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1 Maximum of the critical (Galton-Watson process

Let Z(n), n = 0,1,2,... be a critical Galton — Watson process (GWP) with
Z(0) = 1, £ be the ‘offspring variable’ (the distribution of which coincides with
that of Z(n) conditioned that Z(n) = 1) with the generating function (g.f.)
f(s). Denote by
M, = max Zj and M = max M,
0<k<n n

the partial and global maxima of the process {Z(n)},>0 respectively. Recall
that, in the critical case, M < oo a.s., for the process becomes extinct in a finite
time 7 = min{n Z(n) = 0} with probability one.

Theorem 1 If

f(s)=Es*,  E&=f(1-)=1, (1) =2B € (0,00), (1)

then
lim zP(M > z) =1. (2)
We prove this theorem in several steps. Let (,,, » =1,2,... beii.d. random

variables having the same distribution as ( = £ —1 and hence having zero means.
Put
SOZ 17 Sn :Sn,1 +Cn7 nZ 1.

Recall that, without the loss of generality, we may assume that the process
{Z(n)} is embedded into the r.w. {S,}: for V_; =0,

Z(n) = SVn_17 Vi = sz, n > 0. (3)
k=0



Clearly V}, are stopping times for the r.w. {S,}, and the latter can be replaced
in (3) by the stopped r.w.

Sy = Snares 7o =min{k >1: S; =0}.

Denote by
M* =max S;,
n>0
the global maximum of the stopped r.w. {S:}. It is obvious from (3) that
M < M*, and for the maximum M™*, it was proved in Pakes (Journal of Applied
Probability, 15(1978), pp.292-299)) that, if (1) holds then

lim z P(M* > z) =1. (4)

The following lemma shows that, on the other hand, M™* cannot be ‘essen-

tially greater’ than M, and hence the relation (4) implies the same asymptotics
for the distribution of M.

Lemma 2 . For any critical GWP {Z(n)}, there exists a functione = e(x) — 0
as x — oo, such that

(1-e)P(M*> (1+e)z) <P(M>z) <P(M*>z)< - (5)

8=

Proof of Lemma 1. The second inequality in (5) is obvious from (3), while
the last inequality in (5) follows from the Doob inequality for the stopped r.w.
S} which is clearly a martingale with ES} =ES§ = 1. Thus it remains only to
prove the first inequality in (5).

Letting y = (1 + &)z, € > 0, we get

PM>z) > PM>a;M*>y)=P(M >z|M*>y)P(M*>y) (6)
1-P(M<z|M*>y)P(M">y).

Put
T =min{k >1: S} >y}, m=min{j >1: V; > T}

Since {M* > y} = {T < oo}, we see that

P(M<zM*>y) = PM<z|T<ox)
< P(Zm <, Zmy1 < z|T < 0)
< P(Z,<zSv, —-Sr<z—-ylT<c). (7)

But V,,, — T < Z,, by the definition of m, and, on the event {Z,, < x}, one
has
Svm — ST Z I_Il<il'l (ST+j — ST) .
IS

By the strong Markov property, the last expression does not depend on 7T and
has, conditioned that 7" < oo, the same distribution as min;<, S;. Therefore



the right hand side of (7) does not exceed

P (min S; < —xs) =P (xl min S; < —5) . (8)

Jjsz Jjsz
Further, by the strong law of large numbers 2715, — 0 a.s. as 2 — oo, and

hence

r ' 'max|S;| — 0 as x — oo,
j<z

so that, for any fixed ¢ > 0, the probability (8) tends to 0 as z — oco. This

means that, for some positive function e(x) — 0 as © — oo,

3 <min S; < —xa(m)) < e(x). (9)

In view of (6) and (7) for y = (1 4+ e(z)) x, relation (9) gives
PM>z)>(1—e@)P(M*>(1+e)z).

Lemma 1 is proved.

Proof of Theorem 1 follows immediately from Lemma 1 and relation (4).

The next lemma gives both upper and lower bounds for the expectations
EM, in terms of the tail P(M > x).

Lemma 3 For anyt > 0,

_iP(Z(n) > 0) gEMn—/tP(M>x) dr < 2. (10)
0

Proof of Lemma 3. For any ¢ > 0,
e8] t [eS)
EM, :/ P(M, > z)dz < / P(M > z)dx —l—/ P(M, > x)dz. (11)
0 0 t
To estimate the last integral, observe that, since {Z(n)} is a martingale, the
Doob’s inequality yields

P(M, > z)=P(max Z(n) >z) <2 *EZ*(n) = 2z ?Bn.
0<k<n

Therefore,

/ P(Mn>x)d:c§2/ x_QBndx:Tn.
t t

The right inequality in (10) is proved.



On the other hand,
EM, > E(M,;Z(n)=0)=E(M;Z(n)=0)

> /tP(M>x;Z(n)—0)dm— P (M >z)dx
0
—/ P(M >uxz;Z(n) >0)dz
0

> /tP(M>x)dth(Z(n)>O).
0

Lemma 3 is proved.
Theorem 4 If conditions (1) are valid then
EZ(n)

li =1. 12
nLIEO logn (12)

Proof. First we note that Theorem 1 yields
/ P (M>z) de =(140) logn (13)
0

where § = 0(n) — 0, n — oo. We know that under conditions (1) the non-extinction

probability of the process has the asymptotic representation
1

P(Z(n)>0)~—.

(Z(n) > 0) ~ o

Thus, for any ¢ > 0 there exists ng = no(d) such that for all n > ng

n
EM, > /P(M>m)dx—nP(T>n)
0

3n
> — -
> (1—0)logn -

= (1—5)logn—% (14)

To make use of the right inequality in (10) we let ¢ = n. We have that for
any 0 > 0 there exists ng = ng(d) such that for all n > ng

EM, < (1+6)logn+2B. (15)

Now relations (14) and (15) mean that, for any positive § > 0,

EM, EM,
1 -6 <lim inf <lim sup —— < 1+49.
e n

n—oo logn n— o0

Since 0 > 0 is arbitrary, the theorem follows.



