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1 Crump-Mode-Jagers process counted by ran-
dom characteristics

We give here only an informal description of the Crump-Mode-Jagers process
counted by random characteristics or, what is the same, of the general branching
process counted by random characteristics. A particle, say, x, of this process is
characterised by three random processes

(�x; �x(�); �x(�))

which are iid copies of a triple (�; �(�); �(�)) and whose components have the
following sense:
if a particle was born at moment �x then
�x� is the life-length of the particle;
�x(t � �x) - is the number of children produced by the particle within the

time-interval [�x; t); �x(t� �x) = 0 if t� �x < 0;
�x(t��x) � 0� is a stochastic process subject to changes ONLY within the

time-interval [�x; �x + �x) while outside the interval it has the form

�x(t� �x) =

8<: 0 if t� �x < 0

�x(�x) if t� �x � �x
(it is NOT assumed that �x(t) is a nondecreasing function in t � 0):
The stochastic process

Z�(t) =
X
x

�x(t� �x)

where summation is taken over all particles x born in the process up to moment
t is called the general branching process counted by random characteristics.
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Examples:
1) �(t) = I ft 2 [0; �)g� in this case Z�(t) = Z(t) is the number of particles

existing in the process up to moment t;
2)

�(t) = tI ft 2 [0; �)g+ �I f� < tg

then

Z�(t) =

Z t

0

Z(u)du;

3) �(t) = I ft � 0g then Z�(t) is the total number of particles born up to
moment t:
Classi�cation. E�(1) <;=; > 1 - subcritical, critical and supercritical,

respectively.
Let

0 � v (1) � v (2) � ::: � v (n) � :::

be the birth moments of the children of the initial particle. Then

�0(t) = # fn : v (n) � tg

is the number of children born by the initial particle up to moment t: We have

Z�(t) = �0(t) +
X
x6=0

�x(t� �x) = �0(t) +
X
v(n)�t

Z�n (t� v (n))

where Z�n (�) ; n = 1; 2; ::: are iid copies of Z�(�): Hence it follows that

EZ�(t) = E�(t) +E

24 X
v(n)�t

Z�n (t� v (n))

35
= E�(t) +E

24 X
v(n)�t

E [Z�n (t� v (n)) jv (1) ; v (2) ; :::; v (n) ; :::]

35
= E�(t) +E

24 X
v(n)�t

E [Z�n (t� v (n)) jv (n)]

35
= E�(t) +E

24X
u�t

E [Z� (t� u)] (�0(u)� �0(u�))

35
= E�(t) +

Z t

0

EZ� (t� u)E�(du):

Thus, we get the following renewal-type equation for A�(t) = EZ� (t) and
�(t) = E�(t) :

A�(t) = E�(t) +

Z t

0

A�(t� u)�(du): (1)
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Malthusian parameter: a number � is called the Malthusian parameter
of the process if Z 1

0

e��t�(dt) = 1 (2)

(such a solution not always exists). For the critical processes � = 0; for the
supercritical processes � > 0; for the subcritical processes � < 0 (if exists).
If the Malthusian parameter exists we can rewrite (1) as

C�(t) = e��tE�(t) +

Z t

0

C�(t� u)d
�Z u

0

e��y�(dy)

�
where C�(t) = e��tA�(t): In view of (2) and given that, say, e��tE�(t) is
directly Riemann integrable andZ 1

0

e��tE�(t)dt <1;
Z 1

0

te��t�(dt) <1

we can apply the key renewal theorem to conclude that if the measure

M(t) =

Z t

0

e��y�(dy)

is non-lattice then

lim
t!1

C�(t) = lim
t!1

e��tA�(t) =

Z 1

0

e��tE�(t)dt

�Z 1

0

te��t�(dt)

��1
:

In particular, if G(t) is the life-length distribution of particles and �(t) =
I ft 2 [0; �)g we get

E�(t) = P (� > t) = 1�G(t)

and

lim
t!1

e��tEZ (t) =

R1
0
e��t (1�G(t)) dtR1
0
te��t�(dt)

if the respective integrals converge.

2 MjGj1 system with processor sharing disci-
pline

The model: a Poisson �ow of customers with intensity � comes to a system
with one server which has unit service intensity. The service time distribution
of a particular customer is (if there are no other customers in the queue) B(u):
If there are M customers in the system at some moment T they are served
simultaneously with intensity M�1 each.
Let

Wl1;:::;lN�1(lN )
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be the waiting time for the end of service of a customer which arrived to the
queue at the moment when the queue had N � 1 customers with remaining
service times l1; :::; lN�1:
The question is to study the properties of the random variableWl1;:::;lN�1(lN )

when lN !1:
To solve this problem we construct an auxiliary general branching process.
Construction of the branching process.
Consider a general branching process in which initially at time t = 0 there

are N particles with remaining life-lengths l1; :::; lN�1; lN and which constitute
the zero generation of this process. The life-length distribution of any newborn
particle �x is P (�x � u) = B(u); the reproduction process �x(t) of the number
of children produced by a particle up to moment t has the probability generating
function

Es�x(t) =

Z t

0

e�(s�1)udB(u) + e�(s�1)t (1�B(t))

that is, this is an ordinary Poisson �ow with intensity � stopped when the
particle dies:

Es�x(t) = EsPoi�(t^�x):

Let Z(t; l1; :::; lN�1; lN ) denote the number of particles in the process at moment
t with the mentioned initial conditions. We use a simpli�ed notation Z(t) if at
moment t = 0 there is only one particle of zero age in the process.
We will consider also the process with immigrationX(t; l1; :::; lN�1; lN ) which

has the same initial conditions and development as Z(t; l1; :::; lN�1; lN ) but, in
addition, given X(t; l1; :::; lN�1; lN ) = 0 it starts again by one individual of
zero age after a random time ri having distribution P (ri � u) = 1 � e��u (if
the process dies out for the i�th time). X(t) is used if we initially start by the
process Z(t):
Now let �x1 � �x2 � :::be the sequential moments of jumps of the process

X(t; l1; :::; lN�1; lN ). We construct by the general branching process the fol-
lowing queueing system with S(T ) being the number of customers in the queue
at moment T :
1) the queue has N customers at T = 0 with remaining service times

l1; :::; lN�1; lN ;
2) the moment Ti of the i�th jump of the queue size S(�) is speci�ed as

Ti =

Z �xi

0

X(y; l1; :::; lN�1; lN )dy +

Z �xi

0

I fX(y; l1; :::; lN�1; lN ) = 0g dy:

3) the service discipline is such that at each moment T the number of cus-
tomers in the queue and their remaining service times coincide with the num-
ber of individuals and the remaining life-lengths of individuals in the branching
process at moment t(T ) where

T =

Z t(T )

0

X(y; l1; :::; lN )dy +

Z t(T )

0

I fX(y; l1; :::; lN ) = 0g dy:
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Thus, t$ T is a random change of time.
Theorem. The described queueing system is a processor-sharing system

with service time of customers B(u) and a Poisson �ow of customers with in-
tensity of arrivals �.
Proof. Let S(T ) be the number of customers in the queue at time T and let

�1;�2; ::: be the moments of changes the size of the queue. Let us show that the
evolution of the constructed queue coincides with the evolution of a queueing
system with processor sharing discipline. It is enough to show that this is true
for T 2 [0;�1] and then, using the memoryless property of the Poisson �ow to
show in a similar way that this is true for T 2 [�1;�2] and so on.
To demonstrate this it is enough to check that:
1) �1 = Nl1 ^ ::: ^NlN ^ d where P (d � u) = 1� e��u;
2) If �1 = Nli then at this moment the i-th customer comes out of the

queue; if �1 = d then one new customer arrives;
3) at any moment T 2 [0;�1] the remaining service times of the initial N

customers are l1 �N�1T; :::; lN �N�1T:
Let �1 be the �rst moment of change of X(t; l1; :::; lN ). Clearly,

�1 = l1 ^ ::: ^ lN ^ d1 ^ ::: ^ dN

where P (di � u) = 1�e��u and where the sense of di is the birth of an individual
by the initial particle labelled i: On the interval u 2 [0; �1] the processing time
of the queueing system T and the time t passed from the start of the evolution
of the general branching process are related by T = Nt: Hence 3) is valid.
Further, �1 = N (l1 ^ ::: ^ lN ^ d1 ^ ::: ^ dN ) = Nl1 ^ ::: ^ NlN ^ (N(d1 ^

::: ^ dN )) and

P (N(d1 ^ ::: ^ dN ) � y) =
�
e�y=N

�N
= e�y:

This proves 1). Point 2) is evident.
Corollary 1.

S(T ) = X(t(T ); l1; :::; lN ):

Corollary 2.

Wl1;:::;lN�1(lN ) =

Z lN

0

Z(y; l1; :::; lN )dy:

More detailed construction:
Let L be the life-length of a particle and let 0 � �(1) � �(2) � ::: be the

birth moments of her children. Denote

�(t; L) = # fn : �(n) � tg :

Then the process generated by this particle can be treated as a process with
immigration stopped at moment L where

Es�(t;L) = e�(s�1)min(t;L);
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and, since each newborn particle generates an ordinary process without immi-
gration, we see that the o¤spring size of new particles at moment t in the
process is Z t

0

Z�(u;L)(t� u)�(du; L)

where Zi(y) are independent branching processes initiated by one individual of
zero age. Thus,

Z(y; l1; :::; lN ) = I fl1 � yg+
Z y

0

Z�(u;l1)(y � u)�(du; l1)

+:::+ I flN � yg+
Z y

0

Z�(u;lN )(y � u)�(du; lN )

and, in particular, we have

Wl1;:::;lN�1(lN ) =

Z lN

0

Z(y; l1; :::; lN )dy

=
NX
k=1

min(lN ; lk) +
NX
k=1

Z lN

0

dy

Z y

0

Z�(u;lk)(y � u)�(du; lk):

Since the birth moments of new particles constitute a Poisson �ow with
intensity � we have E [�(u; l)jl] = min (u; l) : Hence

E

"Z lk

0

dy

Z y

0

Z�(u;lk)(y � u)�(du; lk)
#

= E

"Z lk

0

dyE

�Z y

0

Z�(u;lk)(y � u)�(du; lk) j�(u; lk); 0 � u � lk
�#

= E

"Z lk

0

dy

Z y

0

E
�
Z�(u;lk)(y � u) j�(u; lk); 0 � u � l

�
�(du; lk)

#

= E

"Z lk

0

dy

Z y

0

E [Z(y � u)] �(du; lk)
#

= E

"Z lk

0

dy

Z y

0

E [Z(y � u)]E [�(du; lk)jlk]
#

= E

"Z lk

0

dy

Z y

0

E [Z(y � u)] �du
#
= �E

"Z lk

0

dy

Z y

0

E [Z(u)] du

#
:

Hence

EWl1;:::;lN�1(lN ) = E

"
NX
k=1

min(lN ; lk) + �
NX
k=1

Z lk

0

dy

Z y

0

E [Z(u)] du

#
:
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One can prove also that if

�1 = ElN =

Z 1

0

udB(u) <1

and ��1 < 1 then for �xed l1; :::; lN�1

lim
lN!1

Wl1;:::;lN�1(lN ) =
1

1� ��1

almost surely (in particular, if it comes to an empty system).
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