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1 Conditional limit theorem for critical processes

Assume
A = f

0
(1) = 1; f 00(1) = 2B 2 (0;1) : (1)

Theorem 1 Under (1)

Q(n) = P (Z(n) > 0) � 1

Bn
; n!1; (2)

and

lim
n!1

E

�
exp

�
��Z(n)

Bn

�
jZ(n) > 0

�
=

1

1 + �
: (3)

Remark.
1

1 + �
=

Z 1

0

e��xe�xdx

and, therefore,

lim
n!1

P

�
Z(n)

Bn
� yjZ(n) > 0

�
=

Z y

0

e�xdx = 1� e�y:

giving the exponential law.
Proof. Expanding f(s) in a vicinity of point s = 1 we have

1� f(s) = 1� s�B(1� s)(1� s)2

where

B(1� s) = f"(�)

2
; � = �(s) 2 [s; 1] ;
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and

B(y)! B =
f"(1)

2
; y ! 0:

Thus,

1� fk+1(0) = 1� f(fk(0)) = 1� fk(0)�B(1� fk(0))(1� fk(0))2

or
Q(k + 1) = Q(k)�B(Q(k))Q2(k):

Observe that as k !1

1 � Q(k)

Q(k + 1)
=

1� fk(0)
1� fk+1(0)

=
1� fk(0)
1� f(fk(0))

� 1� fk(0)
f 0(fk(0)) (1� fk(0))

=
1

f 0(fk(0))
! 1:

Thus, we can write

Q(k + 1) = Q(k)�B�(k)Q(k)Q(k + 1)

where

B�(k) = B(Q(k))
Q(k)

Q(k + 1)
= B + "(k)

and "(k)! 0; k !1; j"(k)j < C. Hence it follows that

1

Q(k + 1)
� 1

Q(k)
= B + "(k)

which, after summation from k = 0 to n� 1 gives

1

Q(n)
� 1 = Bn+

n�1X
k=0

"(k):

Dividing this by n we get

1

nQ(n)
= B +

1

n
+
1

n

n�1X
k=0

"(k)! B; n!1;

since for any � > 0 one can �nd K = K(�) such that j"(k)j < � for all k > K
and, therefore,

1

n

�����
n�1X
k=0

"(k)

����� � 1

n

KX
k=0

j"(k)j+ 1

n

nX
k=K+1

j"(k)j

� CK

n
+
�(n�K)

n
� CK

n
+ �:

This proves the �rst part of the theorem.
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Further,

E

�
exp

�
��Z(n)

Bn

�
jZ(n) > 0

�
= 1�

1� fn
�
exp

�
� �
Bn

	�
Q(n)

:

Now let m(n) be such that

fm(0) � exp
�
� �

Bn

�
� fm+1(0)

or

1� fm(0) � 1� exp
�
� �

Bn

�
� 1� fm+1(0)

or

Q(m) � �

Bn
(1 + "�(n)) � Q(m+ 1):

where "�(n)! 0; n!1: Hence,

1

Bm
� Q(m) � �

Bn
=

1

B (n=�)
:

Consequently, m � [n=�] : Thus, in view of

1� fn(fm+1(0)) � 1� fn
�
exp

�
� �

Bn

��
� 1� fn(fm(0))

we have

1� fn
�
exp

�
� �

Bn

��
� 1� fn+m(0) �

1

B(n+m)

� 1

Bn(1 + ��1)
=

�

Bn(1 + �)
:

Hence
1� fn

�
exp

�
� �
Bn

	�
Q(n)

� Bn�

Bn(1 + �)
=

�

1 + �

and, therefore,

lim
n!1

E

�
exp

�
��Z(n)

Bn

�
jZ(n) > 0

�
= 1� lim

n!1

1� fn
�
exp

�
� �
Bn

	�
Q(n)

= 1� �

1 + �
=

1

1 + �

proving the theorem.
Example. In the pure geometric case

f(s) =
1

2� s , f
0(1) = 1; f"(1) = 2
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we have an easy explanation for this result. Indeed, we know from the previous
lectures that

P (maxS�k > n) =
1

n+ 1
:

Further, if
Z(n) = #

�
j : S�j�1 = n+ 1; S

�
j = n

�
then

P (Z(n) = k;maxS�k > n)

=
1

n+ 1

�
1� 1

n+ 1

�k�1
1

n+ 1

and

P (Z(n) � k;maxS�k > n) =
1

n+ 1

�
1� 1

n+ 1

�k�1
:

Hence

P (Z(n) � k j maxS�k > n) =
�
1� 1

n+ 1

�k�1
and with k = ny

lim
n!1

P (Z(n) � nyjmaxS�k > n) = lim
n!1

�
1� 1

n+ 1

�ny�1
= e�y:

2 Reduced processes

Let Z(n); n = 0; 1; ::: be a Galton-Watson process and let Z(m;n) be the number
of particles in the process at time m � n having nonempty o¤spring at time n:
The process fZ(m;n);m � ng is called the reduced process.

2.1 Reduced supercritical processes

Theorem 2 If A > 1 then for any m = 0; 1; :::

lim
n!1

E
h
sZ(m;n)jZ(n) > 0

i
=
fm(P + (1� P )s)� P

1� P :

Proof. We have

E
h
sZ(m;n)jZ(n > 0

i
=

E
�
sZ(m;n);Z(n) > 0

�
P (Z(n) > 0)

=
E
�
sZ(m;n)

�
�E

�
sZ(m;n);Z(n) = 0

�
P (Z(n) > 0)

=
fm (fn�m(0) + (1� fn�m(0)s)� fn(0)

1� fn(0)
(4)

since
E
h
sZ(m;n);Z(n) = 0

i
= P (Z(n) = 0) = fn(0)
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and

E
h
sZ(m;n)

i
= E

h
E
h
sZ(m;n)jZ(m)

ii
= E

h
(fn�m(0) + (1� fn�m(0))s)Z(m)

i
= fm (fn�m(0) + (1� fn�m(0))s) :

Passing in (4) to the limit as n!1, using the continuity of fm(y) for y 2 [0; 1)
and recalling that limn!1 fn�m(0) = P we prove the theorem.
The moment

D(n) = n�max fj : Z(j; n) = 1g

is called the distance to the most recent mutual ancestor of the population at
time n: Clearly,

fn�D(n) � mg = fZ(m;n) = 1g :

Corollary 3 If A > 1 then for any m = 0; 1; :::

lim
n!1

P (n�D(n) = m jZ(n) > 0) = (f 0(P ))m � (f 0(P ))m+1 :

Proof. We have

P (n�D(n) � mjZ(n) > 0) = P (Z(m;n) = 1jZ(n) > 0)

and by the previous theorem

lim
n!1

P (Z(m;n) = 1jZ(n) > 0) = coefs
�
fm(P + (1� P )s)� P

1� P

�
:

We have by Taylor�s formula

fm(P + (1� P )s)� P
1� P =

1

1� P

1X
k=1

f
(k)
m (P )

k!
(1� P )ksk:

Thus,

lim
n!1

P (Z(m;n) = 1jZ(n) > 0) = 1

1� P
f
0

m(P )

1!
(1� P ) = (f 0(P ))m :

Hence

lim
n!1

P (n�D(n) = mjZ(n) > 0) = lim
n!1

P (Z(m;n) = 1jZ(n) > 0)

� lim
n!1

P (Z(m+ 1; n) = 1jZ(n) > 0)

= (f 0(P ))
m � (f 0(P ))m+1 :

In partucular, we see that the most recent common ancestor in supercritical
processes is located at the begining of the evolution of the process.
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2.2 Reduced subcritical processes

Theorem 4 If A < 1 then for any m = 0; 1; :::

lim
n!1

E
h
sZ(n�m;n)jZ(n > 0

i
= h(s) =

f�(fm(0) + (1� fm(0)s)� f�(fm(0))
Am

:

where

f�(s) =
1X
k=1

P �k s
k

is the limiting function for the conditional distribution of our subcritical process:

1� f�(f(s)) = A(1� f�(s)):

Proof. We have

E
h
sZ(n�m;n)jZ(n > 0

i
=

E
�
sZ(n�m;n)

�
�E

�
sZ(m;n);Z(n) = 0

�
P (Z(n) > 0)

=
fn�m (fm(0) + (1� fm(0)s)� fn�m(fm(0))

1� fn(0)

=
1� fn�m(0)
1� fn(0)

fn�m (fm(0) + (1� fm(0)s)� fn�m(fm(0))
1� fn�m(0)

! A�m (f�(fm(0) + (1� fm(0)s)� f�(fm(0)))

as n!1 proving the theorem.

Corollary 5 If A < 1 then for any m = 0; 1; :::

lim
n!1

P (D(n) � mjZ(n) > 0) = P �1
p1(m)

;

where

p1(m) = P (Z(m) = 1jZ(m) > 0) =
P (Z(m) = 1)

1� fm(0)
and

P �1 = lim
m!1

p1(m):

Proof. Expanding f�(y) in Taylor�s series at point y = fm(0) we have

h(s) =
f�(fm(0) + (1� fm(0)s)� f�(fm(0))

Am

= A�m
1X
k=1

f�(k)(fm(0))

k!
(1� fm(0))ksk

= A�mf�0(fm(0))(1� fm(0))s+A�m
1X
k=2

f�(k)(fm(0))

k!
(1� fm(0))ksk:
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In particular

lim
n!1

P (D(n) � mjZ(n) > 0) = f�0(fm(0))(1� fm(0))
Am

: (5)

Using
1� f�(fm(s)) = Am (1� f�(s)); (6)

di¤erentiating (6) in s and setting s = 0 we get

@f�(fm(s))

@s
js=0 =

df�(s)

ds
js=fm(0)

@fm(s)

@s
js=0 = Am

df�(s)

ds
js=0

implying

f�0(fm(0)) =
df�(s)

ds
js=fm(0) =

Am df�(s)
ds js=0

@fm(s)
@s js=0

=
AmP �1

P (Z(m) = 1)
:

Substituting this into (5) proves the corollary.
Note that

lim
m!1

P �1
p1(m)

= 1

and, therefore, the distribution of the distance to the most recent common
ancestor in subcritical processes is pure discrete.
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