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“Walks and trees are abstractly identical objects ... ”

(Ted Harris (1952))
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As known from work of Neveu, Pitman, Aldous, Le Gall, ...

Harris’ paradigm holds also in a Brownian rescaling.

There the walk becomes an Itô excursion.
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As known from work of Neveu, Pitman, Aldous, Le Gall, ...

Harris’ paradigm holds also in a Brownian rescaling.

There the walk becomes an Itô excursion.
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r: return time (“length”) of H

h: (maximal) height of H
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The rooted, ordered R-tree (TH, d,≺) :

For 0 ≤ s1 ≤ s2 ≤ r :

s1 ∼ s2 :⇐⇒ H(s1) = H(s2) = min {H(s) : s ∈ [s1, s2]}

H

r0

s
s1 s2
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The rooted, ordered R-tree (TH, d,≺) :

For 0 ≤ s1 ≤ s2 ≤ r :

s1 ∼ s2 :⇐⇒ H(s1) = H(s2) = min {H(s) : s ∈ [s1, s2]}

H

r0

s
s1 s2

〈s〉 := {s′ : s′ ∼ s}
TH := {〈s〉 : s ∈ [0, r]}

〈s0〉 ≺ 〈s1〉 :⇔ min〈s0〉 < min〈s1〉
d(〈s0〉, 〈s1〉) := H(s1) +H(s2)

−2min{H(s) : s ∈ [s0, s1]}
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For 0 ≤ s1 ≤ s2 ≤ r :
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s
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〈s〉 := {s′ : s′ ∼ s}
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d(〈s0〉, 〈s1〉) := H(s0) +H(s1)

−2min{H(s) : s ∈ [s0, s1]}
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The isomorphy class of (TH, d,≺) will be denoted by T
H≺ .

The root-preserving isometry class of (TH, d)

will be denoted by T
H .

Example:

H1
H2

T
H1≺ 6= T

H2≺
but

T
H1 = T

H2.
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“Counting” the number of subexcursions above height t:

tt

s
r

H

ζH

LH(t, s) . . . the local time accumulated by H at height t up to time s

ζHt := LH(t, r)
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“Counting” the number of subexcursions above height t:

h

tt

s

r

H

ζH

LH(s, t) . . . the local time accumulated by H at height t up to time s

ζHt := LH(t, r)

ζH :=
(
ζHt

)
0≤t≤h

. . . the local time profile of H
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“Counting” the number of subexcursions above height t:

h

tt

s

r

H

ζH

By the second Ray-Knight theorem, H 7→ ζH transports

the Itô excursion measure into the excursion measure of

Feller’s branching diffusion dζt =
√
4ζt dWt .
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We will condition on {h > 1}.

h

11

s

r

H

ζH

This turns the Itô excursion measure into a probability measure,

under which H and ζH then are (path-valued) random variables.
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How to go back

from ζH to H?
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How to go back

from ζH to H?

Quote from D. Aldous (1998), Brownian excursion

conditioned on its local time:

“Given a local time profile ζ, can we define a process

whose law is, in some sense,

the conditional law of H given L(·, r) = ζ?”



We will see that H is made up of

three independent ingredients ζH,ΛH , γH ,

with

the pair
(
ζH,ΛH

)
coding for TH ,

and γH being responsible for the left-right order ≺ .
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We will see that H is made up of

three independent ingredients ζH,ΛH , γH ,

with

the pair
(
ζH,ΛH

)
coding for TH .

and γH being responsible for the left-right order ≺ .

Let us now turn to the second ingredient, ΛH .
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We will see that H is made up of

three independent ingredients ζH,ΛH , γH ,

with

the pair
(
ζH,ΛH

)
coding for TH .

and γH being responsible for the left-right order ≺ .

Let us now turn to the second ingredient, ΛH .

This will be a point measure on R× {(i, j) : 1 ≤ i < j ∈ N}
whose points (τ, (i, j)) are in 1-1 correspondence

with the local minima of H on (0, r).



Let t be the height of a local minimum of H.

i < j are the height ranks of the two subexcursions in H above t that are

attached to this local minimum among all subexcursions in H above t.

T

H

r0

s

t

AAAAAA a local minimum of H at time t ↔ a point (τ, (1,3)) of Λ
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Let t be the height of a local minimum of H.

i < j are the height ranks of the two subexcursions in H above t that are

attached to this local minimum among all subexcursions in H above t.

H

r0

1

3
2 τ

1 2 3

s

t

AAAAAA a local minimum of H at time t ↔ a point (τ, (1,3)) of Λ
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τ := θ(t) : =
∫ t

1

4
ζHu

du.

ζH

θ(t)
θ(1) = 0

1

1 2 3

t

0
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Almost surely,

t 7→ θ(t) :=
∫ t

1

4
ζHu

du maps [0, h] bijectively to [−∞,+∞].

h
ζH

θ(1) = 0

1

1 2 3
θ(0) = −∞

θ(h) = +∞

0
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ΛH is a random point measure on

R× {(i, j) : 1 ≤ i < j ∈ N}

H

r0

1

3
2 τ

1 2 3

s

t
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Visualize a point (τ, (i, j))

by an arrow from i to j at time τ .

H

r0

1

3
2 τ

1 2 3

s

t
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Visualize a point (τ, (i, j))

by an arrow from i to j at time τ .

H

r0

1

3
2 τ

1 2 3

s

t
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Then ΛH becomes a random configuration of

horizontal arrows on R× N.

H

r0

τ

1 2 3

s

t
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Theorem 1

ΛH
ij := ΛH({(·)× (i, j)}

are independent rate 1 Poisson point processes,

and they are independent of ζH .
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Theorem 1

ΛH
ij := ΛH({(·)× (i, j)}

are independent rate 1 Poisson point processes,

and they are independent of ζH .

The proof uses the Poisson structure of the subexcursions in H,

and properties of permutation invariance.



Theorem 1

ΛH
ij := ΛH({(·)× (i, j)}

are independent rate 1 Poisson point processes,

and they are independent of ζH .

The proof uses the Poisson structure of the subexcursions in H,

and properties of permutation invariance.

A precursor of this result is

J. & N. Berestycki (2009), Kingmans coalescent and Brownian motion.

Among others, they cite Le Gall (1989, 1993),

Aldous (1991,93,98), Warren and Yor (1998).

Gufler (2017) relates the Brownian excursion to the full lookdown picture

(between times −∞ and +∞) of Donnelly and Kurtz (1999).



The third ingredient γH =
(
γH(a)

)
a∈suppΛH

is a colouring of each of the points a ∈ ΛH

by either x or y .
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(
γH(a)

)
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is a colouring of each of the points a ∈ ΛH

by either x or y .

Put γH(a) :=x

if the higher of the two excursions attached to the

corresponding local minimum in H is to the left



The third ingredient γH =
(
γH(a)

)
a∈suppΛH

is a colouring of each of the points a ∈ ΛH

by either x or y .

Put γH(a) :=x

if the higher of the two excursions attached to the

corresponding local minimum in H is to the left

and γH(a) :=y

if the higher of these two excursions is to the right.



H

R0
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3
2 τ
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H

R0

τ

1 2 3

s

t

y

y

y

x
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H

R0

τ

1 2 3

s

t

y

y

y

x

Then γH =
(
γH(a)

)
a∈suppΛH is a fair coin tossing array.



How to reconstruct the (exploration) path H

from the triple (ζ,Λ, γ)?

First step: Obtaining from Λ

a complete metric space (ZΛ, ρΛ),

the lookdown space.
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The lookdown space obtained from Λ:

Let Λij, 1 ≤ i < j,

be independent rate 1 Poisson point processes.

Λ =
(
Λij

)
induces (random) geodesics on N× R

via coalescent ancestral lineages
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replacements

τ ∈ Λij

i j

R

N 33



τ ∈ Λij

i j k − 1 k

R

N 34



i3

replacements

τ ∈ Λij

i j

R

N
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Let Λij, 1 ≤ i < j,

be independent rate 1 Poisson point processes.

Λ =
(
Λij

)
induces a (random) semi-metric ρ = ρΛ on N× R

via vertical distances along the geodesics
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i3

z1

z2

τ ∈ Λij

i j

R

N
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i3

z1

z2

ρ(z1, z2)

τ ∈ Λij

i j

R

N
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i3

z1
z2

τ ∈ Λij

i j

R

N
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i3

z1
z2

ρ(z1, z2)

τ ∈ Λij

i j

R

N
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The closure of (R× N, ρΛ)

is denoted by (ZΛ, ρΛ) =: (Z, ρ),

and called the (random) lookdown space.
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The closure of (R× N, ρΛ)

is denoted by (ZΛ, ρΛ) =: (Z, ρ),

and called the (random) lookdown space.

For z = (τ, i) we define τ(z) := τ

as the height of z

and extend this by continuity to Z.



(Z, ρ) is a (random) non-compact R-tree,

and can be compactified to Z̄ := Z ∪ {zroot, ztop},

where we say that

zn → zroot if τ(zn) → −∞ =: τ(zroot),

zn → ztop if τ(zn) → +∞ =: τ(ztop).
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Our program in this part of the talk

is to reconstruct H from (ζ,Λ, γ)

So far, we only worked in the Λ-world:

using Λ, we metrized and completed the set N× R,

thus obtaining the semi-metric ρ = ρΛ.

Now we bring in the local time profile ζ,

in order to revert the “height change” t → θ(t)

by its inverse t(τ) := θ−1(τ).
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For given ζ and Λ, we define the semi-metric ρζ on N× R

by stretching ρ locally with the factor 1
4ζt(τ):

ρζ((i, τ), (j, τ + dτ)) := 1
4ζt(τ)) ρ((i, τ), (j, τ + dτ))

λ ζ τ

1

1

2 3

0

44



For given ζ and Λ, we define the semi-metric ρζ on N× R

by stretching ρ locally with the factor 1
4ζt(τ):

and extend this to a metric ρζ on Z̄.

λ ζ τ

1

1

2 3

0
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Proposition 1:

For Λ := ΛH and ζ := ζH,

(TH, d) and
(
Z̄, ρζ

)
are a.s. root-preserving isometric.
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Proposition 1:

For Λ := ΛH and ζ := ζH,

(TH, d) and
(
Z̄, ρζ

)
are a.s. root-preserving isometric.

Idea of proof: First show the isometry for the “skeleton points”

(corresponding to N× R), then proceed by continuity.

replacements
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Proposition:

For Λ := ΛH and ζ := ζH,

(TH, d) and
(
Z̄, ρζ

)
are a.s. root-preserving isometric.

Idea of proof: First show the isometry for the “skeleton points”

(corresponding to N× R), then proceed by continuity.

replacements

H

R0

1

3
2 τ

1 2 3

s

t
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With the standing aim to reconstruct H from (ζ,Λ, γ),

we now proceed further to define

(the height process of) an exploration of ZΛ.

To this purpose we endow ZΛ with a

measure µτ(dz) dτ

(which will help us to specify

how much mass we have explored by which time).
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Theorem 2 (S. Gufler, EJP, 2018)

For a.a. Λ the lookdown space (ZΛ, ρΛ) carries a family

(µτ)τ∈R of probability measures such that for all τ ∈ R,

µτ = lim
n→∞

1
n

n∑

i=1
δ(i,τ),

in the weak topology on the probab. measures on (ZΛ, ρΛ).

τ

1 2 3 n
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Theorem 2 (S. Gufler, EJP, 2018)

For a.a. Λ the lookdown space (ZΛ, ρΛ) carries a family

(µτ)τ∈R of probability measures such that for all τ ∈ R,

µτ = lim
n→∞

1
n

n∑

i=1
δ(i,τ),

in the weak topology on the probab. measures on (ZΛ, ρΛ).

Elegant way of proof: By Theorem 1, embed the lookdown space into a

Brownian excursion H and prove the assertion for (ZΛH
, ρΛ

H
).

The latter is achieved via the uniform downcrossing representation

for local times due to Chacon, Le Jan, Perkins and Taylor (1981).
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To prepare for an exploration process of ZΛ:

Endowing ZΛ with a total order ≺,

using the {x,y}-valued array γ

51



Let (Z, ρ) = (ZΛ, ρΛ) be a lookdown space, and

γ be a {x,y}-valued array, indexed by the points of Λ.

Using γ we define a total order ≺ on Z as follows:

For y, z ∈ Z connected by a single line of descent

with z descending from y, we put y ≺ z.
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Let (Z, ρ) = (ZΛ, ρΛ) be a lookdown space, and

γ be a {x,y}-valued array, indexed by the points of Λ.

Using γ we define a total order ≺ on Z as follows:

For y, z ∈ Z connected by a single line of descent

with y descending from z, we put z ≺ y.
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Let (Z, ρ) = (ZΛ, ρΛ) be a lookdown space, and

γ be a {x,y}-valued array, indexed by the points of Λ.

Using γ we define a total order ≺ on Z as follows:

For y, z ∈ Z connected by a single line of descent

with y descending from z, we put z ≺ y.

For y, z ∈ Z not connected by a single line of descent,

their most recent common ancestor is of the form

(τ, i) for some a = (τ, (i, j)) ∈ suppΛ.



Assume that z descends from (τ, j).

We then put z ≺ y if γ(a) =y

y

i j

y

z

τ

z ≺ y

Aa = (τ, (i, j)) AAAAAAAAAA
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Assume w.l.o.g. that z descends from (j, τ).

. . . and y ≺ z if γ(a) =x.

x

i j

y

z

τ

y ≺ z

a = (τ, (i, j))AAAAAAAAAA
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A (standardized) exploration of Z := ZΛ

using (the order ≺ induced by) γ:
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A (standardized) exploration of Z := ZΛ

using (the order ≺ induced by) γ:

Z̄left := {z ∈ Z̄ : z � ztop},

z0 := inf{z ∈ Z̄ : τ(z) = 0}.

We think of an exploration starting at time −∞ in zroot,

arriving at time 0 in z0, and ending at time +∞ in ztop,

with s(z) := the time of the first exploration of z.



A (standardized) exploration of Z := ZΛ

using (the order ≺ induced by) γ:

Z̄left := {z ∈ Z̄ : z � ztop},

z0 := inf{z ∈ Z̄ : τ(z) = 0}.

We think of an exploration starting at time −∞ in zroot,

arriving at time 0 in z0, and ending at time +∞ in ztop,

with s(z) := the time of the first exploration of z.

ŝ(zroot) := −∞, ŝ(z0) := 0, ŝ(ztop) := +∞.



For zroot ≺ z ≺ z′ ≺ ztop, we decree that the time difference

between the first explorations of z and z′ is

ŝ(z′)− ŝ(z) :=
∫ ∞
−∞ µτ({y : z ≺ y ≺ z′}) dτ .

Altogether, for z ∈ Z̄left this leads to

ŝ(z) :=
∫ ∞
−∞ µτ{y : z0 ≺ y ≺ z}dτ

AAAAAAAAAAAAAAAAAAAA−
∫ ∞
−∞ µτ{y : z ≺ y ≺ z0}dτ .

ŝ : Z̄left → [−∞,+∞] is strictly increasing (w. r. to ≺ and <)

and its image is dense in [∞,+∞].
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For s ∈ ŝ(Z̄left) ⊂ [−∞,+∞], define

ẑ(s) := ŝ−1(s),

the individual whose time of first exploration is s.
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For s ∈ ŝ(Z̄left) ⊂ [−∞,+∞], define

ẑ(s) := ŝ−1(s),

the individual whose time of first exploration is s.

Extend ẑ by continuity to [−∞,+∞].



For s ∈ ŝ(Z̄left) ⊂ [−∞,+∞], define

ẑ(s) := ŝ−1(s),

the individual whose time of first exploration is s.

Extend ẑ by continuity to [−∞,+∞].

We now define

Ĥs := τ (̂z(s)), s ∈ [−∞,+∞],

the height process of the exploration ẑ of Z̄left

AAAAAAA (the standardized exploration of Z̄left using γ)



This relates to a detective story:
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Jonathan Warren and Marc Yor (1998),

The brownian burglar: conditioning brownian motion

by its local time
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Jonathan Warren and Marc Yor (1998),

The brownian burglar: conditioning brownian motion

by its local time

Quote from that paper’s preamble:

Imagine a Brownian crook who spent a month in a large me-

tropolis. The number of nights he spent in hotels A, B, C...etc.

is known; but not the order, nor his itinerary. So the only infor-

mation the police has is total hotel bills.....



Jonathan Warren and Marc Yor (1998),

The brownian burglar: conditioning brownian motion

by its local time

Quote from that paper’s preamble:

Imagine a Brownian crook who spent a month in a large me-

tropolis. The number of nights he spent in hotels A, B, C...etc.

is known; but not the order, nor his itinerary. So the only infor-

mation the police has is total hotel bills.....

The latter correspond to to the local time profile ζ.



How to extract from H the information “on the order and the

itinerary” (which is complementary to the information from ζ)
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How to extract from H the information “on the order and the

itinerary” (which is complementary to the information from ζ)

and code that “order and itinerary” information

in terms of a “standardized” height process Ĥ

which is then independent of ζ?
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How to extract from H the information “on the order and the

itinerary” (which is complementary to the information from ζ)

and code that “order and itinerary” information

in terms of a “standardized” height process Ĥ

which is then independent of ζ?

This is precisely what we have achieved

by the just described construction of Ĥ

and what Warren and Yor had achieved

by completely different techniques...



How to relate Ĥ with H?
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How to relate Ĥ with H?

H is the height process of an exploration of TH .

The missing bit is the local time profile ζ = ζH.

An explored mass dτ · 1 = 4
ζt
dt

(on the side of the lookdown space space)

should correspond to an explored mass dt · ζt
(on the side of the Brownian tree)



How to relate Ĥ with H?

H is the height process of an exploration of TH .

The missing bit is the local time profile ζ = ζH.

An explored mass dτ · 1 = 4
ζt
dt

(on the side of the lookdown space space)

should correspond to an explored mass dt · ζt
(on the side of the Brownian tree)

This suggests dAs := 4
ζ2Hs

ds as an appropriate time change

between the two exploration processes (of Z and TH).



More precisely, for

s1 := inf{s > 0 : Hs = 1}, stop := argmaxH

we put As :=
s∫

s1

4

ζ2Hu

du , 0 ≤ s ≤ stop.

In addition, we have our familiar “height change”

dθ(t) = 4
ζt
dt, θ(1) = 0.
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More precisely, for

s1 := inf{s > 0 : Hs = 1}, stop := argmaxH

we put As :=
s∫

s1

4

ζ2Hu

du , 0 ≤ s ≤ stop.

In addition, we have our familiar “height change”

dθ(t) = 4
ζt
dt, θ(1) = 0.

Theorem 3:

For a Brownian excursion H,

with ζ := ζH,Λ := ΛH , γ := γH we have

Hs = θ−1(ĤAs), 0 ≤ s ≤ stop.



In Warren&Yor’s situation,

H . . . Brownian motion started in 0 and reflected above 0,

T1 . . . time when H first reaches height 1,

ζt := LH(t, T1), t ≥ 0.

They put θ(t) :=
t∫

0

1
ζu
du, As :=

s∫

0

1

ζ2Hu

du

and define the Brownian burglar Ĥ = (Ĥs)0≤s<∞ by

θ(Hs) = ĤAs, 0 ≤ s ≤ T1.

Their main result is that Ĥ is independent of ζ.
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A (standardized) exploration of Z := ZΛ

using γ and ζ

If we adjust the exploration speed of Z̄ right away to the

local time profile ζ, then we can reconstuct H directly from

(ζ,Λ, γ), without the detour via the burglar Ĥ:

Define the ζ-profiled time of the first exploration of z ∈ Z̄ by

s(z) :=
∫ ∞
−∞ µτ({y : y ≺ z})

ζ2t(τ)

4
dτ , z ∈ Z,

s(zroot) := 0, s(ztop) := lim
z→ztop

s(z).
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For s ∈ s(Z̄) ⊂ [0, r], let z(s) be

the individual whose ζ-profiled time of first exploration is s,

and extend z by continuity to [0, r].
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For s ∈ s(Z̄) ⊂ [0, r], let z(s) be

the individual whose ζ-profiled time of first exploration is s,

and extend z by continuity to [0, r].

Theorem 3’:

For a Brownian excursion H,

with Λ := ΛH , ζ := ζH, γ := γH we have

θ(Hs) = τ(z(s)), 0 ≤ s ≤ r.



Corollary: The mapping z 7→ 〈s(z)〉 is a root-, order- and

measure-preserving isometry from (Z̄Λ, ρζ,≺) to (TH , d,≺).
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Corollary: The mapping z 7→ 〈s(z)〉 is a root-, order- and

measure-preserving isometry from (Z̄Λ, ρζ,≺) to (TH , d,≺).

The correspondence between the sampling measures µτ(dz)

and the local time measures L(t, ds)

is then given by µτ({y : y ≺ z}) = L(t(τ), s(z))/ζt(τ).



Let us come back to Aldous’ question:

“Given a local time profile ζ, can we define a process Hζ

whose law is, in some sense,

the conditional law of H given L(·, r) = ζ?”

Our construction accomplishes this because

ζ is independent of (Λ, γ):

we can change the local time profile (almost) ad libitum!
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An example:

Genealogies of continuum populations

under (neutral) competition:

Recall:

A Brownian excursion H conditioned to height > 1

corresponds to an independent triple (ζ,Λ, γ)

where

ζ is a Feller branching diffusion excursion conditioned to survive time 1,

Λ is the Poisson process of points (τ, (i, j)) in the lookdown space,

γ is a fair coin-tossing that colours the points of Λ by x or y.

69



Thus, a Girsanov reweighting of the law of ζ

does not affect Λ nor γ.
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does not affect Λ nor γ.

This gives a direct way to obtain a genealogy of (say)

Feller’s logistic branching diffusion

ζt = (bζt − cζ2t )dt+2
√
ζtdWt:



Thus, a Girsanov reweighting of the law of ζ

does not affect Λ nor γ.

This gives a direct way to obtain a genealogy of (say)

Feller’s logistic branching diffusion

ζt = (bζt − cζ2t )dt+2
√
ζtdWt:

The only change in the underlying genealogy

is through the time change induced by ζ.



This allows for interesting comparisons

with the genealogy that is obtained

when exposing H to a local time drift

(E. Pardoux & A. W. 2011 f.)
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Does this reweighting affect Λ?



This allows for interesting comparisons

with the genealogy that is obtained

when exposing H to a local time drift

(E. Pardoux & A. W. 2011 f.)

Does this reweighting affect Λ?

We conjecture this, but do not yet have a proof.


