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1 Crump-Mode-Jagers process counted by ran-
dom characteristics

We give here only an informal description of the Crump-Mode-Jagers process
counted by random characteristics or, what is the same, of the general branching
process counted by random characteristics. A particle, say, x, of this process is
characterised by three random processes

which are iid copies of a triple (A, &(+), x(+)) and whose components have the
following sense:

if a particle was born at moment o, then

Az— is the life-length of the particle;

€,(t — o0,) - is the number of children produced by the particle within the
time-interval [o,,t); £, (t —0,) =0if t — o, < 0;

X, (t—0z) > 0— is a stochastic process subject to changes ONLY within the
time-interval [0, 0, + A;) while outside the interval it has the form

0 if t—0,<0

X:I:(t_o'-t) =
Xw(AJE) if t_UmZ)\w

(it is NOT assumed that x,,(¢) is a nondecreasing function in ¢ > 0).
The stochastic process

2X(t) =) xalt —0u)

where summation is taken over all particles « born in the process up to moment
t is called the general branching process counted by random characteristics.



Examples:
1) x(t) =T{t €]0,\)} — in this case ZX(t) = Z(t) is the number of particles
existing in the process up to moment ¢;
2)
x(t) =tI{t € [0,\)} + AI{\ <t}

then

ZX(t):/O Z(u)du;

3) x(t) = I{t > 0} then ZX(t) is the total number of particles born up to
moment ¢.
Classification. E¢(c0) <,=,> 1 - subcritical, critical and supercritical,
respectively.
Let
0<wv(l)<wv(2)<..<v(n)<..

be the birth moments of the children of the initial particle. Then
§o(t) =#{n:v(n) <t}
is the number of children born by the initial particle up to moment ¢. We have
ZX(t) = xo(0) + ) Xalt —02) = xo(&) + D ZX(t—v(n))
x#0 v(n)<t

where ZX (-), n=1,2,... are iid copies of ZX(-). Hence it follows that

Ex(t)+E | Y ZX(t—v(n)

v(n)<t

EZX(1)

= Ex(t)+E Z E[ZX(t—v(n)|v(1),v(2),..,v(n),..]

'u(n )<t

= Ex)+E| Y E[ZX(t—v(n)|v(n)]
L v(n)<t

= Ex(t)+E | > B[2X(t—u)] (¢(u) — &(u—))

u<t

= Ex(t)-i-/o EZX (t — u) E¢(du).

Thus, we get the following renewal-type equation for AX(t) = EZX(t) and

p(t) = E&(1) : t
AX(t) = Ex(t) + /0 AX(t — u)p(du). (1)



Malthusian parameter: a number « is called the Malthusian parameter
of the process if

/0 T e tudn) = 1 (2)

(such a solution not always exists). For the critical processes o = 0, for the
supercritical processes a > 0, for the subcritical processes o < 0 (if exists).
If the Malthusian parameter exists we can rewrite (1) as

CX(t) = =By (t) + /0 "Xt~ w)d ( /0 ' eayu(dy)>

where CX(t) = e~ *AX(t). In view of (2) and given that, say, e"*'Ex(t) is
directly Riemann integrable and

/ e “"Ex(t)dt < oo, / te”* u(dt) < oo
0 0

we can apply the key renewal theorem to conclude that if the measure
t
M) = [ e utay)
0
is non-lattice then

lim CX(t) = lim e”*"AX(t) = /Ooo e “"Ex(t)dt (/Ooote—“m(dt)>l.

t—oo t—oo

In particular, if G(t) is the life-length distribution of particles and x(t) =
I{te]0,\)} we get

Ex(t)=P(A>t)=1-G()
and

Jooe ™ (1-G(t)dt
fooo te= ' p(dt)

75lim e “EZ (t) =

if the respective integrals converge.

2 M]|GJ|1 system with processor sharing disci-
pline

The model: a Poisson flow of customers with intensity A comes to a system
with one server which has unit service intensity. The service time distribution
of a particular customer is (if there are no other customers in the queue) B(u).
If there are M customers in the system at some moment T they are served
simultaneously with intensity M ~! each.

Let

Wisana ()



be the waiting time for the end of service of a customer which arrived to the
queue at the moment when the queue had N — 1 customers with remaining
service times Iy, ...,In_1.

The question is to study the properties of the random variable W, ;. , (In)
when [y — oo.

To solve this problem we construct an auxiliary general branching process.

Construction of the branching process.

Consider a general branching process in which initially at time ¢ = 0 there
are N particles with remaining life-lengths Iy, ...,I{x_1,lx and which constitute
the zero generation of this process. The life-length distribution of any newborn
particle A, is P (A, < u) = B(u), the reproduction process £, (t) of the number
of children produced by a particle up to moment ¢ has the probability generating
function ,

Esé=(®) = / eA(S_l)“dB(u) + A=)t (1 - B(t)
0
that is, this is an ordinary Poisson flow with intensity A stopped when the
particle dies:

Esé(t) — mgPoin(tAra)

Let Z(t;11,...,In—1,1n) denote the number of particles in the process at moment
t with the mentioned initial conditions. We use a simplified notation Z(t) if at
moment ¢ = 0 there is only one particle of zero age in the process.

We will consider also the process with immigration X (¢;11, ..., Iy—1,Ix) which
has the same initial conditions and development as Z(t;11,...,Ix—1,Ix) but, in
addition, given X (t;l1,...,In—-1,In) = 0 it starts again by one individual of
zero age after a random time r; having distribution P (r; <u) = 1 — e A% (if
the process dies out for the i—th time). X(t) is used if we initially start by the
process Z(t).

Now let 0., < 04, < ...be the sequential moments of jumps of the process
X(t;ly,y .oy Iv—1,In). We construct by the general branching process the fol-
lowing queueing system with S(7T') being the number of customers in the queue
at moment T

1) the queue has N customers at T = 0 with remaining service times
117 ceey lel, ZN;

2) the moment T; of the i—th jump of the queue size S(-) is specified as

T, = / X(y; l1, -~-7lN71,lN)dy+/ I{X(y;ll, -~-;lelle> = O} dy
0 0

3) the service discipline is such that at each moment 7' the number of cus-
tomers in the queue and their remaining service times coincide with the num-
ber of individuals and the remaining life-lengths of individuals in the branching
process at moment ¢(7") where

(T

t(T)
0 0



Thus, t < T is a random change of time.

Theorem. The described queueing system is a processor-sharing system
with service time of customers B(u) and a Poisson flow of customers with in-
tensity of arrivals A.

Proof. Let S(T) be the number of customers in the queue at time 7" and let
01, 02, ... be the moments of changes the size of the queue. Let us show that the
evolution of the constructed queue coincides with the evolution of a queueing
system with processor sharing discipline. It is enough to show that this is true
for T € [0,01] and then, using the memoryless property of the Poisson flow to
show in a similar way that this is true for T' € [©1, O3] and so on.

To demonstrate this it is enough to check that:

1) ©; = NIy A ... ANy Ad where P(d <u) =1—e %

2) If ©; = NI; then at this moment the i-th customer comes out of the
queue; if ©1 = d then one new customer arrives;

3) at any moment 7" € [0,0;] the remaining service times of the initial N
customers are l; — N7'T,..., Iy — N7IT.

Let 61 be the first moment of change of X (¢;11, ...,ly). Clearly,

O1r=UL AN ANINANdIA...NdN

where P(d; < u) = 1—e~?* and where the sense of d; is the birth of an individual
by the initial particle labelled i. On the interval u € [0, 1] the processing time
of the queueing system 7' and the time ¢ passed from the start of the evolution
of the general branching process are related by T = Nt. Hence 3) is valid.

Further, ® = N (L A .. AIyAdy Ao Ady) = Nlp Ao ANy A (N(dy A
...Adp)) and

P(N(dy A...Ndy) > y) = (e*y/N)N = eV,

This proves 1). Point 2) is evident.
Corollary 1.

Corollary 2.

In
Wll,--~7lN—1(lN) = / Z(yallaalN)dy
0

More detailed construction:
Let L be the life-length of a particle and let 0 < 6(1) < 6(2) < ... be the
birth moments of her children. Denote

§(t, L) = #{n:0(n) < t}.

Then the process generated by this particle can be treated as a process with
immigration stopped at moment L where

ESE(t,L) — eA(sfl) min(i&,L)7



and, since each newborn particle generates an ordinary process without immi-
gration, we see that the offspring size of new particles at moment ¢ in the
process is

t
/0 Zetur (t — w)€(du, L)

where Z;(y) are independent branching processes initiated by one individual of
zero age. Thus,

Yy
2@l only) = I{L >y} + / et (¥ — w)E(du, )
0
Yy
+o.+I{Ily >y} + / Ze(uin)(y —w)é(du, )
0

and, in particular, we have

VVYllwuglel(lN)

In
0

N N In y
= Zmin(lN,lk) + Z/ dy/ Ze(ui) (y — w)é(du, Iy,).
k=1 k=170 0

Since the birth moments of new particles constitute a Poisson flow with
intensity A we have E [{(u,)|l] = min (u,l) . Hence

[ fln Y

E / dy / zm,lk)(y—u)a(du,zk)]
0 0
[l Y

= E / dyE [/ Zg i) (Y — w)é(du, Ip) [€(u, 1), 0 < u < lkH

(=)

0

(=)

173 Y
- E / dy /0 E[Z;g(,li,zk)(y—u)|5<u,zk),oSugz]é(du,zk)]

I
=
rﬁ

dy / "B Z(y - w) e(du, m]

g Y
= E / dy/o E[Z(yu)]E[f(duvlk)Uk]]

- /0 " i /O "B (2] du] .

(e}

_ B /Olkdy/OyE[Z(y—u)]Adu

= AE

Hence

EW,  in.(n)=E

N N s y
;mln(lN,lk)wLAZ/O dy/o E[Z(u)] du].

k=1



One can prove also that if
B, = Elyn :/ udB(u) < 00
0
and AB; < 1 then for fized Iy, ...,In_1
lim W, (In) = L
lNllrnoo ll,...,lN,1 N - 1 —A/Bl

almost surely (in particular, if it comes to an empty system).



