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1 The Galton-Watson process with immigration
at zero:

f(s) =Es®, g(s) = Es" = ZP(U =k) s
k=1

We have
Y(n+1) =" +.. + €0, +n"WI{Y(n) =0}.
¢ L pm Ly and iid.
If
(n,s) = BEs¥ ™
then
(n+1,5) = T(n f(s)) —I(n,0) +T(n,0)g(s)

= I(n, f(s)) = (1 = g(s))I(n, 0)

n

= T1(0, far1(s)) = D (1= g(fx(s))I(n — k,0).

k=0
In particular, if Y(0) = 0 then

n

I(n+1,0)=1- Z(l = 9(fr(0))IL(n — k,0).

If A<1and



then we have a stationary distribution for the process Y (n) as n — oo.

Indeed, it is known that if a Markov chain is irreducible and nonperiodic
then either

1) for any pair of states pz(;)
stationary distribution;

or

2) all the states are ergodic, that is,

— 0,n — oo, and, therefore, there exists no

lim p,@)

n—oo v

:7Tj>0

and in this case {m;} is a stationary distribution and no other stationary distri-
butions exists.

In our case take p(()g) =T1I(n,0) = P (Y (n) = 0). Assuming that there is NO
stationary distribution we get by dominated convergence theorem a contradic-
tion:

n

lim (n+1,0)=0=1— lim_ > (1= g(fu(O)II(n — k,0) =1

n—oo

k=0
since the series
> (1—g(fu(0) <Y (1= fi(0)) <) A <oo.
k=0 k=0 k=0

Thus, we have a stationary distribution

II(s) = Es' = lim Es¥™

where
I (s) =1L (f(s)) —mo (1 —g(s))
M(s)=1=m0 Y (1—g(f(s))-
k=0
From here -
mo=1—m»_ (1—g(fx(0)))
k=0
leading to .
TS (=g (0)
Hence
Yo —g(fk(5)) _ . R(s)
1 = S =g )~ T4 RO)



with

[e.°]

R(s) =Y (1—g(fr(s))

k=0

Introduce the following classes of functions: Ky = K (b1, b2,7,(y)) = {g} of
probability generating functions (PGF) specified by by, ba, v, (v):

gl—y)=1-(b+a1(y))y

where
0<br <b<by, sup a1(y)| <71(y) =o(1),y =0,
geEK,
and Ky = K3 (B3, Bs,72(y)) = {f} of PGF specified by B3, Bs,75(y):
fl—y) = 1-Ay+ (B+as()y’+

_ 1- Ay
B 1+ (BA™ 4+ au(y))y

where

0 < B3 < B< By, sup |ai(y)| <v2(y) =o(1),y — 0, i =3,4.
fEK,

Let H be the class of immigration processes such that g € K1, f € K.

Theorem 1 If {Y(n)} € H then

InY
limP< nl <x>:x, x € (0,1].

A1 lnm

Proof. It follows from the conditions of the theorem that for any e € (0, Bs)
there exists 6 = d(¢) > 0 such that for all 0 <y < and all {Y(n)} € H

A(l-ys) A(l—s)
sy R A wry T gy

and
b(l—e)y<l—g(l—y)<b(l+e)y.
Let for € € (0, Ba)
A(l—s)
1+B(1+e)(1—9)

[Hs) =1~

and

f () = fH(fasi(s) fa (8) = f(Fria(s))-
Since the functions are fractional-linear and the derivative of f* and f~ at point
s = 1 are less than 1 it is not difficult to show that

A™(1—s)

1+ B(lte)(1—s)tAr

fals)=1




and that the inequalities are preserved. Thus, for s sufficiently close to 1 we
have

(o]

S (00 () £ 7DD (- g0 ().

k=0

In particular, if M is such that fa;(0) > 1 — ¢ then

> (=gl (fu(0) < R(0)=>"(1-g(f(0)))
k=M k=0
M—-1 00
= > (1=g(fe () + > (1= g(fi (f1(0)))
k=0 k=0
M—-1 00
< D =gk 0) + > (1—g(fy (£1(0))
k=0 k=0
>

= (L= g(fu O))+ )y (1—g(fi (0)))

=~
I
<
-
I
=

and using the arguments to calculate integral in the previous section one can

show that b
R(O)N—Eln(l—A), ATl (1)

Now for z € (0,1) let s = exp{—X(1— A)"} . Clearly,
- s~A(L—A)", A1L
Select m = m(\, A, B) :
fm(0) < exp{=A(1—=A)"} < f,,,.1(0)
that is

Am

1+ B(1—e)FAr

AL — A) ~

or

1
1+ B(1—e)Ar"

A1 = A)TA™™ ~

Observe, that under our choice of m we have A™ ~ 1 since assuming A™ < ¢ < 1
we would have as A T 1

AmA-4) - A)

AL = A)" ~ B(l—e)(1—Am) = Bl—¢)(1—c)

which is impossible for < 1. This implies

AL — A)®

~Y . 2
1+ B(1—e)Ar 2)



Now

R < 3 (1- gy (07
5 (-t (20
= Z ( fk+m Z )
k=0 k=m
and we have calculated that
> , b(1+e)(1—A4) 1+B(l-e)i5
kg Aol )= "5 gma "irpa-air @

or, in view of (2)

Yo (1—g(fi () < Wln (Ml -4 (1+B<1 —Eh_lA))

k=m

b(l+¢) . 1 _(z—=1)b(14¢)
~ B(ls)ln((l_A)1A>_ Ba—o -4

Similarly, specifying m = m(\, A, B) :
f(0) < exp{-A(1—A)*} < fr,(0)

one can show that

(1=t ) = -5 T ma - ), 6

k=m

Since € > 0 can be taken arbitrary small, it follows from (1), (4) and (5)
that

. —A(l—A)l') _ . R(s)
Anl (e L= T RO
(z—1)b l)b
- In(l-4) 1+ (z-1)=z
In(1-A4)
Hence
lim Ee AY0-4" = 4.
A1
Therefore,

Iélll;an(Y(l A <1) = /lll;an(lnY—i—xln(l —A)<0)=x

or




1.1  Queueing systems with batch service

MGl
A- the intensity of the input Poisson flow. The customers arrive in batches
of random size. The size of the i—th group is 7"

g(s) = Es" = ZP (n = k) s
k=1

The first customer — to the server

v(1)- the number of customers coming during the service time of the first
customer.

v(2)- the number of customers coming during the service time of all first
v(1) customers.

v(j)- the number of customers coming during the service time of all v(j — 1)
customers.

If NO customers arrive during the service time of a group of customers then
we wait for the new batch and take all of them. We have

v(n+1) =& + ..+ 50 + 1™ {v(n) = 0}

¢ L ¢ and iid.
This is a BRANCHING PROCESS WITH IMMIGRATION AT ZERO. Clearly,

o0 00 u k
> [ et @aow)

k=0

Es¢

Y PE=))s =
j=0

_ /OO e,Au(lfg(S))dG(u) = f(S)

0

Direct calculations show that
A== (1) =29 (1) [ udGlu) = Ag'(1)m
0

where m is the expected service time of a customer. Hence we can apply the
previous theorem to study the queueing system under heavy traffic when A =

Ag' (L)ym /1.

2 Continuous time Markov processes

A stochastic process {Z(t,w),t > 0} on a probability space (2, F,P) is called
a continuous time Markov branching process if
1) the state-space - nonnegative integers;
2) stationary Markov Chain with respect to the o-algebra F; = 0 {Z(s,w), s < t};



3) for all t > 0,7 =0,1,2,... and |s| < 1 the following branching property is

valid: )

Yo Pit)s = | Y Pyt)s’ | = (F(ts).
j=0 j=0

2.1 Construction

Py (r,7r+t)=P{Z(r+1t)=jlZ(r) =1} = P;; (t).
Now probabilistic interpretation: if there are i particles at some moment

then each of them has exponential remaining life-length with parameter, say, p,
and then dies producing children in accordance with the pgf

f5) =Y PE=k)s" =) psh0<s<1,
k=0 k=0
independently of other individuals.
Thus, for j >i—1,i#j
Pij (At) = p’ipj_i+1At -+ O(At),
P”(At) = O(At), j<i—1.

From here one can deduce the forward

d . -
pTR (t) = —jpPi;(t) + PZ kP (t)pj—k+1
k=1

and backward Kolmogorov equations

d

aﬂj(t) = —ipP;;(t) +ip Z Pr—iv1Prj(t).

k=i—1
with boundary
Pij(+0) = 4.
From here for f()(s) = p(f(s) — s) and i = 1 we have for
F@Q:Emeﬂmzl

the following equations

OF(t;s) — .(p OF(t; s) B
OS] _ o0 () 2AE2) g ) =,
and
8F§;; Ja. —pY Py(t)s’ +pY 57y piPi(t)
j=0 j=0 k=0
= p(f(F(t.s) — F(ts)) = f(p)(F(t7 s)),
F(0,s) = s (6)



2.2 Classification

Let
A(t) = EZ(t).
;S / i
o o) FPNE(,s)) o5
or, setting s =1
dA ¢
PO o (1)~ AW, A0) =1

Solving this equation we get

/

A(t) = e™,a = p(f (1) - 1).

A continuous time Markov branching process is called supercritical, critical,
subcritical if, respectively f (1) > 1,=1,< 1.
Example 1. Let

fP>s)=a(s—1)+ A1 -5 0<a<1,\A>max{a,0}.

Then the respective probability generating function F'(¢;s) solves the equation

OF(t;
6(9{ ) _ a(F(t;s) — 1) + A(1 = F(t;5))'"*, F(0,5) = .
Set
_
b
Then
d—v——aav—i—)\a v = !
dt R
Hence
\ -1/
F(t7 S) = ]‘ | (1 - e_aat) + e_aat(l - S)_a > @ # 07
a
and 1
Flt;s) =1 [oAt+(1-5)7*] /" a=0.

Example 2. Let
fPs)=a(s—1—(1-5)),0<a<1,a>0.
Then

OF (t; 8)
ot

=a(F(t;s) —1—(1—F(t;9)%), F(0,s) =s.



Set
v=(1-F)'"".

Then we get a linear equation whose solution is

1

F(t,s)=1— |1 —e a1t 4 gma(l-a)t(y _ s)l,a] =
Observe that
(1) = lim F(ts) = 1 - [1—emot=] ™7 <y

Thus, in this case we have the so-called explosion phenomena:

F(t,1) = ip(za) = k) = P(Z(t) < o)
k=0

and 1 — F(t;1) =1 -P(Z(t) < o0) = P(Z(t) = 00) > 0 showing that within
any finite time interval the number of individuals in the population becomes
infinite with a positive probability!

2.2.1 Criterion

A Markov process does not explode if and only if for any ¢ € (0,1)

/1 v _
l—al_f(u)_ .

We prove the criterion in a more general situation later on.
Theorem. If f (1) < co then the equation
OF (t; s)
ot

= p(f(F(t ) = F(t,s)) = [P (F(t,s)), F(0,5) = 5

has a unique solution in the class of functions F(¢, s) with F(¢,1) = 1.
Proof. Let G(t) =1 — e *'. Then

F(t,s) =s(1—-G(¢)) Jr/o fF(t —u,s))dG(u).

If there are two solutions Fj(t, s) and Fy(t, s) then

t

|Fi(t,s) — Fa(t,s)] < ; |f(F1(t —u,s)) = f(Fa(t — u,s))|dG(u)
< f’(l)/ |Fy(t — u,s) — Fa(t — u, s)|dG(u)
0
< f(DG(t) sup |Fi(v,s) — Fa(v, ).

0<v<t



If to > 0 is such that f'(1)G(to) < 1 then

sup |Fy(v,5) — Fa(v,5)| < £ ()Glto) sup |Fi(v,s) — Fa(v,s)].

0<v<to 0<v<tgy

Hence
Fl(t,S) = Fz(t,s), 0 S t § to.

Again
Fi(ts) - Bo(t,s)] < / R —u8)) — F(Fa(t — u, 5))|dG ()
- / I (F (= 8) — F(Fa(t — u, 5))|dC(u)

< f’<1>/0 IR - u,s) — Byt - u,5)|dG ()

< fG(t—ty) sup |Fi(to+v,s)— Falto+v,s)|
0<v<t—to

if t — t9 < to and this is for all |s| < 1.
One can check that

lim F(t’ 5) = f(tli{?OF(ta 5))

t—o0

Hence all the properties related with the extinction of the Markov continuous
time processes are similar to those for the Galton-Watson processes.

10



