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1 Local time of the simple random walk

Consider again a simple random walk

S0 = 1; Sk = X1 + :::+Xk

with
P (Xi = 1) = p; P (Xi = �1) = 1� p = q; p < q:

Let S�k be the random walk stopped at zero at moment � = min fk : Sk = 0g :
It is known that

P (� <1) = p

q
:

Set
Z(n) = the number of k such that S�k = n+ 1; S

�
k+1 = n:

This is a branching process with geometric o¤spring distribution. Then for the
local time `(t) of the stopped random walk at level t :

`(t) = the number of k such that S�k = t

= (the number of k such that S�k�1 = t� 1 and S�k = t)
+
�
the number of k such that S�k�1 = t+ 1 and S

�
k = t

�
= (the number of k such that S�k�1 = t and S

�
k = t� 1)

+
�
the number of k such that S�k�1 = t+ 1 and S

�
k = t

�
= Z(t� 1) + Z(t); t = 1; 2; :::;

where Z(t) is the number of particles at moment t in a branching process with
o¤spring generating function f(s) = q(1�ps)�1. Hence, to �nd the distribution
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of `(t) it is necessary to study the joint distribution of (Z(t � 1); Z(t)) for the
processes with geometric probability generating functions. In fact, we establish
the desired result in the general situation.

Theorem 1 If A < 1 then for any �xed m = 0; 1; :::

lim
n!1

E
h
s
Z(n�m�1)
1 s

Z(n�m)
2 jZ(n) > 0

i
=
f� (s1f(s2))� f� (s1f(s2fm(0)))

Am+1
:

Proof. We have

E
h
s
Z(n�m�1)
1 s

Z(n�m)
2 ;Z(n) > 0

i
= E

h
s
Z(n�m�1)
1 s

Z(n�m)
2

i
�E

h
s
Z(n�m�1)
1 s

Z(n�m)
2 ;Z(n) = 0

i
:

Now

E
h
s
Z(n�m�1)
1 s

Z(n�m)
2

i
= E

h
E
h
s
Z(n�m�1)
1 s

Z(n�m)
2

i
jZ(n�m� 1)

i
= E

h
s
Z(n�m�1)
1 E

h
s
Z(n�m)
2 jZ(n�m� 1)

ii
= E

h
s
Z(n�m�1)
1 fZ(n�m�1)(s2)

i
= fn�m�1(s1f(s2))

while

E
h
s
Z(n�m�1)
1 s

Z(n�m)
2 ;Z(n) = 0

i
= E

h
E
h
s
Z(n�m�1)
1 s

Z(n�m)
2 ;Z(n) = 0

i
jZ(n�m� 1);Z(n�m)

i
= E

h
s
Z(n�m�1)
1 s

Z(n�m)
2 E [I fZ(n) = 0g jZ(n�m)]

i
= E

h
s
Z(n�m�1)
1 s

Z(n�m)
2 P(Z(n) = 0jZ(n�m))

i
= E

h
s
Z(n�m�1)
1 s

Z(n�m)
2 fZ(n�m)m (0)

i
= fn�m�1(s1f(s2fm(0))):

As a result

E
h
s
Z(n�m�1)
1 s

Z(n�m)
2 ;Z(n) > 0

i
= fn�m�1(s1f(s2))� fn�m�1(s1f(s2fm(0))):

Therefore

E
h
s
Z(n�m�1)
1 s

Z(n�m)
2 jZ(n) > 0

i
=

fn�m�1(s1f(s2))� fn�m�1(s1f(s2fm(0)))
1� fn(0)

=
1� fn�m�1(0)
1� fn(0)

fn�m�1(s1f(s2))� fn�m�1(s1f(s2fm(0)))
1� fn�m�1(0)

:

Now

lim
n!1

1� fn�m�1(0)
1� fn(0)

= lim
n!1

1� fn�m�1(0)
1� fm+1(fn�m�1(0))

=
1

f 0m+1(1)
=

1

Am+1
(1)
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while as n!1

fn�m�1(s1f(s2))� fn�m�1(s1f(s2fm(0)))
1� fn�m�1(0)

=
(fn�m�1(s1f(s2))� fn�m�1(0))� (fn�m�1(s1f(s2fm(0)))� fn�m�1(0))

1� fn�m�1(0)
! f� (s1f(s2))� f� (s1f(s2fm(0))) : (2)

Combining (1) and (2) proves the theorem.

Corollary 2 If A < 1 and E� log+ � <1 then

lim
m!1

lim
n!1

E
h
s
Z(n�m�1)
1 s

Z(n�m)
2 jZ(n) > 0

i
=
s1s2f

�0 (s1f(s2)) f
0(s2)

A
K

where K is the same as in the theorem describing the asymptotic behavior of the
survival probability of a subcritical process.

Proof. As m!1

f� (s1f(s2))� f� (s1f(s2fm(0)))
Am+1

� s1s2f
�0 (s1f(s2)) f

0(s2)
1� fm(0)
Am+1

! s1s2f
�0 (s1f(s2)) f

0(s2)

A
K:

We know that for the geometric case

f� (s) =
(1�A)s
1�As =

(q � p)s
q � ps :

From here by direct calculations we get

Corollary 3 If the o¤spring generating function is geometric then for A =
p=q < 1

lim
n!1

E

�
s`(n�m)jmax

k
S�k > n

�
= lim

n!1
E
h
sZ(n�m�1)+Z(n�m)jZ(n) > 0

i
=
f� (sf(s))� f� (sf(sfm(0)))

Am+1

=
(1�A)2pqs2

A (1� 2ps) (1�Am+1 � p(2�Am+1 �Am)s) :
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Proof. We have

f� (sf(s))� f� (sf(sfm(0)))
Am+1

=
1

Am+1

�
(1�A)qs
1� 2ps � (1�A)qs

1� p(1 + fm(0))s

�
=

(1�A)qs
Am+1

�
1

1� 2ps �
1

1� p(1 + fm(0))s

�
=

(1�A)pqs2(1� fm(0))
Am+1 (1� 2ps) (1� p(1 + fm(0))s)

=
(1�A)2pqs2

A (1� 2ps) (1�Am+1) (1� p(1 + fm(0))s)

and since

1 + fm(0) = 2�
Am(1�A)
1�Am+1 =

2�Am+1 �Am
1�Am+1

this changes to

(1�A)2pqs2
A (1� 2ps) (1�Am+1 � p(2�Am+1 �Am)s) :

Letting m!1 we get the following statement.

Corollary 4 If the o¤spring generating function is geometric then for A =
p=q < 1

lim
m!1

lim
n!1

E

�
s`(n�m)jmax

k
S�k > n

�
= lim

m!1
lim
n!1

E
h
sZ(n�m�1)+Z(n�m)jZ(n) > 0

i
=
s2f�0 (sf(s)) f 0(s)

A
K

=
(1�A)2pqs2

A (1� 2ps)2
=
(q � p)2s2

(1� 2ps)2
:

2 Supercritical populations which are know to

die out

As we have mentioned, supercritical populations, which are known to die out
later, behave as subcritical populations. Now we con�rm this by means of the
following theorem.

Theorem 5 For a supercritical process there exists the limit

lim
n!1

E
h
sZ(n)jn < � <1

i
= g�(s) =

1X
k=1

G�ks
k; g�(1) = 1;
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where g�(s) solves the equation

f 0(P )(1� g�(s)) = 1� g�
�
f(sP )

P

�
: (3)

Remark. Equation (3) is similar to that for subcritical processes and this
is not a coincidence.
Proof. We have

E
h
sZ(n);n < � <1

i
=

1X
k=1

P (Z(n) = k;n < � <1) sk

=
1X
k=1

P (Z(n) = k) (sP )
k
= fn (sP )� fn(0):

Thus,

E
h
sZ(n)jn < � <1

i
=
E
�
sZ(n);n < � <1

�
P (n < � <1) =

fn (sP )� fn(0)
P � fn(0)

: (4)

Let now

g(s) =
f(Ps)

P
; g0(s) = s; gn+1(s) = g(gn(s)):

We show that

gn(s) =
fn(Ps)

P
; n = 0; 1; ::: :

Indeed, for n = 1 this is true and if this is true for some n then we have by
induction hypothesis that

gn+1(s) = g(gn(s)) =
f(Pgn(s))

P

=
f(Pfn(Ps)=P )

P
=
f(fn(Ps))

P
=
fn+1(Ps)

P
:

Now we can rewrite (4) as

E
h
sZ(n)jn < � <1

i
=

fn (sP )� fn(0)
P � fn(0)

=
gn (s)� gn(0)
1� gn(0)

= E
h
sZ

�(n) jZ�(n) > 0
i
;

where Z�(n); n = 0; 1; ::: a branching process developing in accordance with
probability generating function g(s). Note that g0(1) = f 0(P ) < 1 and therefore,
we have a subcritical process. According to our previous theorems

lim
n!1

E
h
sZ

�(n) jZ�(n) > 0
i
= g�(s);

where g�(s) solves the equation

g0(1)(1� g�(s)) = 1� g� (g(s))
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or, in terms of f(s)

f 0(P )(1� g�(s)) = 1� g�
�
f(sP )

P

�
:

Example. If

f(s) =
q

1� ps =
1

1 +A(1� s)
with A = p=q > 1; then P = q=p = 1=A: Therefore,

g(s) =
f(Ps)

P
=

A

1 +A(1� sA�1) =
A

1 +A� s =
1

1 +A�1(1� s) :

By direct calculations similar to those in the subcritical case

lim
n!1

E[sZ(n) jn < � <1) = s(A� 1)
A� s = EsZ

�

=
s(1�A�1)
1�A�1s = lim

n!1
E
h
sZ

�(n) jZ�(n) > 0
i
:

Thus,

P(Z� = k) = (1� 1=A)=(1=A)k�1; k = 1; 2; : : : ; and E[Z�] = 1=(1�A�1):

Thus, both types of models, sub- or super-critical, yield the same type of
distributions of the size of now extinct species.
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