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1 Maximum of the critical Galton-Watson process

Let Z(n); n = 0; 1; 2; : : : be a critical Galton �Watson process (GWP) with
Z(0) = 1, � be the �o¤spring variable�(the distribution of which coincides with
that of Z(n) conditioned that Z(n) = 1) with the generating function (g.f.)
f(s). Denote by

Mn = max
0�k�n

Zk and M = max
n
Mn

the partial and global maxima of the process fZ(n)gn�0 respectively. Recall
that, in the critical case, M <1 a.s., for the process becomes extinct in a �nite
time � = minfn : Z(n) = 0g with probability one.

Theorem 1 If

f(s) = Es�; E� = f 0(1�) = 1; f"(1) = 2B 2 (0;1); (1)

then
lim
x!1

xP(M > x) = 1: (2)

We prove this theorem in several steps. Let �n; n = 1; 2; : : : be i.i.d. random
variables having the same distribution as � = ��1 and hence having zero means.
Put

S0 = 1; Sn = Sn�1 + �n; n � 1:
Recall that, without the loss of generality, we may assume that the process
fZ(n)g is embedded into the r.w. fSng: for V�1 = 0,

Z(n) = SVn�1 ; Vn =
nX
k=0

Zk; n � 0: (3)
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Clearly Vk are stopping times for the r.w. fSng, and the latter can be replaced
in (3) by the stopped r.w.

S�n = Sn^�0 ; �0 = minfk � 1 : Sk = 0g:

Denote by
M� = max

n�0
S�n

the global maximum of the stopped r.w. fS�ng. It is obvious from (3) that
M �M�, and for the maximumM�, it was proved in Pakes (Journal of Applied
Probability, 15(1978), pp.292-299)) that, if (1) holds then

lim
x!1

xP(M� > x) = 1: (4)

The following lemma shows that, on the other hand, M� cannot be �essen-
tially greater�than M , and hence the relation (4) implies the same asymptotics
for the distribution of M .

Lemma 2 . For any critical GWP fZ(n)g, there exists a function " = "(x)! 0
as x!1, such that

(1� ")P (M� > (1 + ")x) � P(M > x) � P(M� > x) � 1

x
: (5)

Proof of Lemma 1. The second inequality in (5) is obvious from (3), while
the last inequality in (5) follows from the Doob inequality for the stopped r.w.
S�n which is clearly a martingale with ES

�
n =ES

�
0 = 1. Thus it remains only to

prove the �rst inequality in (5).
Letting y = (1 + ")x; " > 0; we get

P (M > x) � P (M > x;M� > y) = P (M > xjM� > y)P (M� > y) (6)

= (1�P (M � xjM� > y))P (M� > y) :

Put
T = minfk � 1 : S�k > yg; m = minfj � 1 : Vj > Tg:

Since fM� > yg = fT <1g, we see that

P (M � xjM� > y) = P (M � xjT <1)
� P (Zm � x;Zm+1 � xjT <1)
� P (Zm � x; SVm � ST � x� yjT <1) : (7)

But Vm � T � Zm by the de�nition of m, and, on the event fZm � xg, one
has

SVm � ST � min
j�x

(ST+j � ST ) :

By the strong Markov property, the last expression does not depend on T and
has, conditioned that T < 1, the same distribution as minj�x Sj . Therefore
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the right hand side of (7) does not exceed

P

�
min
j�x

Sj � �x"
�
= P

�
x�1min

j�x
Sj � �"

�
: (8)

Further, by the strong law of large numbers x�1Sx ! 0 a.s. as x ! 1, and
hence

x�1max
j�x

jSj j ! 0 as x!1;

so that, for any �xed " > 0, the probability (8) tends to 0 as x ! 1. This
means that, for some positive function "(x)! 0 as x!1,

P

�
min
j�x

Sj � �x"(x)
�
� "(x): (9)

In view of (6) and (7) for y = (1 + "(x))x, relation (9) gives

P(M > x) � (1� "(x))P (M� > (1 + "(x))x) :

Lemma 1 is proved.

Proof of Theorem 1 follows immediately from Lemma 1 and relation (4).

The next lemma gives both upper and lower bounds for the expectations
EMn in terms of the tail P (M > x).

Lemma 3 For any t > 0,

�tP(Z(n) > 0) � EMn �
Z t

0

P(M > x) dx � 2nB

t
: (10)

Proof of Lemma 3. For any t > 0,

EMn =

Z 1

0

P(Mn > x) dx �
Z t

0

P(M > x) dx+

Z 1

t

P(Mn > x) dx: (11)

To estimate the last integral, observe that, since fZ(n)g is a martingale, the
Doob�s inequality yields

P(Mn > x) = P( max
0�k�n

Z(n) > x) � x�2EZ2(n) = 2x�2Bn:

Therefore, Z 1

t

P(Mn > x) dx � 2
Z 1

t

x�2Bndx =
2Bn

t
:

The right inequality in (10) is proved.
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On the other hand,

EMn � E (Mn;Z(n) = 0) = E (M ;Z(n) = 0)

�
Z t

0

P (M > x;Z(n) = 0) dx =

Z t

0

P (M > x) dx

�
Z t

0

P (M > x;Z(n) > 0) dx

�
Z t

0

P (M > x) dx� tP (Z(n) > 0) :

Lemma 3 is proved.

Theorem 4 If conditions (1) are valid then

lim
n!1

EZ(n)

log n
= 1: (12)

Proof. First we note that Theorem 1 yieldsZ n

0

P (M > x) dx = (1 + �) log n (13)

where � = �(n)! 0; n!1:We know that under conditions (1) the non-extinction
probability of the process has the asymptotic representation

P (Z(n) > 0) � 1

Bn
:

Thus, for any � > 0 there exists n0 = n0(�) such that for all n � n0

EMn �
Z n

0

P (M > x) dx� nP (� > n)

� (1� �) log n� 3n
nB

= (1� �) log n� 3

B
(14)

To make use of the right inequality in (10) we let t = n: We have that for
any � > 0 there exists n0 = n0(�) such that for all n � n0

EMn � (1 + �) log n+2B: (15)

Now relations (14) and (15) mean that, for any positive � > 0,

1� � � lim inf
n!1

EMn

log n
� lim sup

n!1

EMn

log n
� 1 + �:

Since � > 0 is arbitrary, the theorem follows.
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