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1 Processes with immigration counted by ran-
dom characteristics

Continuous time branching process with immigration and �nal prod-
uct: Consider a BPI in which immigration occurs with rate �0 and the re-
production function of the number of immigrants g(s) =Es�. That is, at an
immigration moment a random number � of children is produced and a �nal
product �� � 0 which is not changed later on (that is, a random variable which
is INDEPENDENT on the moment of immigration),

 �(s; �) = Es�e���
�
;  �(s; 0) = g(s) = Es�:

The aboriginal individuals have the exponential life-time distribution with pa-
rameter �1 and the reproduction function f(s) =Es

�. An aboriginal individual
produces at the end of the life a random number � of children and a �nal product
� � 0 with probability generating function

'�(s; �) = Es�e���; '�(s; 0) = f(s)

which is not changed later on. The random variables � and �� are called random
characteristics.
Let

Z�� (t) =
X
D

�D +
X
I

��I

where summation is for all particles D which died up to the moment t and all
immigrants immigrated up to moment t:
The joint distribution of the components of the vector (Z�(t); Z

�
� (t)); where

Z�(t) is the number of particles in the process with immigration, is described
by the following integral and di¤erential equations. Setting

�� (t; s; �) = E
h
sZ(t)e��Z

�
� (t)j(Z(t); Z�� (t)) = (0; 0)

i
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and G0(t) = 1� e��0t we get

�� (t; s; �) = 1�G0(t) +
Z t

0

 �(� (t� u; s; �) ; �)�� (t� u; s; �) dG0(u)

= e��0t + �0

Z t

0

 �(� (u; s; �) ; �)�� (u; s; �) e
��0(t�u)du

with
�� (t; s; �) = 1:

This leads to

@�� (t; s; �)

@t
= ��0e��0t � �20

Z t

0

 �(� (u; s; �) ; �)�� (u; s; �) e
��0(t�u)du

+�0 
�(� (u; s; �) ; �)�� (u; s; �)

= ��0�� (t; s; �) + �0 �(� (t; s; �) ; �)�� (t; s; �)
= �0( 

�(� (t; s; �) ; �)� 1)�� (t; s; �)

implying

�� (t; s; �) = exp

�Z t

0

�0( 
�(� (u; s; �) ; �)� 1)du

�
:

Here (RECALL) for

� (t; s; �) = E
h
sZ(t)e��Z

�(t)j(Z(0); Z�(0)) = (1; 0)
i

and G(t) = 1� e��1t we have

� (t; s; �) = s (1�G(t)) +
Z t

0

'�(� (t� u; s; �) ; �)dG(u):

In particular, for

F 0(t; s) = E
h
sZ�(t)jimmigration, Z�(0) = 0

i
= �� (t; s; 0) ; F

0(0; s) = 1

and

F 1(t; s) = E
h
sZ(t)jno immigration, Z(0) = 1

i
= �(t; s; 0) ; F 1(0; s) = s;

we get

@F 0(t; s)

@t
= �0(g(F

1(t; s))� 1)F 0(t; s); g(s) = Es�; F 0(t; s) = 1;

and

F 0(t; s) = exp

�Z t

0

�0(g(F
1(u; s))� 1)du

�
:
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and, recall,

@F 1(t; s)

@t
= �1

�
f(F 1(t; s))� F 1(t; s)

�
= f (�1)

�
F 1(t; s)

�
; F 1(0; s) = s;

and
@F 1(t; s)

@t
= f (�1) (s)

@F 1(t; s)

@s
; F 1(0; s) = s:

Theorem 1 If g0(1) <1 and f
0
(1) < 1 then

lim
t!1

F 0(t; s) = exp

�Z 1

0

�0(g(F
1(u; s))� 1)du

�
= exp

�Z 1

s

�0(g(y)� 1)
�1 (f(y)� y)

dy

�
:

Proof. Since

0 � 1� g(F 1(u; s)) � g0(1)
�
1� F 1(u; s)

�
� g0(1)e

�1

�
f
0
(1)�1

�
u
(1� s)

the integral converges uniformly in s 2 [0; 1] : Hence

lim
t!1

F 0(t; s) = exp

�Z 1

0

�0(g(F
1(u; s))� 1)du

�
:

Now

d

ds

Z 1

0

�0(g(F
1(u; s))� 1)du

= �0

Z 1

0

dg(F 1(u; s))

dF 1
@F 1(u; s)

@s
du

= �0

Z 1

0

dg(F 1(u; s))

dF 1
@F 1(u; s)

@s
du

= �0

Z 1

0

dg(F 1(u; s))

dF 1
@F 1(u; s)

@u

du

f (�1)(s)

=
�0

f (�1)(s)

Z 1

0

@g(F 1(u; s))

@u
du =

�0
f (�1)(s)

g(F 1(u; s))j10

=
�0 (1� g(s))
f (�1)(s)

:

Di¤erentiation is also justi�ed since convergence

lim
t!1

�0
f (�1)(s)

g(F 1(t; s)) =
�0

f (�1)(s)

is uniform in s 2 [0; 1):
Similarly one can prove the following statement for the continuous-time

process:
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Theorem 2 If g
0
(1) = b < 1 and f 0(1) = 1; f"(1) = �2 2 (0;1) then for

� = 2b�0=�1�
2

lim
t!1

P

�
2Z(t)

�2t
� x

�
=

1

�(�)

Z x

0

y��1e�ydy: (1)

Proof. We have

F 0(t; s) = exp

�Z t

0

�0(g(F
1(u; s))� 1)du

�
:

Let

s = exp

�
� 2�

�1�
2t

�
and let T = T (t; �) be de�ned through

F 1(T; 0) = exp

�
� 2�

�1�
2t

�
:

Clearly,
2�

�1�
2t
� 2

�1�
2T

implying T = T (t; �) � t=�:Then

Ee
�� 2Z(t)

�1�
2t = exp

�Z t

0

�0(g(F
1(u; s))� 1)du

�
= exp

�Z t

0

�0(g(F
1(u+ T; s))� 1)du

�
= exp

�
�(1 + "(t; s))

Z t

0

�0g
0
(1)
�
1� F 1(u+ T; s)

�
)du

�
= exp

�
�(1 + "1(t; s))

2�0b

�1�
2

Z t

0

1

u+ t=�
du

�
� exp

�
��
Z t

0

1

u+ t=�
du

�
= exp

�
�� ln

�
t(1 + 1=�)

t=�

��
=

1

(1 + �)
�

proving the theorem.

2 System M jGj1 with retrials (repeated calls)
Consider an M jGj1 system with Poisson �ow of customers having intensity �0
and the following service discipline: a just arriving customer is immediately
served if the server is idle else the customer joins the queue and repeats its
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attempts with exponentially distributed time-intervals with parameter �1 until
success.
Assume that the vectors (�i; �i); i = 1; 2; ::: are iid and have components

which are equal, respectively, to the number of new customers arriving during
the service time of the respective customer and its service.
Suppose that initially there were n + 1 customers, one is marked and the

server is idle. The problem is to evaluate the waiting time of the marked cus-
tomer.
Under our assumptions for the time-interval �1;

P (�1 > t) = e�t(�1(n+1)+�0)

the server is idle then some of the customers comes to the service and is served
within the time-interval �1 and the server remains idle for the time-interval �2
whose distribution depends on the number of customers staying in the queue
just after the moment �1+ �1 so on. Let N be the number of customers served
BEFORE the marked one was taken to the service. In this case the waiting
time of the marked customer is

Vn = �1 + �1 + �2 + �2 + :::+ �N + �N + �N+1

while the total number Rn of unsuccessful calls of the marked customer until
success equals

Rn = r1 + r2 + :::+ rN + 1

where ri is the number of attempts to call by the marked customer between the
end of the services of the (i � 1)� th and i-th customers. Hence, as before,
we may assume that at the each, say, i�th customer, produces at the end of
the service a �nal product �i and the number of new customers arriving to the
system during the service time of the i-th customer is just �i. Suppose that
(�i; �i); i = 1; 2; ::: are iid and set

T ��n = �1 + �2 + :::+ �N :

Clearly,
Rn = T �rn + 1; Vn = T ��n + �1 + �2 + :::+ �N + �N+1:

2.0.1 The associated BP with immigration.

Now we construct an associated branching process with immigration. We have
two types of particles 0 and 1. The life-lengths of the particles of the respective
types are exponential with parameters

�0; �1:

Each particle, say D, produces at the end of her life (�D; �D) and, additionally,
a particle of the type 0 produces exactly one particle of type 0.
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Thus, in our previous setting this is a Markov process with immigration rate
�0 and the reproduction function

 �(s; �) = '�(s; �);  �(s; 0) = f(s)

(since in the case under consideration there is no di¤erence in the service times
of immigrants and aboriginal individuals).
Denote by �

0

1; �
0

2; ::: the splitting moments of the BPI and let the process
start by n + 1 particles of type 1 (with one of them marked) and 1 particle of
type 0.
Thus, we have interpretation - a particle of type zero - a customer from

outside, a particle of type 1 - a customer from the queue.
We follow the evolution of the queue at the moments �1; �1 + �1 + �2; �1 +

�1 + �2 + �2 + �3; :::
We record how many new customers come to the system, which customer

is served (from outside or from the queue) and what is the amount of the �nal
product it produces. Thus, the �nal product produced up to the service moment
of the marked customer coincides with the amount of the �nal product in the
BPI up to the splitting moment of the marked particle,

P (� � x) = 1� e��1x:

One can see that
�1

d
= �01; �2

d
= �02; :::

and using this relation check that the following statement is valid.

Theorem 3 the BPI and the queueing system can be speci�ed on a common
probability space in such a way that

T ��n = Z�1 (�) + :::+ Z
�
n (�) + Z

�
� (�) a.s.

and
�1 = �01; �2 = �02; :::a.s.

where � and the rv Z�i (t); i = 1; 2; :::; n are independent and P (� � x) = 1 �
e��1x and

Z�i (�)
d
= Z�(�)

and Z�� (t) is the �nal product produced in a BPI up to moment t which starts
by one individual of type zero at time 0.

Since

�1 + �2 + :::+ �N + �N+1
a:s:
= �01 + �

0
2 + :::+ �

0
N + �

0
N+1 = �

we get the following
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Corollary 4

Rn = r1 + r2 + :::+ rN + 1

= Zr1(�) + :::+ Z
r
n(�) + Z

r
�(�) + 1

= T �rn + 1

and

Vn = �1 + �1 + �2 + �2 + :::+ �N + �N + �N+1

= T ��n + �1 + �2 + :::+ �N + �N+1

= Z�1 (�) + :::+ Z
�
n (�) + Z

�
� (�) + � :

Now we recall that

� (t; s; �) = E
h
sZ(t)e��Z

�(t)j(Z(0); Z�(0)) = (1; 0)
i
;

� (t; �) = E
h
e��Z

�(t)j(Z(0); Z�(0)) = (1; 0)
i
;

and
�� (t; �) = E

h
e��Z

�(t)j immigration; Z(0) = 0
i
:

Then

Ee��T
��
n =

Z 1

0

e�t�n(t; �)�� (t; �) dt

where
@�(t; �)

@t
= �1 ('

�(� (t; �) ; �)� � (t; �))

� (0; �) = 1:

and

�� (t; �) = exp

�Z t

0

�0('
�(� (u; �) ; �)� 1)du

�
:

Let m = E� � 1: In the above situation we have as before (the proof is
omitted)

Theorem 5 As n!1
T��n

�1nE�

d! �

where the distribution function of � is

Fm(x) = 1� (1 +mx)�1=m ; 0 � x � xm;

where
xm = �

1

m
; m < 0; xm =1; m � 0;

and
F0(x) = 1� e�x:
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