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1 Conditional limit theorem for critical processes

Assume
A=f 1) =1, f'(1)=2B € (0,). (1)

Theorem 1 Under (1)

Q(n):P(Z(n)>O)~Bin, n — 00, (2)
and 7 )
nlLII;OE [exp {_)\B(Z)} |Z(n) > 0} =T (3)
Remark.

and, therefore,

) Z(n) v _
2\ - — Tl —1 — Y.
lim P ( " ylZ(n) > O> /0 e fdr=1—e

n—00

giving the exponential law.
Proof. Expanding f(s) in a vicinity of point s = 1 we have

1—f(s)=1—s—B(1—s)(1—s)?

where

B(l—-s)= f”2(6),9 =0(s) € [s,1],
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Thus,

1= fi41(0) =1 = f(fi(0)) =1 = fr(0) = B(L — fi(0))(1 — fx(0))*
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Observe that as k — oo
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Thus, we can write

Q(k+1) = Q(k) — B*(F)Q(K)Q(k + 1)

where
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and e(k) — 0,k — oo, |e(k)| < C. Hence it follows that
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which, after summation from & =0 to n — 1 gives
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Dividing this by n we get
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since for any ¢ > 0 one can find K = K () such that |e(k)| < ¢ for all & > K
and, therefore,
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This proves the first part of the theorem.
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Further,
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Now let m(n) be such that
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or
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S Qm) =

Bm “Bn BN

Consequently, m ~ [n/A]. Thus, in view of
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we have
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proving the theorem.
Example. In the pure geometric case
1
f(s) = 9 s =1, f/(1)=2



we have an easy explanation for this result. Indeed, we know from the previous
lectures that

P (max S; >n) =

n+1
Further, if
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then
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Hence

) 1\ k1
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and with k = ny

1 ny—1
lim P (Z(n) > ny|max Sy, >n) = lim (1 - ) =e Y.

2 Reduced processes

Let Z(n),n =0, 1, ... be a Galton-Watson process and let Z(m, n) be the number
of particles in the process at time m < n having nonempty offspring at time n.
The process {Z(m,n),m < n} is called the reduced process.

2.1 Reduced supercritical processes

Theorem 2 If A > 1 then for any m =0,1, ...

fm(P+ (1= P)s) = P
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Proof. We have
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and
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Passing in (4) to the limit as n — oo, using the continuity of f,,(y) for y € [0,1)
and recalling that lim,,— o frn—m(0) = P we prove the theorem.
The moment
D(n) =n—max{j: Z(j,n) =1}

is called the distance to the most recent mutual ancestor of the population at
time n. Clearly,
{n—D(n) 2m} ={Z(m,n) =1}.

Corollary 3 If A > 1 then for any m = 0,1, ...
Jlim P (n—D(n) =m|Z(n) >0) = (f'(P))" = (f(P)""".
Proof. We have
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and by the previous theorem

lim P (Z(m,n) =1|Z(n) > 0) = coef

n—oo

{fm(P—i-(l—P)s)—P
1-P

We have by Taylor’s formula
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k k
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' P m
Tim P (Z(m.n) = 112(n) > 0) = =220 1 py = (1))
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In partucular, we see that the most recent common ancestor in supercritical
processes is located at the begining of the evolution of the process.



2.2 Reduced subcritical processes

Theorem 4 If A <1 then for any m =0,1,...

lim E [SZ(nfm,n)|Z(n > 0} — h(S) _ f*(fm(o) + (1 — fAVV:n(O)S) — f*(fm(o))

n—oo

where
oo
s) = Z Py s*
k=1
18 the limiting function for the conditional distribution of our subcritical process:
1= f7(f(s)) = A(L = f*(s)).
Proof. We have
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_ fn m(fm( )+(1_fm( ) )_fnfm(fm(o))
— fn(0)
_ 1— fu_m(0) fn—m (fm(0) + (1 = f1n(0)s) = fr—m(fim(0))
1_fn(0) 1_fn m(O)
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as n — oo proving the theorem.

Corollary 5 If A <1 then for any m =0,1, ...
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Proof. Expanding f*(y) in Taylor’s series at point y = f,,,(0) we have
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In particular

i P (D) < mf2(0) > 0) = 2O LO) )
Using
L= f*(fm(s)) = A™ (1 = f*(s)), (6)
differentiating (6) in s and setting s = 0 we get
8f*(fm(S))| _ df*(8)| 8fm(«9)| _ Amdf*(5)|
0s s=07 s =m0 g ls=0 ds 70
implying
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Substituting this into (5) proves the corollary.
Note that
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and, therefore, the distribution of the distance to the most recent common
ancestor in subcritical processes is pure discrete.



