.

The idea is now to build up the tree-indexed indel history w̃ successively through
the tihls it consists of. To this end we introduce an order on the nodes of T as
follows. First we put ν2 � ν1 if the node ν1 is on the path from ν2 to the root.
Following [9] we fix a total order ≤ on the nodes of the tree which extends the
partial order �. We say that ν1 has a smaller rank than ν2 if ν1 < ν2 in the total
order, see Figure 3. The first tihl to be filled in is the one initiated by the leftmost
founder at the node with the smallest possible rank. Now proceed inductively: as
long as there remain tihl’s which are daughters of the ones already filled in, the
next tihl to be filled in is the one among all these which is initiated by the leftmost
β-child at the node with the smallest possible rank. After completion of a family
of tihl’s, proceed with the tihl initiated by the leftmost founder at the node with
the next smallest possible rank.
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root

1

2

3

6

7

8

9

10
11

17

16

15

13

1412

5

4
Leaf 7

Leaf 8

Leaf 9

Leaf 6Leaf 5Leaf 4

Leaf 3

Leaf 2

Leaf 1

Fig. 3. Example for a total order “≤” on the nodes of a tree: For each node ν the
nodes in the left subtree stemming from ν have lower ranks than those in the right
subtree .

3.3 Building an Indel History by a Markov Chain of Tree Indexed
Heirs Lines and Sets of Active Nodes

Consider the measure cTKFT (with parameter λ) or the measure TKFT (with
parameters λ < µ) on the Tr-indexed indel paths w. By the mapping described in
subsection 3.2, this measure is transported into a measure on the finite sequences of
tihls. Any such sequence of tihls starts with a block of tihl families founded by
immigrants, and continues with n tihl families founded by positions at the root.
Again (cf. subsection 2.4), n gets mass (λ/µ)n(1−λ/µ) under the probability measure
TKFT , whereas under the infinite measure cTKFT every n is assigned mass 1. This
can be expressed in a unified way as follows: Independently after the completion of
each tihl family, a new tihl family starts with probability γ = λ/µ.

The process of tihls is not Markov. However, one may keep track in parallel
of the set of active nodes ( “soans”), and in fact the process of pairs of soans and
tihls is Markov. We will call a node ν active if it is a candidate for the origin of
the next tihl to be inserted. Initially, all nodes of T are active. Each newly inserted
tihl re-activates all nodes in its support, and de-activates all those nodes which
have a smaller rank than its origin and do not belong to its support. Formally, for
a set S ⊆ N , and a tihl e with re ∈ S, we put

[S, e] := (S \ {σ ∈ N|σ < re}) ∪ supp e. (5)

For a tihl e, we write

p(e) = πt(re)
Y

σ∈supp(e)

π
e(σ)

t(σ) ,

where we put
πt(r) := γ.

Given the current set of active nodes is R, the probability that the next step
leads to the tihl e is

P (R, e) = p(e)
Y

σ∈R:σ<re

(1− πt(σ)), (6)

whereas the probability that the process is stopped (i.e. jumps to an extra state
End) is P (R, End) =

Q
σ∈R(1 − πt(σ)). (Since the root r in any case belongs to R,

this latter transition probability is zero in the cTKF model.)
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B

H

H

Fig. 4. Transition from one soan to the next via a tihl. Active nodes are drawn
black. We assume the same type of order as shown in Figure 3.

Let us consider the soan-tihl- process Y = (S0, e1,S1, e2,S2, ....) which starts
from S0 = N and whose dynamics is given by the transition probability (6) and the
rule Si+1 = [Si, ei+1], see (5). Note that the transition probability on the soans is

P (R,S) =
X

e:S=[R,e]

P (R, e).

For a tihl e, and j = 1, ..., `, let us write ve(j) = 1 if the leaf lj belongs to supp e,
and ve(j) = 0 otherwise. We define

ve = (ve(1), ..., ve(`)).

For a realization e1, e2, ... of the tihl process, let m̄ be such that em̄+1 = End if the
process is stopped, and m̄ = ∞ otherwise. In order to count how many positions are
emitted into the leaves by the first m tihls in the process Y , we put

Kj(m) =

m∧m̄X
i=1

vei(j), j = 1, ..., `; K(m) = (K1(m), ...K`(m)).

The multiple counting process K will be important in the next subsections; note
that it is adapted to the process Y in the sense that K(m) can be read off from
(Y1, ..., Ym).

3.4 Generating Labelled Sequences in the Leaves

As a model for the substitution process, consider a time homogeneous Markov process
X on a finite set A of letters in a reversible equilibrium α. For any tihl e, this
induces a Te-indexed A-valued process Xe in the following way: Start in re in the
equilibrium α. Along an edge ε of Te leading to a node which carries an H, the
process develops (for the time tε) according to the substitution dynamics, whereas
in a node carrying an N the process starts independently in distribution α.

By the process Xe, a tihl e assigns a random letter to each element of Le :=
L ∩ supp e. The joint distribution of these letters will be denoted by αe. Given a
sequence (e1, e2, ...) we assume that the processes Xe1 , Xe2 , ... are independent.

Let Aj(m) = (Aj1, ..., A
j
Kj(m)) be the sequence of letters assigned to leaf lj by

the first m tihls e1, ..., em in the process Y , and put A(m) = (A1(m), ...,A`(m)).
The process A(m),m = 1, 2, .. is a variant of a multiple hidden Markov model in the
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sense of [7]: the role of the hidden Markov chain is played by the soan-tihl process,
which in each step emits letters into some subset of L.

In the sequel, we denote by h the tihl which originates in the root r and assigns
H to all ν ∈ N \ {r}.

Definition 4. Fix k = (k1, ..., k`) ∈ N`0 and ak = (a1
k1 , ...,a

`
k`

), where ajkj =

(aj1, ..., a
j
kj

) is an A-valued sequence of length kj for j = 1, ..., `.

a) (case TKF, i.e. γ < 1) Let

P (k) = P[A(m) = ak; em+1 = End for some m ∈ N0].

For S ⊆ N , let

PS(k) = P[A(m) = ak; Sm = S; em+1 = End for some m ∈ N0].

b) (case cTKF, i.e. γ = 1) Let

P (k) = P[A(m) = ak; em+1 = h for some m ∈ N0].

For S ⊆ N , let

PS(k) = P[A(m) = ak; Sm = S; em+1 = h for some m ∈ N0].

For a tihl e, and k,ak as in Definition 4, put

q(e) :=
Y

σ∈supp e

(1− πt(σ)); ϑ(e,k) = αe((ajkj )j∈Le).

In words: ϑ(e,k) is the probability that the tihl e emits the letters ajkj into all

leaves lj which it reaches. The next lemma gives a recursion as well as the initial
condition (k = 0 = (0, ...., 0)) for the PS(k). In the TKF case this is in [8, 9]; we
include a proof for convenience.

Lemma 1. i) For k,ak as in Definition 4, and all S ⊆ N ,

PS(k) =
X

(R,e):S=[R,e]

p(e)q(e)PR(k− ve)ϑ(e,k). (7)

ii) In the TKF case (see Def. 4 a))

PN (0) = P (N , End) =
Y
σ∈N

(1− πt(σ)),

and in the cTKF case (see Def. 4 b))

PN (0) = P (N , h) =
Y

σ∈N\{r}

(1− πt(σ)).

Proof. i) Because of (6) we have

P[A(m) = ak, Sm = S] =
X

(R,e):S=[R,e]

P[A(m− 1) = ak−ve ; Sm−1 = R]

Y
σ∈R:σ<re

(1− πt(σ))p(e)ϑ(e,k). (8)
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For all R and e such that [R, e] = S, one checks easily that

P (S, End)
Y

σ∈R:σ<re

(1− πt(σ)) = P (R, End) q(e) (9)

in the TKF case, and

P (S, h)
Y

σ∈R:σ<re

(1− πt(σ)) = P (R, h) q(e) (10)

in the cTKF case. Multiplying both sides of (8) with P (S, End) (or P (S, h)), sum-
ming over m and using (9) (or (10)) we obtain the assertion.

ii) Because of the rule (5) it is impossible to have Sn = N for some n ≥ 1 and
tihls e1, ..., en with ve1 = ...ven = 0 (since any such tihl de-activates some leaf
which can be re-activated only with some leaf e with ve 6= 0). On the other hand,
any tihl e with ve 6= 0 leads to an increase of some coordinates of k. Thus, the
only contribution to PN (0) comes from jumping from N to End (in the TKF case)
or h (in the cTKF case) without any other tihl in between.

3.5 Computing Multiple Alignment Likelihoods

We proceed by explaining the method of Lunter et al. [9], which, as we saw in the
previous subsection, generalizes easily to the cTKF case.

Noting that

PS(0) =
X

(R,e):S=[R,e]

p(e)q(e)PR(0); S 6= N , (11)

we obtain from (7) and (11) by summing over all S:

P (k) =
X
e

p(e)q(e)P (k− ve)ϑ(e,k). (12)

P (0) = PN (0) +
X

e:ve=0

p(e)q(e)P (0) (13)

Note that P (k) and P (0) appear on both sides of the equations. It is, however,
straightforward to turn them into a recursion:

P (k) =

P
e:ve 6=0 p(e)q(e)ϑ(e,k)P (k− ve)

1−
P
e:ve=0 p(e)q(e)

(14)

P (0) =
PN (0)

1−
P
e:ve=0 p(e)q(e)

(15)

Lunter et al. [9] make the computation still more efficient by using the accelerated
chain Yτ(1), Yτ(2), Yτ(3), . . . where τ(1) = 1 and τ(m), m > 1 is the first time when
either End occurs, or a tihl e which overlaps with one of the tihls eτ(m−1), ...,
eτ(m)−1 in the sense that their rooted supports intersect, see Figure 5. Thus the
set of tihls occurring between τ(m− 1) to τ(m)− 1 are non-overlapping. Each set
of non-overlapping tihls (called a set of nested events in [9]) can be ordered, say
e1 < e2 < . . . < ej , corresponding to the ordering of the r(ei) in the total order
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Fig. 5. A set of non-overlapping tihls.

on N . (This is precisely the order in which the non-overlapping tihls occur in the
process Y .) Call a set E of non-overlapping tihls silent if ve = 0 for all e ∈ E .

Let E0 (E1) denote the family of all silent (non-silent) sets of non-overlapping
tihls, and put E := E0 ∪ E1. Similar as before but with an additional inclusion-
exclusion argument, one can sum over the probabilities of all sets of non-overlapping
tihls that occur between τ(m− 1) and τ(m)− 1 :

P (k) =
X
j

(−1)j−1
X

{e1,...,ej}∈E

P (k−
X
i

vei) ·
Y
i

p(ei) · q(ei) · ϑ(ei,k) (16)

This leads to the recursion

P (k) =

P
j(−1)j−1 P

{e1,...,ej}∈E1
P (k−

P
i vei) ·

Q
i p(ei) · q(ei) · ϑ(ei,k)

1−
P
j(−1)j−1

P
{e1,...,ej}∈E0

Q
i p(ei) · q(ei)

(17)

Each E = {e1, ..., ej} ∈ E induces a mapping f from N to Z = {−, B,H,N,E}
as follows: Put f(σ) = ei(σ) if σ � r(ei) for some i = 1, ..., j, and f(σ) = −
otherwise. Lunter et al. [9] realized that the r.h.s. of (17) can be computed efficiently
by grouping the elements E = {e1, ..., ej} ∈ E with respect to V = V(E) =

P
vei .

For V ∈ {0, 1}L put

LV =: {lι ∈ L|Vι = 1}; EV := {E = {e1, ..., ej}|
X

vei = V}.

Following [9], one can then compute for each node σ ∈ N and each Z ∈ Z the
contribution to P (k) from sets E of non-overlapping tihls with V(E) = V that
assign a Z to σ:

F (V, σ, Z) :=
X
j

(−1)j−1
X

{e1,...,ej}

P (k−V) ·
Y
i

p(ei) · q(ei) · ϑσ(ei,k),

where the sum is taken over all E = {e1, ..., ej} ∈ EV that include an ei with
ei(σ) = Z, and ϑσ(ei,k) is the probability that, given the tihl ei, the substitu-
tion process along ei produces the labels aιkι in all the leaves lι which stem from σ
and belong to LV. The value F (V, σ, Z) can be computed directly from the corre-
sponding values of the daughters of σ. Thus, using the dynamic programming idea
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of Felsenstein’s pruning algorithm [2], one can efficiently compute the values of all
nodes, starting in the leaves and ending in the root. The numerator in (17) then
results as

P
V 6=0 F (V, r, B)P (k −V), whereas the sum in the denominator of (17)

equals F (0, r, B). However, one still has to do this for all k ≤ (n1, ...., n`), so the
time complexity is essentially the product of all sequence lengths nι and thus is
exponential in the number ` of input sequences.

3.6 Extension to fragment insertions and deletions

When extending the TKF2 model (see subsection 2.1) or the FID model along a
tree, one can either impose indivisibility of the fragments along the whole tree (as
suggested in [3] for the TKF2 model), or one can allow that the fragmentation
changes from edge to edge, which we assume in the sequel.

In the TKF and cTKF model, as soon as a tihl is born in some node of the
tree, it grows independently of the indel history “to its left”. This is different in
the FID model: if the left neighbour position at some node σ carries an H, this
enhances the probability of an H in the tihl at σ. Consequently, the soan-tihl
process defined in subsection 3.3 is not Markov any more. To obtain a Markovian
sequence, we have to keep track not only if a node is active, but also to remember if
the previous (when looking back to the left) position carried a B, H or N . Our new
state space now consists of all mappings ϕ from N to {B,H,N,E,B−, H−, N−}.
Let us put Sϕ := {σ ∈ N |ϕ(σ) ∈ {B,H,N}}. We say that a node σ is ϕ-active if
σ ∈ Sϕ, and ϕ-inactive otherwise. For a pair (ψ,ϕ) of such mappings we say that
ϕ activates a ψ-inactive node σ if ψ(σ) = ϕ(σ)−, and we say that ϕ de–activates a
σ ∈ Sψ if ϕ(σ) = ψ(σ)−.

The initial state is ϕ0 = h, which maps r to B and all other nodes to H. The
update rule replacing (5) is now

[ψ, e] = ϕ

where ϕ de-activates all nodes in (Sψ ∩ {σ|σ < re}) \ supp(e), re-activates all
ψ-inactive nodes in supp(e), and sets ϕ(re) = B and ϕ(σ) = ψ(σ) for all σ > re.

For U ∈ {B,H,N} and W ∈ {H,N} we put πU
−B

t = 0 and πU
−W

t = πUWt . Given
the current state is ψ, the probability that the next inserted tihl is e equals

P (ψ, e) = pψ(e)
Y

minSψ≤σ<re

(1− π
ψ(σ)B

t(σ) ),

where
pψ(e) = π

ψ(re)B

t(re)

Y
σ∈supp (e)

π
ψ(σ)e(σ)

t(σ) .

Note that πBUt = πNUt and πB
−U

t = πN
−U

t for all U ∈ {B,H,N,E}. As a conse-
quence, one can in fact restrict the domain of the functions ϕ to {B,H,E,B−, H−}.
This decreases the number of functions ϕ, which is favourable for computational
purposes.

Defining Pϕ(k) in analogy to Definition 4, we obtain in a similar way as in
Lemma 1 for (k, ϕ) 6= (0, ϕ0) the “forward equation”
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Pϕ(k) =
X

(ψ,e):ϕ=[ψ,e]

Pψ(k− ve)pψ(e)ϑ(e,k) · (18)

· pϕ(h)

pψ(h)
·

1− π
ϕ(re)B

t(re)

1− π
ψ(re)B

t(re)

Y
σ∈supp(e)

(1− π
ϕ(σ)B

t(σ) )

and the start condition

Pϕ0(0) = pϕ0(h)
Y
σ 6=r

(1− πHBt(σ)).

In order to turn (18) into a recursion one has to solve it for the vector (Pϕ(k))ϕ,
since ve can be equal to 0. This seems only tractable as long as the number ` of input
sequences is small. An alternative is to neglect all tihls e with ve = 0, which seems
legitimate if the indel rates are low. Another approach, which is briefly discussed in
the next section, is to apply algorithms like simulated annealing or Markov chain
Monte Carlo methods that assign sequences to the internal nodes (cf. [4], [7]).

4 Indel Models and Tree Reconstruction

Based on a stochastic insertion-deletion model, one can ask for the joint estimation
of a multiple alignment and a phylogenetic tree by maximizing the probability of
the alignment and the likelihood of the tree. Exact computations seem hopeless for
large data sets. There are however promising heuristic approaches to this problem.

Thorne and Kishino [20] used the TKF model to get maximum-likelihood esti-
mates of the pairwise evolutionary distances between the sequences in a data set
from which they then reconstructed a neighbor-joining tree [16]. Although this ap-
proach might not be the best way to estimate the sequences’ phylogeny, such a
tree can be used as a guide tree for progressive statistical alignment and thus is a
convenient starting point for further analysis. Progressive statistical alignment was
introduced in [7] for the case of the TKF model: Given a tree T , distinguish one of
its nodes as the root and proceed from the leaves of T towards the root in the fol-
lowing way. Infer the most probable alignment for every pair of neighbouring nodes.
Then, estimate a sequence at their parent node together with the indel history of
this parent and its two children, which is compatible to the alignment of the off-
spring sequences. The sequence at the parent node is then aligned to its sibling, and
so on. At the end of this procedure one has sequences for every node of the tree
together with their indel history. This indel history and these inferred sequences
depend, however, on the order in which the tree is traversed. In order to decrease
this effect it is convenient to visit every node and every branch in random order,
thereby emitting a new sequence at the respective node and optimizing the indel
history along the respective branch. The sampling procedures for sequences at in-
ternal nodes use mutiple HMMs, where the observable emissions are the offspring
sequences and the sequences at the neighbouring nodes, respectively.

In the heuristic outlined in [4] we use simulated annealing to approach a phylo-
genetic tree and an indel history whose posterior probability given a set of sequences
A is maximal. We start with the progressive alignment procedure described above
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and then modify the trees and indel histories in the following way: Inspired by the
tree sampling procedure proposed in [10], we change the edge lengths in the current
tree T i independently by a small random amount, which results in a proposed tree
T ∗. For short internal edges, the proposed length may come out negative, which we
interprete as proposed change in the tree topology. Whenever this situation occurs
one has to sample new sequences and a new indel history for the newly introduced
internal edge, conditioned on the neighbouring sequences and their current align-
ment. Again, this is done with a multiple HMM, where the observable emissions
are the sequences at the neighbouring positions. The indel history is further refined
by producing a new sequence for each of the tree’s internal nodes and by optimiz-
ing the pairwise alignments along the tree’s branches. Thus, altering the tree also
results in proposing a new indel history w̃∗. The proposal is accepted with proba-

bility min


1,

“
pT ∗ (A,w̃∗)
pT i (A,w̃

i)

”c(i)ff
where pT (A, w̃) denotes the likelihood of T , w̃i is

the indel history in step i, and c(i) increases with i.
In [4] also some alternative proposal chains are suggested which move faster

through tree space, one of them based on nearest-neighbour interchanges (cf. [17]).
The estimation procedure becomes rather time consuming when applied to a

data set consisting of a larger number of sequences. A way out might be to resort
to a heuristics for tree reconstruction based on trees with four leaves only, known as
quartet puzzling ([18]). This can be done in the following way: Find for every quartet
of sequences the maximum-likelihood tree topology with the help of the recursion
in section 3.5. Then, use the quartet puzzling algorithm to repeatedly combine all
these quartet trees into a tree for the entire data set. Compute a consensus tree of all
these intermediate trees and use this consensus tree as a guide tree for progressive
statistical alignment Finally, optimize the branch lengths and the indel history by
simulated annealing.

It is a challenging task and object of ongoing research to further improve the
optimization heuristics for multiple alignment and phylogenetic trees. We have no
doubt that this is most adequately done in the framework of stochastic insertion-
deletion models and statistical alignment.
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