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1 Limit theorems
Theorem 1 For subcritical case [f’(1) < 1}

Q1) =P(Z(t) >0/Z(0) =1) ~ Ke®(1 +0(1)), K >0,
with a = p(f (1) = 1) = f®(1) if and only if

E¢logt ¢ = Zpkklogk: < 00
k=1

and

lim P(Z(t) =k|Z(t) >0)=P;, Y Pi =1,
k=1

n—oo

and

f(s)

= 5 du
P*sk—lexp{a/ }
kz::l g o f)(u)

— eo{U 00 [ 5

= p(f(F(t,5)) = F(t,5)) = [P (F(t,s)), F(0,5)=s,

Proof. We have

OF(t; s)
ot

and
R(t, s)

Q)

F*(t,s) =E |[s?D|Z(t) >0 =1 -
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Theorem 2 Ifa >0, f"(1) =2B < co then there exists a random variable W
such that, ast — oo

Hence

Z(n)

W, = el W a.s.
ea
and 1)
Jlim B (W — W) = 0;
2)
EW =1, VarW = ¢%/(A? — A);
3)

PW =0)=q=P(Z(t) =0 for some t).

Theorem 3 If f (1) =1, f7(1) = 2B < oo then
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Hence

The rest of the proof follows the same line as in the case of Galton-Watson
processes.

2 Branching processes counted by random char-
acteristics (branching processes with final prod-
uct)

We consider continuous time Markov branching process with exponential life-
time distribution with parameter p and the reproduction function f(s).

Now we suppose that at the end of life any particle produces along with
random number ¢ of children a final product xy > 0 which is not changed later
on and denote by ¢X(s, A) the joint probability generating function of the vector

(&, x) specified by
©X(s,)\) = Este™ X,

x is called a random characteristics or the final product.
Examples. x =I{{ =k}, x=1{{>k},x =1{l¢ <z} and so on.

Let
Zx(t) = Z XD
A

where the summation is taken over all particles D which died up to the moment
t.

We deduce integral and diferential equations for the probability generating
fucntion of the pair (Z(t), ZX(t)) assuming that the final product of a particle
IS INDEPENDENT of her life-length. We have by the totla probability formula
for
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we get
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then denoting by [ the lifelength of the initial particle we get from (1) by
differentiating with respect to A and setting A =0:
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Passing to the limit as t — oo we get for
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This is a reflection of the relation
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and, therefore,
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In particular, for the total number of particles born in the process (y = 1) we
get
©X(s,\) = Este ™™ = ¢ Es® = e M f(s)

and
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For instance, for the case

we get
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2.1 Branching processes and Queueng system with SIRO
(service in random order) discipline

System with one server and the infinite capacity queue.

1) Standard application.

The service-time distribution is B(z). Initially there is 1 customer in the
queue and the server is idle (free). New customers arrive in accordance with
the Poisson flow with intensity A. The problemis to find the distribution of the
length of the busy period.

We associate with the queueing system the following branching process.

The individuals in this process have exponential life-lenght with parameter
1 and each individal produces at the end of his life a random number of children
having the same distribution as the number of customers arriving during the
service time of the respective customer, and a random product (characteristics)

x = the service time.

Then denoting by Iy the lifelength of the initial individual (customer) in the
associated continuous time branching process we see that
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and, therefore, pasing to the limit as t — oo we get
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In our case
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leading to
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In particular, for F€ < 1
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meets the equation
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