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1 Local time of the simple random walk

Consider again a simple random walk

So=1, 8, =X1+..+ X}
with
P(X;=1)=p, PX,=-1)=1-p=gq, p<q.

Let S; be the random walk stopped at zero at moment 7 = min {k : Sy = 0}.

It is known that
P(r <o) = L
q

Set
Z(n) = the number of k such that Sy =n+1, S;,; =n.

This is a branching process with geometric offspring distribution. Then for the
local time £(t) of the stopped random walk at level ¢ :

£(t) = the number of k such that S} =1t
= (the number of k such that S;_; =t —1 and S}, =t)
+ (the number of k such that S;_; =t+1 and S = t)
= (the number of k such that S;_; =t and S} =t—1)
+ (the number of k such that S;_; =¢+ 1 and S}, =1t)
= Zt-1)+2Z{%), t=12,..,

where Z(t) is the number of particles at moment ¢ in a branching process with
offspring generating function f(s) = ¢(1—ps)~!. Hence, to find the distribution



of £(t) it is necessary to study the joint distribution of (Z(¢t — 1), Z(t)) for the
processes with geometric probability generating functions. In fact, we establish
the desired result in the general situation.

Theorem 1 If A <1 then for any fixed m = 0,1, ...

lim E [slz(”*mfl)gf("*mﬂz(n) > 0} _ I (s1f(s2)) —AJ:+(£91f(82fm(0)))

n—oo

Proof. We have
E [slz(nfmfl)SQZ(nfm); Z(n) > O]

= E [slz("_m_l)SQZ("_m)] —-E [slz(n_m_l)szz("_m); Z(n) = 0} .

Now
E s/ Vsl = BB [N ] 120 m - )]
= E [slz(n_m_l)E [szz(n_m)|Z(n —m— 1)”
= E {slz("fmfl)fz("_m_l)(82)} = fn-m-1(s1f(s2))
while
E >slz(n7m71)sgz(n7m); Z(n) = 0}
= E [E [slz(nfmfl)sg(nfm); Z(n) = 0} |Z(n—m—1);Z(n— m)}
= B[] VR {Z(0) = 0} Z(n - m)]]
= E[Z0m 0 Z0mmp 7 (0) = 012 (n — m))}
- E [sf@*mfl)sf("*m) fﬁ(""’”)(O)] = fr—m-1(s1f(s2fm(0))).
As a result

E /" Vs Z2(0) > 0] = facme1(51£(52)) = faomo1(51f (52 (0)):

Therefore
E |:81Z(n—m—1)82Z(n—m)‘Z(n) > 0:| _ fnml(slf(SZ))l__f}l(r(r)t)l(slf(Sme(O)))
_ 1- fnfmfl(o) fnfmfl(slf(‘g?)) - fnfmfl(slf(82fm(0)))
1-— fn(O) 1- fn—m—l(o) .
Now
1-— fn—m—l(o) 1-— fn—m—l(o) 1 1

lm ———————==1i = =
o0 1= f(0) 1590 L= furt(fnomo1(0))  fogy (1) AW

(1)



while as n — oo

Jn-m—1(51f(52)) = fa—m—1(51f(52fm(0)))

1- fn—m—l(o)
_ (fn—m=1(51f(52)) = fa—m-1(0)) = (fa—m—1(51f(52fm(0))) — fu—m-1(0))
1- fnfmfl(o)
— [T (s1f(s2)) = 7 (s1f(s2/m(0))) - (2)

Combining (1) and (2) proves the theorem.

Corollary 2 If A <1 and E¢log™ € < oo then

*/ /
lim lim E [slz(”fmfl)sf(”fm)lZ(n) > O] _ s15f (Sli(52))f (2) 5

m—00 N—00

where K is the same as in the theorem describing the asymptotic behavior of the
survival probability of a subcritical process.

Proof. As m — oo

[*(51f(s2)) — f* (s1f(52/m(0)))

Am+1

L= fm(0) _ sisaf™ (s51f(s2)) f'(s2)

S sisal (s1f(52)) T (s2) - I i

We know that for the geometric case

vy I—A)s (g—p)s
Fris) = 1—As  qg—ps

From here by direct calculations we get

Corollary 3 If the offspring generating function is geometric then for A =
p/a<1

lim E {Se("m)mgx Sh > n}

= T}LII;OE {SZ(n—m—l)-‘rZ(n—m)‘Z(n) > 0} _ [ (sf(s)) _A{;r(ff(Sfm(O)))

(1 - A)*pgs’
A1 —2ps) (1 — Amtl —p(2 — Amtl — Am)g)’




Proof. We have
[ (sf(s)) = £ (sf(sfm(0)))
Am—i—l
1 <(1 —A)gs (1—A)gs )
A T 2ps 1= p(1+ fu(0)s
(1 - A)gs ( I 1 )
AL \1=2ps 1—p(1+ fn(0))s
(1 — A)pq52(1 — fm(o))
At (1= 2ps) (1= p(1+ fm(0))s)
(1 — A)?pgs?
A(1=2ps) (1 =A™t (1 = p(1+ f(0))s)

and since A (1 A) o gmtl_ gm
L+ fm(0) =2~ 1_ Am+l ] _ Am+t1

this changes to

(1 - A)*pgs’
A (1 _ 2p8) (1 — Am+1 _ p(2 — Am+1 _ Am)s)'

Letting m — oo we get the following statement.

Corollary 4 If the offspring generating function is geometric then for A =
p/a<1

m—00 N—00

lim lim E {se(”_m“mgx Sy > n}

s2f* (s£(s)) f'(s)
y K

lim lim E [sz("—m—1>+z<"—7">\Z(n) > 0} -

m—00 N—00

(1—A)?pgs®>  (q—p)*s?

A(l— 2ps)2 (1- 2ps)2'
2 Supercritical populations which are know to

die out

As we have mentioned, supercritical populations, which are known to die out
later, behave as subcritical populations. Now we confirm this by means of the
following theorem.

Theorem 5 For a supercritical process there exists the limit
[e ]

lim E [s?M|n <7< oo] =g%(s) = ZGZS’“, g* (1) =1,

n— 00
k=1



where g*(s) solves the equation

=g =1-g (157). Q

Remark. Equation (3) is similar to that for subcritical processes and this
is not a coincidence.
Proof. We have

E|[s?M™:n <1< oo] = iP(Z(n) =k;n <71 <o0)sk
k=1
= D P (Z(n) =k) (sP)" = fu (sP) = fa(0).

k=1

Thus,
E [s?Min <71 <oo]  f,(sP)— fu(0)
2 n oo| = =
E|s%"n <7 < ] P(n<T1 <o) P — £,(0) )
Let now P
o) = T2 g0(5) = 5, g (5) = glons)).
We show that
gn(s) = fn(]fé’)’n =0,1,....

Indeed, for n = 1 this is true and if this is true for some n then we have by
induction hypothesis that

Gas) = glgals) = 12D
_ JPIPS)/P) _ JUn(PS) _ fusr(Ps)
P P P

Now we can rewrite (4) as

fn (sP) — fa(0)

E |s?M|n <7 < 0

P_fn(o)
= 10 =B [ 27@) > 0],

where Z*(n), n = 0,1,... a branching process developing in accordance with
probability generating function g(s). Note that ¢’(1) = f/(P) < 1 and therefore,
we have a subcritical process. According to our previous theorems

lim E [SZ*W | Z*(n) > o] = g*(s),

n—oo

where g¢*(s) solves the equation

g1 —g"(s)) =1—g"(g(s))



or, in terms of f(s)

Example. If

__ 1 _ !
J(s) = 1—ps 14+A(1—s)

with A =p/q > 1, then P = q/p = 1/A. Therefore,

_ f(Ps) A _ A _ 1
96 = T T ITAQ—sATD) 11 A—s 1+ A1—9)

By direct calculations similar to those in the subcritical case

A-1 «
lim E[sZ™|n < T<oo):M = Es”

n— 00 A—s

1— A1 .
WA i B[ 20 > 0]

Thus,
P(Z*=k)=(1-1/4)/1/A)k=1,2,..., and E[Z*] = 1/(1 - A7").

Thus, both types of models, sub- or super-critical, yield the same type of
distributions of the size of now extinct species.



