Oberseminar, Institut für Mathematische Stochastik Universität Münster

29. Januar 2020

A decomposition of the Brownian excursion

Anton Wakolbinger

Institut für Mathematik, Goethe-Universität Frankfurt am Main

(mit Stephan Gufler (Technion Haifa) und Götz Kersting (GU FfM))

"Walks and trees are abstractly identical objects ... " (Ted Harris (1952))

"Walks and trees are abstractly identical objects ... " (Ted Harris (1952))

As known from work of Neveu, Pitman, Aldous, Le Gall, ... Harris' paradigm holds also in a Brownian rescaling. There the walk becomes an Itô excursion.

As known from work of Neveu, Pitman, Aldous, Le Gall, ... Harris' paradigm holds also in a Brownian rescaling. There the walk becomes an Itô excursion.

7

$$\langle s \rangle := \{s' : s' \sim s\}$$

$$T^{H} := \{\langle s \rangle : s \in [0, \mathfrak{r}]\}$$

$$\langle 0 \rangle = \{0, \mathfrak{r}\} \text{ is the root }$$

8

The *isomorphy class* of (T^H, d, \prec) will be denoted by \mathbb{T}^H_{\prec} . The *root-preserving isometry class* of (T^H, d) will be denoted by \mathbb{T}^H .

Example:

"Counting" the number of subexcursions above height t:

 $L^{H}(t,s)$... the local time accumulated by H at height t up to time s

$$\zeta_t^H := L^H(t, \mathfrak{r})$$

12

"Counting" the number of subexcursions above height t:

 $L^{H}(s,t)$... the local time accumulated by H at height t up to time s

$$\zeta_t^H := L^H(t, \mathfrak{r})$$

$$\zeta^H := \left(\zeta_t^H\right)_{0 \le t \le \mathfrak{h}} \dots \text{ the local time profile of } H$$

13

"Counting" the number of subexcursions above height t:

By the second Ray-Knight theorem, $H \mapsto \zeta^H$ transports the Itô excursion measure into the excursion measure of Feller's branching diffusion $d\zeta_t = \sqrt{4\zeta_t} \, dW_t$.

This turns the Itô excursion measure into a probability measure, under which H and ζ^H then are (path-valued) random variables.

How to go back from ζ^H to H?

How to go back from ζ^H to H?

Quote from D. Aldous (1998), *Brownian excursion* conditioned on its local time:

"Given a local time profile ζ , can we define a process whose law is, in some sense, the conditional law of *H* given $L(\cdot, \mathfrak{r}) = \zeta$?" We will see that *H* is made up of three independent ingredients $\zeta^{H}, \Lambda^{H}, \gamma^{H}$,

with

the pair $\left(\zeta^H,\Lambda^H\right)$ coding for \mathbb{T}^H , and γ^H being responsible for the left-right order \prec .

We will see that *H* is made up of three independent ingredients ζ^H , Λ^H , γ^H ,

with

the pair $\left(\zeta^H,\Lambda^H\right)$ coding for $\mathbb{T}^H.$ and γ^H being responsible for the left-right order \prec .

Let us now turn to the second ingredient, Λ^H .

We will see that *H* is made up of three independent ingredients ζ^H , Λ^H , γ^H ,

with

the pair (ζ^H, Λ^H) coding for \mathbb{T}^H .

and γ^H being responsible for the left-right order \prec .

Let us now turn to the second ingredient, Λ^H . This will be a point measure on $\mathbb{R} \times \{(i, j) : 1 \le i < j \in \mathbb{N}\}$ whose points $(\tau, (i, j))$ are in 1-1 correspondence with the local minima of H on $(0, \mathfrak{r})$. Let t be the height of a local minimum of H.

a local minimum of H at time t

Let t be the height of a local minimum of H.

i < j are the height ranks of the two subexcursions in H above t that are attached to this local minimum among all subexcursions in H above t.

a local minimum of H at time $t \leftrightarrow a$ point $(\tau, (1, 3))$ of Λ

$$\tau := \theta(t) := \int_1^t \frac{4}{\zeta_u^H} du.$$

Almost surely, $t \mapsto \theta(t) := \int_1^t \frac{4}{\zeta_u^H} du \text{ maps } [0, \mathfrak{h}] \text{ bijectively to } [-\infty, +\infty].$

Λ^H is a random point measure on $\mathbb{R} imes \{(i,j): 1 \leq i < j \in \mathbb{N}\}$

Visualize a point $(\tau, (i, j))$ by an arrow from *i* to *j* at time τ .

24

Visualize a point $(\tau, (i, j))$ by an arrow from *i* to *j* at time τ .

Then Λ^H becomes a random configuration of horizontal arrows on $\mathbb{R} \times \mathbb{N}$.

Theorem 1

 $\Lambda_{ij}^H := \Lambda^H(\{(\cdot) \times (i,j)\}$

are independent rate 1 Poisson point processes,

and they are independent of ζ^H .

Theorem 1

 $\Lambda_{ij}^H := \Lambda^H(\{(\cdot) \times (i,j)\}$

are independent rate 1 Poisson point processes,

and they are independent of ζ^H .

The proof uses the Poisson structure of the subexcursions in H, and properties of permutation invariance.

Theorem 1

 $\Lambda_{ij}^H := \Lambda^H(\{(\cdot) \times (i,j)\}$

are independent rate 1 Poisson point processes,

and they are independent of ζ^H .

The proof uses the Poisson structure of the subexcursions in H, and properties of permutation invariance.

A precursor of this result is

J. & N. Berestycki (2009), *Kingmans coalescent and Brownian motion*. Among others, they cite Le Gall (1989, 1993), Aldous (1991,93,98), Warren and Yor (1998). Gufler (2017) relates the Brownian excursion to the full lookdown picture

(between times $-\infty$ and $+\infty$) of Donnelly and Kurtz (1999).

The third ingredient $\gamma^H = (\gamma^H(a))_{a \in \text{supp } \Lambda^H}$

is a colouring of each of the points $a \in \Lambda^H$ by either \curvearrowleft or \curvearrowright . The third ingredient $\gamma^H = \left(\gamma^H(a)\right)_{a \in \operatorname{supp} \Lambda^H}$

is a colouring of each of the points $a \in \Lambda^H$ by either \frown or \frown .

Put $\gamma^H(a) := \frown$

if the higher of the two excursions attached to the corresponding local minimum in H is to the left

The third ingredient $\gamma^H = \left(\gamma^H(a)\right)_{a \in \operatorname{supp} \Lambda^H}$

is a colouring of each of the points $a \in \Lambda^H$ by either \curvearrowleft or \curvearrowright .

Put $\gamma^H(a) := \frown$

if the higher of the two excursions attached to the corresponding local minimum in *H* is to the left

and $\gamma^H(a) := \frown$

if the higher of these two excursions is to the right.

Then $\gamma^H = (\gamma^H(a))_{a \in \text{supp } \Lambda^H}$ is a fair coin tossing array.

How to reconstruct the (exploration) path *H* from the triple (ζ, Λ, γ) ?

First step: Obtaining from Λ a complete metric space $(Z^{\Lambda}, \rho^{\Lambda})$, the lookdown space.

The lookdown space obtained from Λ :

Let Λ_{ij} , $1 \leq i < j$,

be independent rate 1 Poisson point processes.

 $\Lambda = (\Lambda_{ij}) \text{ induces (random) geodesics on } \mathbb{N} \times \mathbb{R}$ via coalescent ancestral lineages

Let
$$\Lambda_{ij}$$
, $1 \leq i < j$,

be independent rate 1 Poisson point processes.

 $\Lambda = (\Lambda_{ij}) \text{ induces a (random) semi-metric } \rho = \rho^{\Lambda} \text{ on } \mathbb{N} \times \mathbb{R}$ via vertical distances along the geodesics

The closure of $(\mathbb{R} \times \mathbb{N}, \rho^{\wedge})$ is denoted by $(Z^{\wedge}, \rho^{\wedge}) =: (Z, \rho)$, and called the (random) lookdown space. The closure of $(\mathbb{R} \times \mathbb{N}, \rho^{\Lambda})$ is denoted by $(Z^{\Lambda}, \rho^{\Lambda}) =: (Z, \rho)$, and called the (random) lookdown space.

For $z = (\tau, i)$ we define $\tau(z) := \tau$ as the *height* of zand extend this by continuity to Z. (Z, ρ) is a (random) non-compact \mathbb{R} -tree, and can be compactified to $\overline{Z} := Z \cup \{z_{root}, z_{top}\},$ where we say that $z_n \rightarrow z_{root}$ if $\tau(z_n) \rightarrow -\infty =: \tau(z_{root}),$ $z_n \rightarrow z_{top}$ if $\tau(z_n) \rightarrow +\infty =: \tau(z_{top}).$ Our program in this part of the talk is to reconstruct *H* from (ζ, Λ, γ)

So far, we only worked in the Λ -world:

using Λ , we metrized and completed the set $\mathbb{N} \times \mathbb{R}$, thus obtaining the semi-metric $\rho = \rho^{\Lambda}$.

Now we bring in the local time profile ζ , in order to revert the "height change" $t \to \theta(t)$ by its inverse $t(\tau) := \theta^{-1}(\tau)$. For given ζ and Λ , we define the semi-metric ρ_{ζ} on $\mathbb{N} \times \mathbb{R}$ by stretching ρ locally with the factor $\frac{1}{4}\zeta_{t(\tau)}$:

 $\rho_{\zeta}((i,\tau),(j,\tau+d\tau)) := \frac{1}{4}\zeta_{t(\tau)}\rho((i,\tau),(j,\tau+d\tau))$

For given ζ and Λ , we define the semi-metric ρ_{ζ} on $\mathbb{N} \times \mathbb{R}$ by stretching ρ locally with the factor $\frac{1}{4}\zeta_{t(\tau)}$: and extend this to a metric ρ_{ζ} on \overline{Z} .

Proposition 1:

For $\Lambda := \Lambda^H$ and $\zeta := \zeta^H$,

 (T^{H}, d) and $\left(\bar{Z}, \rho_{\zeta} \right)$ are a.s. root-preserving isometric.

Proposition 1:

For $\Lambda := \Lambda^H$ and $\zeta := \zeta^H$,

 (T^{H},d) and $\left(ar{Z},
ho_{\zeta}
ight)$ are a.s. root-preserving isometric.

Proposition:

For $\Lambda := \Lambda^H$ and $\zeta := \zeta^H$,

 (T^{H},d) and $\left(ar{Z},
ho_{\zeta}
ight)$ are a.s. root-preserving isometric.

Idea of proof: First show the isometry for the "skeleton points" (corresponding to $\mathbb{N} \times \mathbb{R}$), then proceed by continuity.

With the standing aim to reconstruct H from (ζ, Λ, γ) , we now proceed further to define (the height process of) an exploration of Z^{Λ} . To this purpose we endow Z^{Λ} with a measure $\mu_{\tau}(dz) d\tau$ (which will help us to specify *how much mass* we have explored by which time). Theorem 2 (S. Gufler, EJP, 2018)

For a.a. Λ the lookdown space $(Z^{\Lambda}, \rho^{\Lambda})$ carries a family $(\mu_{\tau})_{\tau \in \mathbb{R}}$ of probability measures such that for all $\tau \in \mathbb{R}$, $\mu_{\tau} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{(i,\tau)},$

in the weak topology on the probab. measures on $(Z^{\Lambda}, \rho^{\Lambda})$.

Theorem 2 (S. Gufler, EJP, 2018)

For a.a. Λ the lookdown space $(Z^{\Lambda}, \rho^{\Lambda})$ carries a family $(\mu_{\tau})_{\tau \in \mathbb{R}}$ of probability measures such that for all $\tau \in \mathbb{R}$, $\mu_{\tau} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{(i,\tau)},$

in the weak topology on the probab. measures on $(Z^{\Lambda}, \rho^{\Lambda})$.

Elegant way of proof: By Theorem 1, embed the lookdown space into a Brownian excursion *H* and prove the assertion for $(Z^{\Lambda^H}, \rho^{\Lambda^H})$. The latter is achieved via the *uniform downcrossing representation for local times* due to Chacon, Le Jan, Perkins and Taylor (1981). To prepare for an exploration process of Z^{Λ} :

Endowing Z^{\wedge} with a total order \prec , using the $\{\frown, \frown\}$ -valued array γ

Let $(Z, \rho) = (Z^{\Lambda}, \rho^{\Lambda})$ be a lookdown space, and γ be a { \neg, \neg }-valued array, indexed by the points of Λ .

Using γ we define a total order \prec on Z as follows:

For $y, z \in Z$ connected by a single line of descent with z descending from y, we put $y \prec z$. Let $(Z, \rho) = (Z^{\Lambda}, \rho^{\Lambda})$ be a lookdown space, and γ be a { \neg, \neg }-valued array, indexed by the points of Λ .

Using γ we define a total order \prec on Z as follows:

For $y, z \in Z$ connected by a single line of descent with y descending from z, we put $z \prec y$. Let $(Z, \rho) = (Z^{\Lambda}, \rho^{\Lambda})$ be a lookdown space, and γ be a { \neg, \neg }-valued array, indexed by the points of Λ .

Using γ we define a total order \prec on Z as follows:

For $y, z \in Z$ connected by a single line of descent with y descending from z, we put $z \prec y$.

For $y, z \in Z$ not connected by a single line of descent, their most recent common ancestor is of the form (τ, i) for some $a = (\tau, (i, j)) \in \text{supp } \Lambda$. Assume that z descends from (τ, j) . We then put $z \prec y$ if $\gamma(a) = \curvearrowright$

$$a = (\tau, (i, j))$$

 $a = (\tau, (i, j))$

A (standardized) exploration of $Z := Z^{\Lambda}$ using (the order \prec induced by) γ : A (standardized) exploration of $Z := Z^{\wedge}$ using (the order \prec induced by) γ :

$$\overline{Z}_{\text{left}} := \{ z \in \overline{Z} : z \preceq z_{\text{top}} \},\$$
$$z_0 := \inf\{ z \in \overline{Z} : \tau(z) = 0 \}.$$

We think of an exploration starting at time $-\infty$ in z_{root} , arriving at time 0 in z_0 , and ending at time $+\infty$ in z_{top} , with $\mathfrak{s}(z) :=$ the *time of the first exploration of z*. A (standardized) exploration of $Z := Z^{\wedge}$ using (the order \prec induced by) γ :

$$\overline{Z}_{\text{left}} := \{ z \in \overline{Z} : z \leq z_{\text{top}} \},\$$
$$z_0 := \inf\{ z \in \overline{Z} : \tau(z) = 0 \}.$$

We think of an exploration starting at time $-\infty$ in z_{root} , arriving at time 0 in z_0 , and ending at time $+\infty$ in z_{top} , with $\mathfrak{s}(z) :=$ the *time of the first exploration of* z. $\widehat{\mathfrak{s}}(z_{root}) := -\infty$, $\widehat{\mathfrak{s}}(z_0) := 0$, $\widehat{\mathfrak{s}}(z_{top}) := +\infty$. For $z_{root} \prec z \prec z' \prec z_{top}$, we decree that the time difference between the first explorations of z and z' is

$$\widehat{\mathfrak{s}}(z') - \widehat{\mathfrak{s}}(z) := \int_{-\infty}^{\infty} \mu_{\tau}(\{y : z \prec y \prec z'\}) d\tau.$$

Altogether, for $z \in \overline{Z}_{\text{left}}$ this leads to

$$\widehat{\mathfrak{s}}(z) := \int_{-\infty}^{\infty} \mu_{\tau} \{ y : z_0 \prec y \prec z \} d\tau - \int_{-\infty}^{\infty} \mu_{\tau} \{ y : z \prec y \prec z_0 \} d\tau.$$

 $\hat{\mathfrak{s}}: \overline{Z}_{\text{left}} \to [-\infty, +\infty]$ is strictly increasing (w. r. to \prec and <) and its image is dense in $[\infty, +\infty]$.

For $s \in \hat{\mathfrak{s}}(\bar{Z}_{\text{left}}) \subset [-\infty, +\infty]$, define $\hat{\mathfrak{z}}(s) := \hat{\mathfrak{s}}^{-1}(s)$,

the individual whose time of first exploration is s.

For
$$s \in \hat{\mathfrak{s}}(\overline{Z}_{\text{left}}) \subset [-\infty, +\infty]$$
, define
 $\hat{\mathfrak{z}}(s) := \hat{\mathfrak{s}}^{-1}(s)$,

the individual whose time of first exploration is s.

Extend $\hat{\mathfrak{z}}$ by continuity to $[-\infty, +\infty]$.

For
$$s \in \hat{\mathfrak{s}}(\overline{Z}_{\text{left}}) \subset [-\infty, +\infty]$$
, define
 $\hat{\mathfrak{z}}(s) := \hat{\mathfrak{s}}^{-1}(s)$,

the individual whose time of first exploration is s.

Extend $\hat{\mathfrak{z}}$ by continuity to $[-\infty, +\infty]$.

We now define

$$\widehat{H}_s := \tau(\widehat{\mathfrak{z}}(s)), \quad s \in [-\infty, +\infty],$$

the *height process of the exploration* $\hat{\mathfrak{z}}$ of $\overline{Z}_{\text{left}}$ (the standardized exploration of $\overline{Z}_{\text{left}}$ using γ)
This relates to a detective story:

Jonathan Warren and Marc Yor (1998),

The brownian burglar: conditioning brownian motion by its local time

Jonathan Warren and Marc Yor (1998),

The brownian burglar: conditioning brownian motion by its local time

Quote from that paper's preamble:

Imagine a Brownian crook who spent a month in a large metropolis. The number of nights he spent in hotels A, B, C...etc. is known; but not the order, nor his itinerary. So the only information the police has is total hotel bills..... Jonathan Warren and Marc Yor (1998),

The brownian burglar: conditioning brownian motion by its local time

Quote from that paper's preamble:

Imagine a Brownian crook who spent a month in a large metropolis. The number of nights he spent in hotels A, B, C...etc. is known; but not the order, nor his itinerary. So the only information the police has is total hotel bills.....

The latter correspond to to the local time profile ζ .

and code that "order and itinerary" information in terms of a "standardized" height process \widehat{H} which is then independent of ζ ?

and code that "order and itinerary" information in terms of a "standardized" height process \widehat{H} which is then independent of ζ ?

This is precisely what we have achieved by the just described construction of \widehat{H}

and code that "order and itinerary" information in terms of a "standardized" height process \widehat{H} which is then independent of ζ ?

This is precisely what we have achieved by the just described construction of \widehat{H}

and what Warren and Yor had achieved by completely different techniques...

How to relate \widehat{H} with H?

How to relate \widehat{H} with H?

H is the height process of an exploration of T^H . The missing bit is the local time profile $\zeta = \zeta^H$. An explored mass $d\tau \cdot 1 = \frac{4}{\zeta_t} dt$ (on the side of the lookdown space space) should correspond to an explored mass $dt \cdot \zeta_t$ (on the side of the Brownian tree)

How to relate \widehat{H} with H?

H is the height process of an exploration of T^H . The missing bit is the local time profile $\zeta = \zeta^H$. An explored mass $d\tau \cdot 1 = \frac{4}{\zeta_t} dt$ (on the side of the lookdown space space) should correspond to an explored mass $dt \cdot \zeta_t$ (on the side of the Brownian tree)

This suggests $dA_s := \frac{4}{\zeta_{H_s}^2} ds$ as an appropriate time change between the two exploration processes (of *Z* and *T*^{*H*}).

$$\begin{array}{ll} \text{More precisely, for}\\ s_1:=\inf\{s>0:H_s=1\}, & s_{\text{top}}:= \mathrm{argmax} H\\ \text{we put} & A_s:=\int\limits_{s_1}^s \frac{4}{\zeta_{H_u}^2} du\,, & 0\leq s\leq s_{\text{top}}. \end{array}$$

In addition, we have our familiar "height change" $d\theta(t) = \frac{4}{\zeta_t} dt, \quad \theta(1) = 0.$

$$\begin{array}{ll} \text{More precisely, for}\\ s_1:=\inf\{s>0:H_s=1\}, & s_{\text{top}}:=\arg\max H\\ \text{we put} & A_s:=\int\limits_{s_1}^s \frac{4}{\zeta_{H_u}^2}du\,, & 0\leq s\leq s_{\text{top}}. \end{array}$$

In addition, we have our familiar "height change" $d\theta(t) = \frac{4}{\zeta_t} dt, \quad \theta(1) = 0.$ **Theorem 3**: For a Brownian excursion H, with $\zeta := \zeta^H, \Lambda := \Lambda^H, \ \gamma := \gamma^H$ we have $H_s = \theta^{-1}(\widehat{H}_{A_s}), \quad 0 \le s \le s_{top}.$ In Warren&Yor's situation,

H...Brownian motion started in 0 and reflected above 0, T_1 ...time when *H* first reaches height 1, $\zeta_t := L^H(t, T_1), t \ge 0.$

They put
$$\theta(t) := \int_{0}^{t} \frac{1}{\zeta_{u}} du, \quad A_{s} := \int_{0}^{s} \frac{1}{\zeta_{H_{u}}^{2}} du$$

and define the **Brownian burglar** $\widehat{H} = (\widehat{H}_s)_{0 \le s < \infty}$ by

$$\theta(H_s) = \widehat{H}_{A_s}, \quad 0 \le s \le T_1.$$

Their main result is that \widehat{H} is independent of ζ .

A (standardized) exploration of $Z := Z^{\Lambda}$ using γ and ζ

If we adjust the exploration speed of \overline{Z} right away to the local time profile ζ , then we can reconstuct H directly from (ζ, Λ, γ) , without the detour via the burglar \widehat{H} :

Define the ζ -profiled time of the first exploration of $z \in \overline{Z}$ by

$$\mathfrak{s}(z) := \int_{-\infty}^{\infty} \mu_{\tau}(\{y : y \prec z\}) \frac{\zeta_{t(\tau)}^{2}}{4} d\tau, \quad z \in \mathbb{Z},$$
$$s(z_{\text{root}}) := 0, \quad \mathfrak{s}(z_{\text{top}}) := \lim_{z \to z_{\text{top}}} \mathfrak{s}(z).$$

65

For $s \in \mathfrak{s}(\overline{Z}) \subset [0, \mathfrak{r}]$, let $\mathfrak{z}(s)$ be

the individual whose ζ -profiled time of first exploration is s,

and extend \mathfrak{z} by continuity to $[0, \mathfrak{r}]$.

For $s \in \mathfrak{s}(\overline{Z}) \subset [0, \mathfrak{r}]$, let $\mathfrak{z}(s)$ be

the individual whose ζ -profiled time of first exploration is s,

and extend \mathfrak{z} by continuity to $[0, \mathfrak{r}]$.

Theorem 3':

For a Brownian excursion H,

with $\Lambda := \Lambda^H$, $\zeta := \zeta^H$, $\gamma := \gamma^H$ we have $\theta(H_s) = \tau(\mathfrak{z}(s)), \quad 0 \le s \le \mathfrak{r}.$

Corollary: The mapping $z \mapsto \langle \mathfrak{s}(z) \rangle$ is a root-, order- and measure-preserving isometry from $(\overline{Z}^{\Lambda}, \rho_{\zeta}, \prec)$ to (T^{H}, d, \prec) .

Corollary: The mapping $z \mapsto \langle \mathfrak{s}(z) \rangle$ is a root-, order- and measure-preserving isometry from $(\overline{Z}^{\wedge}, \rho_{\zeta}, \prec)$ to (T^{H}, d, \prec) .

The correspondence between the sampling measures $\mu_{\tau}(dz)$ and the local time measures L(t, ds)

is then given by $\mu_{\tau}(\{y : y \prec z\}) = L(t(\tau), \mathfrak{s}(z))/\zeta_{t(\tau)}$.

Let us come back to Aldous' question: "Given a local time profile ζ , can we define a process H^{ζ} whose law is, in some sense, the conditional law of *H* given $L(\cdot, \mathfrak{r}) = \zeta$?"

Our construction accomplishes this because ζ is independent of (Λ, γ) :

we can change the local time profile (almost) ad libitum!

An example: Genealogies of continuum populations under (neutral) competition:

Recall:

A Brownian excursion *H* conditioned to height > 1 corresponds to an independent triple (ζ, Λ, γ)

where

 ζ is a Feller branching diffusion excursion conditioned to survive time 1, Λ is the Poisson process of points $(\tau, (i, j))$ in the lookdown space, γ is a fair coin-tossing that colours the points of Λ by \frown or \frown . Thus, a Girsanov reweighting of the law of ζ does not affect Λ nor γ .

Thus, a Girsanov reweighting of the law of ζ does not affect Λ nor γ .

This gives a direct way to obtain a genealogy of (say) Feller's logistic branching diffusion

$$\zeta_t = (b\zeta_t - c\zeta_t^2)dt + 2\sqrt{\zeta_t}dW_t$$

Thus, a Girsanov reweighting of the law of ζ does not affect Λ nor γ .

This gives a direct way to obtain a genealogy of (say) Feller's logistic branching diffusion

$$\zeta_t = (b\zeta_t - c\zeta_t^2)dt + 2\sqrt{\zeta_t}dW_t$$

The only change in the underlying genealogy is through the time change induced by ζ .

This allows for interesting comparisons with the genealogy that is obtained when exposing *H* to a *local time drift* (E. Pardoux & A. W. 2011 f.) This allows for interesting comparisons with the genealogy that is obtained when exposing *H* to a *local time drift* (E. Pardoux & A. W. 2011 f.)

Does this reweighting affect Λ ?

This allows for interesting comparisons with the genealogy that is obtained when exposing *H* to a *local time drift* (E. Pardoux & A. W. 2011 f.)

Does this reweighting affect Λ ?

We conjecture this, but do not yet have a proof.