Oberseminar, Institut für Mathematische Stochastik Universität Münster
29. Januar 2020

A decomposition of the Brownian excursion

Anton Wakolbinger

Institut für Mathematik, Goethe-Universität Frankfurt am Main
(mit Stephan Gufler (Technion Haifa) und Götz Kersting (GU FfM))
"Walks and trees are abstractly identical objects ... "
(Ted Harris (1952))

"Walks and trees are abstractly identical objects ... "
(Ted Harris (1952))

As known from work of Neveu, Pitman, Aldous, Le Gall, ... Harris' paradigm holds also in a Brownian rescaling.

There the walk becomes an Itô excursion.

As known from work of Neveu, Pitman, Aldous, Le Gall, ... Harris' paradigm holds also in a Brownian rescaling.

There the walk becomes an Itô excursion.

\mathfrak{r} : return time ("length") of H
\mathfrak{h} : (maximal) height of H

The rooted, ordered \mathbb{R}-tree $\left(T^{H}, d, \prec\right)$:
For $0 \leq s_{1} \leq s_{2} \leq r$:
$s_{1} \sim s_{2}: \Longleftrightarrow H\left(s_{1}\right)=H\left(s_{2}\right)=\min \left\{H(s): s \in\left[s_{1}, s_{2}\right]\right\}$

The rooted, ordered \mathbb{R}-tree $\left(T^{H}, d, \prec\right)$:
For $0 \leq s_{1} \leq s_{2} \leq \mathfrak{r}$:
$s_{1} \sim s_{2}: \Longleftrightarrow H\left(s_{1}\right)=H\left(s_{2}\right)=\min \left\{H(s): s \in\left[s_{1}, s_{2}\right]\right\}$

The rooted, ordered \mathbb{R}-tree $\left(T^{H}, d, \prec\right)$:
For $0 \leq s_{1} \leq s_{2} \leq \mathfrak{r}$:
$s_{1} \sim s_{2}: \Longleftrightarrow H\left(s_{1}\right)=H\left(s_{2}\right)=\min \left\{H(s): s \in\left[s_{1}, s_{2}\right]\right\}$

$$
\langle s\rangle:=\left\{s^{\prime}: s^{\prime} \sim s\right\}
$$

$$
T^{H}:=\{\langle s\rangle: s \in[0, \mathfrak{r}]\}
$$

$\langle 0\rangle=\{0, r\}$ is the root

The rooted, ordered \mathbb{R}-tree $\left(T^{H}, d, \prec\right)$:
For $0 \leq s_{1} \leq s_{2} \leq \mathfrak{r}$:
$s_{1} \sim s_{2}: \Longleftrightarrow H\left(s_{1}\right)=H\left(s_{2}\right)=\min \left\{H(s): s \in\left[s_{1}, s_{2}\right]\right\}$

$$
\begin{aligned}
& \langle s\rangle:=\left\{s^{\prime}: s^{\prime} \sim s\right\} \\
& T^{H}:=\{\langle s\rangle: s \in[0, \mathfrak{r}]\} \\
& \langle 0\rangle=\{0, \mathfrak{r}\} \text { is the root } \\
& \left\langle s_{0}\right\rangle \prec\left\langle s_{1}\right\rangle: \Leftrightarrow \min \left\langle s_{0}\right\rangle<\min \left\langle s_{1}\right\rangle
\end{aligned}
$$

The rooted, ordered \mathbb{R}-tree $\left(T^{H}, d, \prec\right)$:
For $0 \leq s_{1} \leq s_{2} \leq \mathfrak{r}$:
$s_{1} \sim s_{2}: \Longleftrightarrow H\left(s_{1}\right)=H\left(s_{2}\right)=\min \left\{H(s): s \in\left[s_{1}, s_{2}\right]\right\}$

$$
\begin{aligned}
& \langle s\rangle:=\left\{s^{\prime}: s^{\prime} \sim s\right\} \\
& T^{H}:=\{\langle s\rangle: s \in[0, \mathfrak{r}]\} \\
& \langle 0\rangle=\{0, \mathfrak{r}\} \text { is the root } \\
& \left\langle s_{0}\right\rangle \prec\left\langle s_{1}\right\rangle: \Leftrightarrow \min \left\langle s_{0}\right\rangle<\min \left\langle s_{1}\right\rangle \\
& d\left(\left\langle s_{0}\right\rangle,\left\langle s_{1}\right\rangle\right):=H\left(s_{0}\right)+H\left(s_{1}\right) \\
& \quad-2 \min \left\{H(s): s \in\left[s_{0}, s_{1}\right]\right\}
\end{aligned}
$$

The isomorphy class of $\left(T^{H}, d, \prec\right)$ will be denoted by $\mathbb{T}{ }_{\prec}^{H}$.
The root-preserving isometry class of $\left(T^{H}, d\right)$ will be denoted by \mathbb{T}^{H}.

Example:

$$
\begin{gathered}
\mathbb{T}_{\prec}^{H_{1}} \neq \mathbb{T}_{\prec}^{H_{2}} \\
\text { but } \\
\mathbb{T}^{H_{1}}=\mathbb{T}^{H_{2}} .
\end{gathered}
$$

"Counting" the number of subexcursions above height t :

$L^{H}(t, s) \ldots$ the local time accumulated by H at height t up to time s

$$
\zeta_{t}^{H}:=L^{H}(t, \mathfrak{r})
$$

"Counting" the number of subexcursions above height t :

$L^{H}(s, t) \ldots$ the local time accumulated by H at height t up to time s

$$
\begin{gathered}
\zeta_{t}^{H}:=L^{H}(t, \mathfrak{r}) \\
\zeta^{H}:=\left(\zeta_{t}^{H}\right)_{0 \leq t \leq \mathfrak{h}} \ldots \text { the local time profile of } H
\end{gathered}
$$

"Counting" the number of subexcursions above height t :

By the second Ray-Knight theorem, $H \mapsto \zeta^{H}$ transports the Itô excursion measure into the excursion measure of

Feller's branching diffusion $d \zeta_{t}=\sqrt{4 \zeta_{t}} d W_{t}$.

We will condition on $\{\mathfrak{h}>1\}$.

This turns the Itô excursion measure into a probability measure, under which H and ζ^{H} then are (path-valued) random variables.

How to go back from ζ^{H} to H ?

How to go back from ζ^{H} to H ?

Quote from D. Aldous (1998), Brownian excursion conditioned on its local time:
"Given a local time profile ζ, can we define a process whose law is, in some sense, the conditional law of H given $L(\cdot, \mathfrak{r})=\zeta$?"

We will see that H is made up of three independent ingredients $\zeta^{H}, \wedge^{H}, \gamma^{H}$,
with
the pair $\left(\zeta^{H}, \wedge^{H}\right)$ coding for \mathbb{T}^{H}, and γ^{H} being responsible for the left-right order \prec.

We will see that H is made up of three independent ingredients $\zeta^{H}, \wedge^{H}, \gamma^{H}$,
with
the pair $\left(\zeta^{H}, \wedge^{H}\right)$ coding for \mathbb{T}^{H}. and γ^{H} being responsible for the left-right order \prec.

Let us now turn to the second ingredient, \wedge^{H}.

We will see that H is made up of three independent ingredients $\zeta^{H}, \wedge^{H}, \gamma^{H}$,

with

the pair $\left(\zeta^{H}, \wedge^{H}\right)$ coding for \mathbb{T}^{H}. and γ^{H} being responsible for the left-right order \prec.

Let us now turn to the second ingredient, \wedge^{H}.
This will be a point measure on $\mathbb{R} \times\{(i, j): 1 \leq i<j \in \mathbb{N}\}$
whose points $(\tau,(i, j))$ are in 1-1 correspondence with the local minima of H on $(0, r)$.

Let t be the height of a local minimum of H.

a local minimum of H at time t

Let t be the height of a local minimum of H.
$i<j$ are the height ranks of the two subexcursions in H above t that are attached to this local minimum among all subexcursions in H above t.

a local minimum of H at time $t \quad \leftrightarrow \quad$ a point $(\tau,(1,3))$ of \wedge

$$
\tau:=\theta(t):=\int_{1}^{t} \frac{4}{\zeta_{u}^{H}} d u
$$

Almost surely,
$t \mapsto \theta(t):=\int_{1}^{t} \frac{4}{\zeta_{u}^{H}} d u$ maps $[0, \mathfrak{h}]$ bijectively to $[-\infty,+\infty]$.

Λ^{H} is a random point measure on

$$
\mathbb{R} \times\{(i, j): 1 \leq i<j \in \mathbb{N}\}
$$

Visualize a point $(\tau,(i, j))$
by an arrow from i to j at time τ.

Visualize a point $(\tau,(i, j))$
by an arrow from i to j at time τ.

Then \wedge^{H} becomes a random configuration of

 horizontal arrows on $\mathbb{R} \times \mathbb{N}$.

Theorem 1

$$
\wedge_{i j}^{H}:=\wedge^{H}(\{(\cdot) \times(i, j)\}
$$

are independent rate 1 Poisson point processes, and they are independent of ζ^{H}.

Theorem 1

$$
\wedge_{i j}^{H}:=\wedge^{H}(\{(\cdot) \times(i, j)\}
$$

are independent rate 1 Poisson point processes, and they are independent of ζ^{H}.

The proof uses the Poisson structure of the subexcursions in H, and properties of permutation invariance.

Theorem 1

$$
\wedge_{i j}^{H}:=\wedge^{H}(\{(\cdot) \times(i, j)\}
$$

are independent rate 1 Poisson point processes,
and they are independent of ζ^{H}.
The proof uses the Poisson structure of the subexcursions in H, and properties of permutation invariance.

A precursor of this result is
J. \& N. Berestycki (2009), Kingmans coalescent and Brownian motion.

Among others, they cite Le Gall (1989, 1993), Aldous (1991,93,98), Warren and Yor (1998).
Gufler (2017) relates the Brownian excursion to the full lookdown picture (between times $-\infty$ and $+\infty$) of Donnelly and Kurtz (1999).

The third ingredient $\gamma^{H}=\left(\gamma^{H}(a)\right)_{a \in \operatorname{supp} \wedge^{H}}$ is a colouring of each of the points $a \in \wedge^{H}$ by either \curvearrowleft or \curvearrowright.

The third ingredient $\gamma^{H}=\left(\gamma^{H}(a)\right)_{a \in \operatorname{supp} \wedge^{H}}$ is a colouring of each of the points $a \in \wedge^{H}$ by either \curvearrowleft or \curvearrowright.

$$
\text { Put } \gamma^{H}(a):=\curvearrowleft
$$

if the higher of the two excursions attached to the corresponding local minimum in H is to the left

The third ingredient $\gamma^{H}=\left(\gamma^{H}(a)\right)_{a \in \operatorname{supp}} \wedge^{H}$
is a colouring of each of the points $a \in \wedge^{H}$ by either \curvearrowleft or \curvearrowright.

$$
\text { Put } \gamma^{H}(a):=\curvearrowleft
$$

if the higher of the two excursions attached to the corresponding local minimum in H is to the left

$$
\text { and } \gamma^{H}(a):=\curvearrowright
$$

if the higher of these two excursions is to the right.

Then $\gamma^{H}=\left(\gamma^{H}(a)\right)_{a \in \text { supp } \wedge^{H}}$ is a fair coin tossing array.

How to reconstruct the (exploration) path H from the triple (ζ, \wedge, γ) ?

First step: Obtaining from \wedge a complete metric space $\left(Z^{\wedge}, \rho^{\wedge}\right)$, the lookdown space.

The lookdown space obtained from \wedge :

$$
\text { Let } \wedge_{i j}, 1 \leq i<j,
$$

be independent rate 1 Poisson point processes.
$\Lambda=\left(\Lambda_{i j}\right)$ induces (random) geodesics on $\mathbb{N} \times \mathbb{R}$ via coalescent ancestral lineages

\rightarrow

$$
\text { Let } \wedge_{i j}, 1 \leq i<j \text {, }
$$

be independent rate 1 Poisson point processes.
$\Lambda=\left(\Lambda_{i j}\right)$ induces a (random) semi-metric $\rho=\rho^{\wedge}$ on $\mathbb{N} \times \mathbb{R}$ via vertical distances along the geodesics

$\rho\left(z_{1}, z_{2}\right)$

The closure of $\left(\mathbb{R} \times \mathbb{N}, \rho^{\wedge}\right)$ is denoted by $\left(Z^{\wedge}, \rho^{\wedge}\right)=:(Z, \rho)$, and called the (random) lookdown space.

The closure of $\left(\mathbb{R} \times \mathbb{N}, \rho^{\wedge}\right)$ is denoted by $\left(Z^{\wedge}, \rho^{\wedge}\right)=:(Z, \rho)$, and called the (random) lookdown space.

For $z=(\tau, i)$ we define $\tau(z):=\tau$ as the height of z and extend this by continuity to Z.

(Z, ρ) is a (random) non-compact \mathbb{R}-tree,

 and can be compactified to $\bar{Z}:=Z \cup\left\{z_{\text {root }}, z_{\mathrm{top}}\right\}$, where we say that$$
\begin{array}{cl}
z_{n} \rightarrow z_{\text {root }} & \text { if } \tau\left(z_{n}\right) \rightarrow-\infty=: \tau\left(z_{\text {root }}\right) \\
z_{n} \rightarrow z_{\text {top }} & \text { if } \tau\left(z_{n}\right) \rightarrow+\infty=: \tau\left(z_{\text {top }}\right) .
\end{array}
$$

Our program in this part of the talk is to reconstruct H from (ζ, \wedge, γ)

So far, we only worked in the \wedge-world:
using \wedge, we metrized and completed the set $\mathbb{N} \times \mathbb{R}$, thus obtaining the semi-metric $\rho=\rho^{\wedge}$.

Now we bring in the local time profile ζ, in order to revert the "height change" $t \rightarrow \theta(t)$ by its inverse $t(\tau):=\theta^{-1}(\tau)$.

For given ζ and Λ, we define the semi-metric ρ_{ζ} on $\mathbb{N} \times \mathbb{R}$ by stretching ρ locally with the factor $\frac{1}{4} \zeta_{t(\tau)}$:

$$
\rho_{\zeta}((i, \tau),(j, \tau+d \tau)):=\frac{1}{4} \zeta_{t(\tau))} \rho((i, \tau),(j, \tau+d \tau))
$$

For given ζ and Λ, we define the semi-metric ρ_{ζ} on $\mathbb{N} \times \mathbb{R}$ by stretching ρ locally with the factor $\frac{1}{4} \zeta_{t(\tau)}$: and extend this to a metric ρ_{ζ} on \bar{Z}.

Proposition 1:

For $\wedge:=\wedge^{H}$ and $\zeta:=\zeta^{H}$,
($\left.T^{H}, d\right)$ and $\left(\bar{Z}, \rho_{\zeta}\right)$ are a.s. root-preserving isometric.

Proposition 1:

For $\wedge:=\wedge^{H}$ and $\zeta:=\zeta^{H}$,
(T^{H}, d) and (\bar{Z}, ρ_{ζ}) are a.s. root-preserving isometric. Idea of proof: First show the isometry for the "skeleton points" (corresponding to $\mathbb{N} \times \mathbb{R}$)

Proposition:

$$
\text { For } \wedge:=\wedge^{H} \text { and } \zeta:=\zeta^{H} \text {, }
$$

(T^{H}, d) and (\bar{Z}, ρ_{ζ}) are a.s. root-preserving isometric. Idea of proof: First show the isometry for the "skeleton points" (corresponding to $\mathbb{N} \times \mathbb{R}$), then proceed by continuity.

With the standing aim to reconstruct H from (ζ, \wedge, γ), we now proceed further to define (the height process of) an exploration of Z^{\wedge}.

To this purpose we endow Z^{\wedge} with a measure $\mu_{\tau}(d z) d \tau$
(which will help us to specify how much mass we have explored by which time).

Theorem 2 (S. Gufler, EJP, 2018)

For a.a. \wedge the lookdown space ($Z^{\wedge}, \rho^{\wedge}$) carries a family $\left(\mu_{\tau}\right)_{\tau \in \mathbb{R}}$ of probability measures such that for all $\tau \in \mathbb{R}$,

$$
\mu_{\tau}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{(i, \tau)}
$$

in the weak topology on the probab. measures on $\left(Z^{\wedge}, \rho^{\wedge}\right)$.

Theorem 2 (S. Gufler, EJP, 2018)

For a.a. \wedge the lookdown space ($Z^{\wedge}, \rho^{\wedge}$) carries a family $\left(\mu_{\tau}\right)_{\tau \in \mathbb{R}}$ of probability measures such that for all $\tau \in \mathbb{R}$,

$$
\mu_{\tau}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{(i, \tau)},
$$

in the weak topology on the probab. measures on $\left(Z^{\wedge}, \rho^{\wedge}\right)$.

Elegant way of proof: By Theorem 1, embed the lookdown space into a Brownian excursion H and prove the assertion for $\left(Z^{\wedge^{H}}, \rho^{\wedge^{H}}\right)$.
The latter is achieved via the uniform downcrossing representation for local times due to Chacon, Le Jan, Perkins and Taylor (1981).

To prepare for an exploration process of Z^{\wedge} :

Endowing Z^{\wedge} with a total order \prec, using the $\{\curvearrowleft, \curvearrowright\}$-valued array γ

Let $(Z, \rho)=\left(Z^{\wedge}, \rho^{\wedge}\right)$ be a lookdown space, and γ be a $\{\curvearrowleft, \curvearrowright\}$-valued array, indexed by the points of \wedge.

Using γ we define a total order \prec on Z as follows:
For $y, z \in Z$ connected by a single line of descent with z descending from y, we put $y \prec z$.

Let $(Z, \rho)=\left(Z^{\wedge}, \rho^{\wedge}\right)$ be a lookdown space, and γ be a $\{\curvearrowleft, \curvearrowright\}$-valued array, indexed by the points of \wedge.

Using γ we define a total order \prec on Z as follows:
For $y, z \in Z$ connected by a single line of descent with y descending from z, we put $z \prec y$.

Let $(Z, \rho)=\left(Z^{\wedge}, \rho^{\wedge}\right)$ be a lookdown space, and γ be a $\{\curvearrowleft, \curvearrowright\}$-valued array, indexed by the points of \wedge.

Using γ we define a total order \prec on Z as follows:
For $y, z \in Z$ connected by a single line of descent with y descending from z, we put $z \prec y$.

For $y, z \in Z$ not connected by a single line of descent, their most recent common ancestor is of the form

$$
(\tau, i) \text { for some } a=(\tau,(i, j)) \in \operatorname{supp} \wedge
$$

Assume that z descends from (τ, j).

 We then put $z \prec y$ if $\gamma(a)=\curvearrowright$

$$
\ldots \text { and } y \prec z \text { if } \gamma(a)=\curvearrowleft .
$$

A (standardized) exploration of $Z:=Z^{\wedge}$ using (the order \prec induced by) γ :

A (standardized) exploration of $Z:=Z^{\wedge}$ using (the order \prec induced by) γ :

$$
\begin{aligned}
\bar{Z}_{\text {left }} & :=\left\{z \in \bar{Z}: z \preceq z_{\mathrm{top}}\right\}, \\
z_{0} & :=\inf \{z \in \bar{Z}: \tau(z)=0\} .
\end{aligned}
$$

We think of an exploration starting at time $-\infty$ in $z_{\text {root }}$, arriving at time 0 in z_{0}, and ending at time $+\infty$ in $z_{\text {top }}$, with $\mathfrak{s}(z):=$ the time of the first exploration of z.

A (standardized) exploration of $Z:=Z^{\wedge}$ using (the order \prec induced by) γ :

$$
\begin{aligned}
\bar{Z}_{\text {left }} & :=\left\{z \in \bar{Z}: z \preceq z_{\mathrm{top}}\right\}, \\
z_{0} & :=\inf \{z \in \bar{Z}: \tau(z)=0\} .
\end{aligned}
$$

We think of an exploration starting at time $-\infty$ in $z_{\text {root }}$, arriving at time 0 in z_{0}, and ending at time $+\infty$ in $z_{\text {top }}$, with $\mathfrak{s}(z):=$ the time of the first exploration of z.

$$
\widehat{\mathfrak{s}}\left(z_{\text {root }}\right):=-\infty, \quad \hat{\mathfrak{s}}\left(z_{0}\right):=0, \quad \widehat{\mathfrak{s}}\left(z_{\text {top }}\right):=+\infty .
$$

For $z_{\text {root }} \prec z \prec z^{\prime} \prec z_{\text {top }}$, we decree that the time difference between the first explorations of z and z^{\prime} is

$$
\widehat{\mathfrak{s}}\left(z^{\prime}\right)-\widehat{\mathfrak{s}}(z):=\int_{-\infty}^{\infty} \mu_{\tau}\left(\left\{y: z \prec y \prec z^{\prime}\right\}\right) d \tau .
$$

Altogether, for $z \in \bar{Z}_{\text {left }}$ this leads to

$$
\begin{aligned}
\mathfrak{s}(z):= & \int_{-\infty}^{\infty} \mu_{\tau}\{y: \\
& \left.\quad z_{0} \prec y \prec z\right\} d \tau \\
& -\int_{-\infty}^{\infty} \mu_{\tau}\left\{y: z \prec y \prec z_{0}\right\} d \tau .
\end{aligned}
$$

$\widehat{\mathfrak{s}}: \bar{Z}_{\text {left }} \rightarrow[-\infty,+\infty]$ is strictly increasing (w. r. to \prec and $<$) and its image is dense in $[\infty,+\infty]$.

For $s \in \hat{\mathfrak{s}}\left(\bar{Z}_{\text {left }}\right) \subset[-\infty,+\infty]$, define
$\hat{\mathfrak{z}}(s):=\mathfrak{s}^{-1}(s)$,
the individual whose time of first exploration is s.

For $s \in \widehat{\mathfrak{s}}\left(\bar{Z}_{\text {left }}\right) \subset[-\infty,+\infty]$, define
$\hat{\mathfrak{j}}(s):=\mathfrak{s}^{-1}(s)$,
the individual whose time of first exploration is s.
Extend $\mathfrak{\mathfrak { z }}$ by continuity to $[-\infty,+\infty]$.

For $s \in \hat{\mathfrak{s}}\left(\bar{Z}_{\text {left }}\right) \subset[-\infty,+\infty]$, define
$\hat{\mathfrak{z}}(s):=\hat{\mathfrak{s}}^{-1}(s)$,
the individual whose time of first exploration is s.
Extend $\mathfrak{\mathfrak { z }}$ by continuity to $[-\infty,+\infty]$.
We now define
$\widehat{H}_{s}:=\tau(\hat{\mathfrak{\jmath}}(s)), \quad s \in[-\infty,+\infty]$,
the height process of the exploration $\hat{\mathfrak{z}}$ of $\bar{Z}_{\text {left }}$ (the standardized exploration of $\bar{Z}_{\text {left }}$ using γ)

This relates to a detective story:

Jonathan Warren and Marc Yor (1998),
The brownian burglar: conditioning brownian motion by its local time

Jonathan Warren and Marc Yor (1998),
The brownian burglar: conditioning brownian motion by its local time

Quote from that paper's preamble:
Imagine a Brownian crook who spent a month in a large metropolis. The number of nights he spent in hotels A, B, C...etc. is known; but not the order, nor his itinerary. So the only information the police has is total hotel bills.....

Jonathan Warren and Marc Yor (1998),
The brownian burglar: conditioning brownian motion by its local time

Quote from that paper's preamble:
Imagine a Brownian crook who spent a month in a large metropolis. The number of nights he spent in hotels $A, B, C \ldots e t c$. is known; but not the order, nor his itinerary. So the only information the police has is total hotel bills.....

The latter correspond to to the local time profile ζ.

How to extract from H the information "on the order and the itinerary" (which is complementary to the information from ζ)

How to extract from H the information "on the order and the itinerary" (which is complementary to the information from ζ)
and code that "order and itinerary" information
in terms of a "standardized" height process \widehat{H}
which is then independent of ζ ?

How to extract from H the information "on the order and the itinerary" (which is complementary to the information from ζ)
and code that "order and itinerary" information
in terms of a "standardized" height process \widehat{H}
which is then independent of ζ ?

This is precisely what we have achieved
by the just described construction of \widehat{H}

How to extract from H the information "on the order and the itinerary" (which is complementary to the information from ζ)
and code that "order and itinerary" information
in terms of a "standardized" height process \widehat{H}
which is then independent of ζ ?

This is precisely what we have achieved
by the just described construction of \widehat{H}
and what Warren and Yor had achieved
by completely different techniques...

How to relate \widehat{H} with H ?

How to relate \widehat{H} with H ?

H is the height process of an exploration of T^{H}.
The missing bit is the local time profile $\zeta=\zeta^{H}$.
An explored mass $d \tau \cdot 1=\frac{4}{\zeta_{t}} d t$
(on the side of the lookdown space space)
should correspond to an explored mass $d t \cdot \zeta_{t}$
(on the side of the Brownian tree)

How to relate \widehat{H} with H ?

H is the height process of an exploration of T^{H}.
The missing bit is the local time profile $\zeta=\zeta^{H}$.
An explored mass $d \tau \cdot 1=\frac{4}{\zeta_{t}} d t$
(on the side of the lookdown space space)
should correspond to an explored mass $d t \cdot \zeta_{t}$
(on the side of the Brownian tree)
This suggests $d A_{s}:=\frac{4}{\zeta_{H_{s}}^{2}} d s$ as an appropriate time change between the two exploration processes (of Z and T^{H}).

More precisely, for
$s_{1}:=\inf \left\{s>0: H_{s}=1\right\}, \quad s_{\text {top }}:=\operatorname{argmax} H$
we put $A_{s}:=\int_{s_{1}}^{s} \frac{4}{\zeta_{H_{u}}^{2}} d u, \quad 0 \leq s \leq s_{\text {top }}$.

In addition, we have our familiar "height change"

$$
d \theta(t)=\frac{4}{\zeta_{t}} d t, \quad \theta(1)=0
$$

More precisely, for
$s_{1}:=\inf \left\{s>0: H_{s}=1\right\}, \quad s_{\text {top }}:=\operatorname{argmax} H$
we put $A_{s}:=\int_{s_{1}}^{s} \frac{4}{\zeta_{H_{u}}^{2}} d u, \quad 0 \leq s \leq s_{\text {top }}$.

In addition, we have our familiar "height change"

$$
d \theta(t)=\frac{4}{\zeta_{t}} d t, \quad \theta(1)=0
$$

Theorem 3:
For a Brownian excursion H, with $\zeta:=\zeta^{H}, \wedge:=\wedge^{H}, \gamma:=\gamma^{H}$ we have

$$
H_{s}=\theta^{-1}\left(\widehat{H}_{A_{s}}\right), \quad 0 \leq s \leq s_{\mathrm{top}}
$$

In Warren\&Yor's situation,
H ... Brownian motion started in 0 and reflected above 0,
$T_{1} \ldots$ time when H first reaches height 1 ,
$\zeta_{t}:=L^{H}\left(t, T_{1}\right), \quad t \geq 0$.
They put $\quad \theta(t):=\int_{0}^{t} \frac{1}{\zeta_{u}} d u, \quad A_{s}:=\int_{0}^{s} \frac{1}{\zeta_{H_{u}}^{2}} d u$
and define the Brownian burglar $\widehat{H}=\left(\widehat{H}_{s}\right)_{0 \leq s<\infty}$ by

$$
\theta\left(H_{s}\right)=\widehat{H}_{A_{s}}, \quad 0 \leq s \leq T_{1}
$$

Their main result is that \widehat{H} is independent of ζ.

A (standardized) exploration of $Z:=Z^{\wedge}$ using γ and ζ

If we adjust the exploration speed of \bar{Z} right away to the local time profile ζ, then we can reconstuct H directly from (ζ, \wedge, γ), without the detour via the burglar \widehat{H} :

Define the ζ-profiled time of the first exploration of $z \in \bar{Z}$ by
$\mathfrak{s}(z):=\int_{-\infty}^{\infty} \mu_{\tau}(\{y: y \prec z\}) \frac{\zeta_{t(\tau)}^{2}}{4} d \tau, \quad z \in Z$,
$s\left(z_{\text {root }}\right):=0, \quad \mathfrak{s}\left(z_{\text {top }}\right):=\lim _{z \rightarrow \text { top }} \mathfrak{s}(z)$.

For $s \in \mathfrak{s}(\bar{Z}) \subset[0, \mathfrak{r}]$, let $\mathfrak{z}(s)$ be the individual whose ζ-profiled time of first exploration is s, and extend \mathfrak{z} by continuity to $[0, \mathfrak{r}]$.

For $s \in \mathfrak{s}(\bar{Z}) \subset[0, \mathfrak{r}]$, let $\mathfrak{z}(s)$ be the individual whose ζ-profiled time of first exploration is s, and extend \mathfrak{z} by continuity to $[0, \mathfrak{r}]$.

Theorem 3':

For a Brownian excursion H,
with $\wedge:=\wedge^{H}, \zeta:=\zeta^{H}, \gamma:=\gamma^{H}$ we have
$\theta\left(H_{s}\right)=\tau(\mathfrak{z}(s)), \quad 0 \leq s \leq \mathfrak{r}$.

Corollary: The mapping $z \mapsto\langle\mathfrak{s}(z)\rangle$ is a root-, order- and measure-preserving isometry from ($\bar{Z}^{\wedge}, \rho_{\zeta}, \prec$) to (T^{H}, d, \prec).

Corollary: The mapping $z \mapsto\langle\mathfrak{s}(z)\rangle$ is a root-, order- and measure-preserving isometry from ($\bar{Z}^{\wedge}, \rho_{\zeta}, \prec$) to (T^{H}, d, \prec).

The correspondence between the sampling measures $\mu_{\tau}(d z)$ and the local time measures $L(t, d s)$ is then given by $\mu_{\tau}(\{y: y \prec z\})=L(t(\tau), \mathfrak{s}(z)) / \zeta_{t(\tau)}$.

Let us come back to Aldous' question:
"Given a local time profile ζ, can we define a process H^{ζ} whose law is, in some sense, the conditional law of H given $L(\cdot, \mathfrak{r})=\zeta$?"

Our construction accomplishes this because ζ is independent of (\wedge, γ) :
we can change the local time profile (almost) ad libitum!

An example:

Genealogies of continuum populations under (neutral) competition:

Abstract

Recall: A Brownian excursion H conditioned to height >1 corresponds to an independent triple (ζ, \wedge, γ) where

ζ is a Feller branching diffusion excursion conditioned to survive time 1, Λ is the Poisson process of points $(\tau,(i, j))$ in the lookdown space,
γ is a fair coin-tossing that colours the points of \wedge by \curvearrowleft or \curvearrowright.

Thus, a Girsanov reweighting of the law of ζ does not affect \wedge nor γ.

Thus, a Girsanov reweighting of the law of ζ does not affect \wedge nor γ.

This gives a direct way to obtain a genealogy of (say) Feller's logistic branching diffusion

$$
\zeta_{t}=\left(b \zeta_{t}-c \zeta_{t}^{2}\right) d t+2 \sqrt{\zeta_{t}} d W_{t}
$$

Thus, a Girsanov reweighting of the law of ζ does not affect \wedge nor γ.

This gives a direct way to obtain a genealogy of (say) Feller's logistic branching diffusion

$$
\zeta_{t}=\left(b \zeta_{t}-c \zeta_{t}^{2}\right) d t+2 \sqrt{\zeta_{t}} d W_{t}:
$$

The only change in the underlying genealogy is through the time change induced by ζ.

This allows for interesting comparisons with the genealogy that is obtained when exposing H to a local time drift (E. Pardoux \& A. W. 2011 f.)

This allows for interesting comparisons with the genealogy that is obtained when exposing H to a local time drift (E. Pardoux \& A. W. 2011 f.)

Does this reweighting affect \wedge ?

This allows for interesting comparisons with the genealogy that is obtained when exposing H to a local time drift (E. Pardoux \& A. W. 2011 f.)

Does this reweighting affect \wedge ?

We conjecture this, but do not yet have a proof.

