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1 Limit theorems

Theorem 1 For subcritical case
h
f
0
(1) < 1

i
Q(t) = P(Z(t) > 0jZ(0) = 1) � Keat(1 + o(1)); K > 0;

with a = �(f
0
(1)� 1) = f (�)0(1) if and only if

E� log+ � =
1X
k=1

pkk log k <1

and

lim
n!1

P(Z(t) = kjZ(t) > 0) = P �k ;
1X
k=1

P �k = 1;

and

f�(s) =

1X
k=1

P �k s
k = 1� exp

�
a

Z s

0

du

f (�)(u)

�
= 1� exp

�
(f

0
(1)� 1)

Z s

0

du

f(u)� u

�
:

Proof. We have

@F (t; s)

@t
= �(f(F (t; s))� F (t; s)) = f (�)(F (t; s)); F (0; s) = s;

and

F �(t; s) = E
h
sZ(t)jZ(t) > 0

i
= 1� R(t; s)

Q(t)
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where R(t; s) = 1� F (t; s): Hence

t =

Z 1�s

R(t;s)

du

f (�)(1� u) =
Z 1

Q(t)

du

f (�)(1� u) :

One can show that under the conditions of the theoremZ s

0

du

f (�)(u)
=

Z Q(t)

R(t;s)

du

f (�)(1� u)

=
1

f (�)0(1)(1 + "(t; s))
ln
R(t; s)

Q(t)

with
"(t; s)! 0; t!1; uniformly in s 2 [0; 1]:

Hence

lim
t!1

R(t; s)

Q(t)
= exp

�
f (�)0(1)

Z s

0

du

f (�)(u)

�
= exp

�
(f

0
(1)� 1)

Z s

0

du

f(u)� u

�
:

Theorem 2 If a > 0; f 00(1) = 2B <1 then there exists a random variable W
such that, as t!1

Wt =
Z(n)

eat
!W a.s.

and 1)
lim
t!1

E (W �Wt)
2
= 0;

2)
EW = 1; V arW = �2=(A2 �A);

3)
P(W = 0) = q = P(Z(t) = 0 for some t):

Theorem 3 If f
0
(1) = 1; f"(1) = 2B <1 then

Q(t) � 1

�Bt
; t!1;

and

E

�
exp

�
��Z(t)

�Bt

�
jZ(t) > 0

�
! 1

1 + �
:

Proof. We have

t =

Z 1

Q(t)

du

f (�)(1� u) =
1

�

Z 1

Q(t)

du

Bu2(1 + o(1))

� 1

�B

1

Q(t)
; t!1:
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Hence
Q(t) � 1

�Bt
; t!1:

The rest of the proof follows the same line as in the case of Galton-Watson
processes.

2 Branching processes counted by random char-
acteristics (branching processes with �nal prod-
uct)

We consider continuous time Markov branching process with exponential life-
time distribution with parameter � and the reproduction function f(s).
Now we suppose that at the end of life any particle produces along with

random number � of children a �nal product � � 0 which is not changed later
on and denote by '�(s; �) the joint probability generating function of the vector
(�; �) speci�ed by

'�(s; �) = Es�e���:

� is called a random characteristics or the �nal product.
Examples. � = I f� = kg ; � = I f� � kg ; � = I fl� < xg and so on.
Let

Z�(t) =
X
A

�D

where the summation is taken over all particles D which died up to the moment
t:
We deduce integral and diferential equations for the probability generating

fucntion of the pair (Z(t); Z�(t)) assuming that the �nal product of a particle
IS INDEPENDENT of her life-length. We have by the totla probability formula
for

� (t; s; �) = E
h
sZ(t)e��Z

�(t)j(Z(0); Z�(0)) = (1; 0)
i

and G(t) = 1� e��t :

� (t; s; �) = s (1�G(t)) +
Z t

0

'�(� (t� u; s; �) ; �)dG(u):

Hence

@� (t; s; �)

@t
= � ('�(� (t; s; �) ; �)� � (t; s; �)) ; � (0; s; �) = s:

In particular, for

� (t; �) := E
h
e��Z

�(t)j(Z(0); Z�(0)) = (1; 0)
i
= �(t; 1; �)
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we get

� (t; �) = (1�G(t)) +
Z t

0

'�(� (t� u; �) ; �)dG(u) (1)

and
@�(t; �)

@t
= � ('�(� (t; �) ; �)� � (t; �))

with
� (0; �) = 1:

Thus, if
A�(t) = EZ�(t);

then denoting by l the lifelength of the initial particle we get from (1) by
di¤erentiating with respect to � and setting � = 0 :

A�(t) = E�

Z t

0

A�(t� u)dG(u) +
Z t

0

E[�jl = u]dG(u)

= (by independence of � of the lifelength)

= E�

Z t

0

A�(t� u)dG(u) +E�G(t)

or
d

dt
A�(t) = (E� � 1)A�(t) +E�; A�(0) = 0;

giving

A�(t) =
E�

E� � 1e
(E��1)t � E�

E� � 1
if E� 6= 1 and

A�(t) = tE�

if E� = 1:
Passing to the limit as t!1 we get for

� (�) = : Ee��Z
�(1) = lim

t!1
� (t; �)

= lim
t!1

E
h
e��Z

�(t)j(Z(0); Z�(0)) = (1; 0)
i

(since Z�(t) is nondecreasing this limit always exists) that

� (�) = '�(� (�) ; �):

This is a re�ection of the relation

Z�(t)
d
=
h
�0 + Z

�
1 (t� l0) + :::+ Z

�
� (t� l0)

i
I fl0 � tg

and, therefore,

Z�(1) d
= �0 + Z

�
1 (1) + :::+ Z

�
� (1):
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In particular, for the total number of particles born in the process (� = 1) we
get

'�(s; �) = Es�e��� = e��Es� = e��f(s)

and
� (�) = e��f(� (�)):

For instance, for the case

f(s) =
1

2� s (2)

we get
� (�) = 1�

p
1� e�� or (= 1�

p
1� s).

2.1 Branching processes and Queueng system with SIRO
(service in random order) discipline

System with one server and the in�nite capacity queue.
1) Standard application.
The service-time distribution is B(x): Initially there is 1 customer in the

queue and the server is idle (free). New customers arrive in accordance with
the Poisson �ow with intensity �. The problemis to �nd the distribution of the
length of the busy period.
We associate with the queueing system the following branching process.
The individuals in this process have exponential life-lenght with parameter

1 and each individal produces at the end of his life a random number of children
having the same distribution as the number of customers arriving during the
service time of the respective customer, and a random product (characteristics)

� = the service time.

Then denoting by l0 the lifelength of the initial individual (customer) in the
associated continuous time branching process we see that

Z�(t) =
h
�0 + Z

�
1 (t� l0) + :::+ Z

�
� (t� l0)

i
I fl0 � tg

and, therefore, pasing to the limit as t!1 we get

Z�(1) d
= �+ Z�1 (1) + :::+ Z

�
� (1):

In our case

'�(s; �) = Es�e��� =

Z 1

0

e��xE
�
s�j� = x

�
dB(x)

=

Z 1

0

e��xe��(1�s)xdB(x) = � (�+ �(1� s))

and
f(s) = Es� = '�(s; 1) = � (� (1� s))
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leading to

f 0(1) =
d� (� (1� s))

ds
js=1 = �

Z 1

0

xdB(x) = �El = E�:

In particular, for E� < 1

EZ�(1) = El

1� �El =
El

1�E� :

This shows that
� (�) = Ee��Z

�(1)

meets the equation
� (�) = � (�+ �(1� � (�))) :
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