
BRANCHING PROCESSES AND THEIR
APPLICATIONS:

LECTURE 11: Branching processes with
immigration at zero; transient phenomena;
continuous time Markov branching processes

June 3, 2005

1 The Galton-Watson process with immigration
at zero:

f(s) = Es�; g(s) = Es� =
1X
k=1

P (� = k) sk:

We have
Y (n+ 1) = �

(n)
1 + :::+ �

(n)
Y (n) + �

(n)I fY (n) = 0g :

�
(n)
i

d
= �; �(n)

d
= � and iid.

If
�(n; s) = EsY (n)

then

�(n+ 1; s) = � (n; f(s))��(n; 0) + �(n; 0)g(s)
= � (n; f(s))� (1� g(s))�(n; 0)

= � (0; fn+1(s))�
nX
k=0

(1� g(fk(s))�(n� k; 0):

In particular, if Y (0) = 0 then

�(n+ 1; 0) = 1�
nX
k=0

(1� g(fk(0))�(n� k; 0):

If A < 1 and
g
0
(1) = b; g(0) > 0;
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then we have a stationary distribution for the process Y (n) as n!1.
Indeed, it is known that if a Markov chain is irreducible and nonperiodic

then either
1) for any pair of states p(n)ij ! 0; n ! 1; and, therefore, there exists no

stationary distribution;
or
2) all the states are ergodic, that is,

lim
n!1

p
(n)
ij = �j > 0

and in this case f�jg is a stationary distribution and no other stationary distri-
butions exists.
In our case take p(n)00 = �(n; 0) = P (Y (n) = 0) : Assuming that there is NO

stationary distribution we get by dominated convergence theorem a contradic-
tion:

lim
n!1

�(n+ 1; 0) = 0 = 1� lim
n!1

nX
k=0

(1� g(fk(0))�(n� k; 0) = 1

since the series

1X
k=0

(1� g(fk(0)) � b
1X
k=0

(1� fk(0)) � b
1X
k=0

Ak <1:

Thus, we have a stationary distribution

�(s) = EsY = lim
n!1

EsY (n)

where

�(s) = � (f(s))� �0 (1� g(s))

or

�(s) = 1� �0
1X
k=0

(1� g(fk (s))) :

From here

�0 = 1� �0
1X
k=0

(1� g(fk (0)))

leading to

�0 =
1

1 +
P1

k=0 (1� g(fk (0)))
:

Hence

�(s) = 1�
P1

k=0 (1� g(fk (s)))
1 +

P1
k=0 (1� g(fk (0)))

� 1� R(s)

1 +R(0)
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with

R(s) =
1X
k=0

(1� g(fk (s)))

Introduce the following classes of functions: K1 = K (b1; b2; 
1(y)) = fgg of
probability generating functions (PGF) speci�ed by b1; b2; 
1(y):

g(1� y) = 1� (b+ �1(y))y

where
0 < b1 � b � b2; sup

g2K1

j�1(y)j � 
1(y) = o(1); y ! 0;

and K2 = K2 (B3; B4; 
2(y)) = ffg of PGF speci�ed by B3; B4; 
2(y):

f(1� y) = 1�Ay + (B + �3(y))y2 +

= 1� Ay

1 + (BA�1 + �4(y))y

where

0 < B3 � B � B4; sup
f2K2

j�i(y)j � 
2(y) = o(1); y ! 0; i = 3; 4:

Let H be the class of immigration processes such that g 2 K1; f 2 K2:

Theorem 1 If fY (n)g 2 H then

lim
A%1

P

 
lnY

ln 1
1�A

� x
!
= x; x 2 (0; 1]:

Proof. It follows from the conditions of the theorem that for any " 2 (0; B2)
there exists � = �(") > 0 such that for all 0 < y < � and all fY (n)g 2 H

A (1� s)
1 +B(1 + ") (1� s) � 1� f(s) �

A (1� s)
1 +B(1� ") (1� s)

and
b (1� ") y � 1� g(1� y) � b (1 + ") y:

Let for " 2 (0; B2)

f�(s) = 1� A (1� s)
1 +B(1� ") (1� s)

and
f+n (s) = f

+(f+n�1(s)); f
�
n (s) = f

�(f�n�1(s)):

Since the functions are fractional-linear and the derivative of f+ and f� at point
s = 1 are less than 1 it is not di¢ cult to show that

f�n (s) = 1�
An(1� s)

1 +B(1� ")(1� s) 1�An

1�A
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and that the inequalities are preserved. Thus, for s su¢ ciently close to 1 we
have

1X
k=0

�
1� g(f+k (s))

�
� R(s) �

1X
k=0

�
1� g(f�k (s))

�
:

In particular, if M is such that fM (0) > 1� " then
1X

k=M

�
1� g(f+k (fM (0)))

�
� R(0) =

1X
k=0

(1� g(fk (0)))

=
M�1X
k=0

(1� g(fk (0))) +
1X
k=0

(1� g(fk (fM (0))))

�
M�1X
k=0

(1� g(fk (0))) +
1X
k=0

�
1� g(f�k (fM (0)))

�
�

M�1X
k=0

(1� g(fk (0))) +
1X
k=0

�
1� g(f�k (0))

�
and using the arguments to calculate integral in the previous section one can
show that

R(0) � � b
B
ln (1�A) ; A " 1: (1)

Now for x 2 (0; 1) let s = exp f�� (1�A)xg : Clearly,

1� s � � (1�A)x ; A " 1:

Select m = m(�;A;B) :

f�m(0) � exp f��(1�A)xg � f�m+1(0)

that is

�(1�A)x � Am

1 +B(1� ") 1�Am

1�A
or

�(1�A)xA�m � 1

1 +B(1� ") 1�Am

1�A
:

Observe, that under our choice of m we haveAm � 1 since assumingAm < c < 1
we would have as A " 1

�(1�A)x � Am(1�A)
B(1� ") (1�Am) �

c(1�A)
B(1� ") (1� c)

which is impossible for x < 1. This implies

�(1�A)x � 1

1 +B(1� ") 1�Am

1�A
: (2)
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Now

R(e��(1�A)
x

) �
1X
k=0

�
1� g(f�k

�
e��(1�A)

x

)
��

�
1X
k=0

�
1� g(f�k+m (0))

�
=

1X
k=m

�
1� g(f�k (0))

�
and we have calculated that

1X
k=m

�
1� g(f�k (0))

�
� b (1 + ") (1�A)

B(1� ") lnA ln
1 +B(1� ") 1

1�A

1 +B(1� ") 1�Am

1�A
(3)

or, in view of (2)

1X
k=m

�
1� g(f�k (0))

�
� b (1 + ") (1�A)

B(1� ") lnA ln

�
�(1�A)x

�
1 +B(1� ") 1

1�A

��
� b (1 + ")

B(1� ") ln
�
(1�A)x 1

1�A

�
=
(x� 1)b (1 + ")
B(1� ") ln (1�A) :(4)

Similarly, specifying m = m(�;A;B) :

f+m(0) � exp f��(1�A)xg � f+m+1(0)

one can show that
1X
k=m

�
1� g(f+k (0))

�
� � (x� 1)b (1� ")

B(1 + ")
ln (1�A) : (5)

Since " > 0 can be taken arbitrary small, it follows from (1), (4) and (5)
that

lim
A%1

�
�
e��(1�A)

x
�

= 1� lim
A%1

R(s)

1 +R(0)

= 1�
(x�1)b
B ln (1�A)

1� b
B ln (1�A)

= 1 + (x� 1) = x:

Hence
lim
A%1

Ee��Y (1�A)
x

= x:

Therefore,

lim
A%1

P (Y (1�A)x < 1) = lim
A%1

P (lnY + x ln(1�A) < 0) = x

or

lim
A%1

P

 
lnY

ln 1
1�A

< x

!
= x:
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1.1 Queueing systems with batch service

M [X]jGj1
�- the intensity of the input Poisson �ow. The customers arrive in batches

of random size. The size of the i�th group is �(i)

g(s) = Es� =
1X
k=1

P (� = k) sk:

The �rst customer ! to the server
�(1)- the number of customers coming during the service time of the first

customer.
�(2)- the number of customers coming during the service time of all �rst

�(1) customers.
�(j)- the number of customers coming during the service time of all �(j� 1)

customers.
If NO customers arrive during the service time of a group of customers then

we wait for the new batch and take all of them. We have

�(n+ 1) = �
(n)
1 + :::+ �

(n)
�(n) + �

(n)I f�(n) = 0g :

�
(n)
i

d
= �; and iid.

This is a BRANCHING PROCESS WITH IMMIGRATION AT ZERO. Clearly,

Es� =
1X
j=0

P (� = j) sj =
1X
k=0

Z 1

0

e��u
(�u)

k

k!
gk(s)dG(u)

=

Z 1

0

e��u(1�g(s))dG(u) = f(s):

Direct calculations show that

A = E� = f
0
(1) = �g

0
(1)

Z 1

0

udG(u) = �g
0
(1)m

where m is the expected service time of a customer. Hence we can apply the
previous theorem to study the queueing system under heavy tra¢ c when A =
�g

0
(1)m% 1:

2 Continuous time Markov processes

A stochastic process fZ(t; !); t � 0g on a probability space (
;F ;P) is called
a continuous time Markov branching process if
1) the state-space - nonnegative integers;
2) stationary Markov Chain with respect to the �-algebra Ft = � fZ(s; !); s � tg ;
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3) for all t � 0; i = 0; 1; 2; ::: and jsj � 1 the following branching property is
valid:

1X
j=0

Pij(t)s
j =

0@ 1X
j=0

P1j(t)s
j

1Ai

= (F (t; s))
i
:

2.1 Construction

Pij (� ; � + t) = P fZ(� + t) = jjZ(�) = ig = Pij (t) :
Now probabilistic interpretation: if there are i particles at some moment

then each of them has exponential remaining life-length with parameter, say, �,
and then dies producing children in accordance with the pgf

f(s) =
1X
k=0

P(� = k)sk =
1X
k=0

pks
k; 0 � s � 1;

independently of other individuals.
Thus, for j � i� 1; i 6= j

Pij(�t) = �ipj�i+1�t+ o(�t);

Pii(�t) = 1� �i�t+ o(�t);
Pij(�t) = o(�t); j < i� 1:

From here one can deduce the forward

d

dt
Pij(t) = �j�Pij(t) + �

j+1X
k=1

kPik(t)pj�k+1

and backward Kolmogorov equations

d

dt
Pij(t) = �i�Pij(t) + i�

1X
k=i�1

pk�i+1Pkj(t):

with boundary
Pij(+0) = �ij :

From here for f (�)(s) = �(f(s)� s) and i = 1 we have for

F (t; s) = E
h
sZ(t)jZ(0) = 1

i
the following equations

@F (t; s)

@t
= f (�) (s)

@F (t; s)

@s
; F (0; s) = s;

and

@F (t; s)

@t
= ��

1X
j=0

P1j(t)s
j + �

1X
j=0

sj
1X
k=0

pkPkj(t)

= �(f(F (t; s))� F (t; s)) = f (�)(F (t; s));
F (0; s) = s: (6)
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2.2 Classi�cation

Let

A(t) = EZ(t):

Then
@

@s

@F (t; s)

@t
= f (�)0(F (t; s))

@F (t; s)

@s

or, setting s = 1
dA(t)

dt
= �(f

0
(1)� 1)A(t); A(0) = 1:

Solving this equation we get

A(t) = eat; a = �(f
0
(1)� 1):

A continuous time Markov branching process is called supercritical, critical,
subcritical if, respectively f

0
(1) > 1;= 1; < 1:

Example 1. Let

f (�)(s) = a(s� 1) + �(1� s)1+�; 0 < � < 1; � > max fa; 0g :

Then the respective probability generating function F (t; s) solves the equation

@F (t; s)

@t
= a(F (t; s)� 1) + �(1� F (t; s))1+�; F (0; s) = s:

Set
v =

1

1� F :

Then
dv

dt
= ��av + ��; v = 1

1� s :

Hence

F (t; s) = 1�
�
�

a

�
1� e��at

�
+ e��at(1� s)��

��1=�
; a 6= 0;

and
F (t; s) = 1�

�
��t+ (1� s)��

��1=�
; a = 0:

Example 2. Let

f (�)(s) = a (s� 1� (1� s)�) ; 0 < � < 1; a > 0:

Then
@F (t; s)

@t
= a(F (t; s)� 1� (1� F (t; s))�); F (0; s) = s:
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Set
v = (1� F )1�� :

Then we get a linear equation whose solution is

F (t; s) = 1�
h
1� e�a(1��)t + e�a(1��)t(1� s)1��

i 1
1��

:

Observe that

F (t; 1) = lim
s"1
F (t; s) = 1�

h
1� e�a(1��)t

i 1
1��

< 1:

Thus, in this case we have the so-called explosion phenomena:

F (t; 1) =
1X
k=0

P(Z(t) = k) = P(Z(t) <1)

and 1 � F (t; 1) = 1 � P(Z(t) < 1) = P(Z(t) = 1) > 0 showing that within
any �nite time interval the number of individuals in the population becomes
in�nite with a positive probability!

2.2.1 Criterion

A Markov process does not explode if and only if for any " 2 (0; 1)Z 1

1�"

du

1� f(u) =1:

We prove the criterion in a more general situation later on.
Theorem. If f

0
(1) <1 then the equation

@F (t; s)

@t
= �(f(F (t; s))� F (t; s)) = f (�)(F (t; s)); F (0; s) = s

has a unique solution in the class of functions F (t; s) with F (t; 1) = 1.
Proof. Let G(t) = 1� e��t: Then

F (t; s) = s (1�G(t)) +
Z t

0

f(F (t� u; s))dG(u):

If there are two solutions F1(t; s) and F2(t; s) then

jF1(t; s)� F2(t; s)j �
Z t

0

jf(F1(t� u; s))� f(F2(t� u; s))jdG(u)

� f
0
(1)

Z t

0

jF1(t� u; s)� F2(t� u; s)jdG(u)

� f
0
(1)G(t) sup

0�v�t
jF1(v; s)� F2(v; s)j:
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If t0 > 0 is such that f
0
(1)G(t0) < 1 then

sup
0�v�t0

jF1(v; s)� F2(v; s)j � f
0
(1)G(t0) sup

0�v�t0
jF1(v; s)� F2(v; s)j:

Hence
F1(t; s) = F2(t; s); 0 � t � t0:

Again

jF1(t; s)� F2(t; s)j �
Z t

0

jf(F1(t� u; s))� f(F2(t� u; s))jdG(u)

=

Z t�t0

0

jf(F1(t� u; s))� f(F2(t� u; s))jdG(u)

� f
0
(1)

Z t�t0

0

jF1(t� u; s)� F2(t� u; s)jdG(u)

� f
0
(1)G(t� t0) sup

0�v�t�t0
jF1(t0 + v; s)� F2(t0 + v; s)j

if t� t0 � t0 and this is for all jsj � 1:
One can check that

lim
t!1

F (t; s) = f( lim
t!1

F (t; s))

Hence all the properties related with the extinction of the Markov continuous
time processes are similar to those for the Galton-Watson processes.
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