BRANCHING PROCESSES AND THEIR APPLICATIONS:

LECTURE 1: Classification of Galton-Watson processes

V.A.Vatutin
Department of Discrete Mathematics
Steklov Mathematical Institute
Gubkin street, 8
119991 Moscow
RUSSIA

e-mail: vatutin@mi.ras.ru

April 16, 2005

0.1 Basic Notions

Historical introduction.

Malthus: Essay on the Principle of Population: 379 out of 487 bourgeois families in the city Berne died out between 1583 and 1783 and 379/487 approx. 0.75 (!)

Definition. A Galton-Watson process is a Markov chain $\{Z(n), n = 0, 1, 2, ...\}$ on nonnegative integers. Its transition function is specified by a probability law $\{p_k, k = 0, 1, ...\}, p_k \ge 0, \sum p_k = 1$ with

$$P_{ij} = P\{Z(n+1) = j | Z(n) = i\} = \begin{cases} p_j^{*i} & \text{if } i \ge 1, j \ge 0\\ \delta_{0j} & \text{if } i = 0, j \ge 0. \end{cases}$$

where

$$p_j^{*i} = \sum_{j_1 + \dots + j_i = j} p_{j_1} p_{j_2} \dots p_{j_i}.$$

Generating functions.

It is usually denoted by f and is viewed as a function of a real variable $s \in [0,1]$:

$$f(s) = \mathbb{E}[s^{\xi}] = \sum_{k=0}^{\infty} \mathbb{P}(\xi = k) s^k = \sum_{k=0}^{\infty} p_k s^k, 0 \le s \le 1, \tag{1}$$

in terms of a random variable ξ giving the offspring of an individual, or in terms of its distribution p_0, p_1, p_2, \ldots For geometric offspring size distribution we have

$$f(s) = \sum_{k=0}^{\infty} q p^k s^k = \frac{q}{1 - ps}.$$

It is not difficult to understand that

$$Z(n+1) = \xi_1^{(n)} + \dots + \xi_{Z(n)}^{(n)},$$

where $\xi_i^{(n)} \stackrel{d}{=} \xi$ are iid. Iterations

$$f_0(s) = s, f_{n+1}(s) = f_n(f(s)).$$

Example $f(s) = q + ps^2$.

In particular, given Z(0) = 1

$$F(n+1,s) : = Es^{Z(n+1)} = E\left[E\left[s^{Z(n+1)}|Z(n)\right]\right] = E\left[E\left[s^{\xi_1^{(n)}+...+\xi_{Z(n)}^{(n)}}\right]Z(n)\right]$$
$$= E\left(Es^{\xi}\right)^{Z(n)} = F(n,f(s)) = ... = f_{n+1}(s).$$

The space of elementary events.

Initial particle has label (0), its i-th offspring by (i) the individuals of the n-th generation by

$$(0i_1i_2...i_n).$$

History of a family

$$\omega = (\xi_0, \xi_{01}, \xi_{02}, \dots)$$

and this is our space of elementary events Ω .

The tree of the family: $(0), (01), ..., (0\xi_0), ..., (011), (012), ..., (021), ...$

is a PLANE ROOTED TREE.

For each $\omega \in \Omega$ we define $I_0(\omega), I_1(\omega), ..., I_n(\omega), ...$ where $I_n(\omega)$ is the set of particles constituting n-th generation.

The generation $I_0(\omega) = \{(0)\}, I_1(\omega) = \{(01), ..., (0\xi_0)\}$, and $I_n(\omega)$ consists of all the sequences $(0i_1...i_n)$ such that $(0i_1...i_{n-1}) \in I_{n-1}(\omega)$ and $\xi_{0i_1...i_{n-1}}(\omega) \geq i_n$

Probability measure P: on cylindric sets of Ω using

$$P\left(\xi_{0i_1...i_n} = k\right) = p_k.$$

and

$$P\left((\xi_0, \xi_{01}, \xi_{02}, ..., \xi_{0i_1...i_n}) = k_0, k_{01}, k_{02}, ..., k_{0i_1...i_n}\right)$$

$$= p_{k_0} p_{k_{01}} \cdots p_{k_{0i_1...i_n}}.$$

Probability space (Ω, \mathcal{F}, P) can be constructed in an obvious way.

0.2 Classification

$$A = E\xi = EZ(1) = f'(1).$$

The process is called subcritical if A < 1, critical, if A = 1 and supercritical, if A > 1.

The expacted number of individuals and the second factorial moment for the number of particles at the n-th generation can be calculated by

$$EZ(n) = \left(Es^{Z(n)}\right)'|_{s=1} = \left(f_n(s)\right)'|_{s=1}$$

$$= f'(f_{n-1}(s))\left(f_{n-1}(s)\right)'|_{s=1}$$

$$= \prod_{k=0}^{n-1} f'(f_k(s))|_{s=1} = \left(f'(1)\right)^n = A^n$$

and

$$f_n''(s) = f'(f_{n-1}(s))f_{n-1}''(s) + f''(f_{n-1}(s))(f'(f_{n-1}(s)))^2,$$
(2)

giving

$$\mathbb{E}[Z(n)(Z(n)-1)] = A\mathbb{E}[Z(n-1)(Z(n-1)-1)] + f''(1)A^{2(n-1)}.$$

Hence, given Z(0) = 1

$$\mathbb{E}[Z(n)(Z(n)-1)] = \sum_{k=1}^{n} f''(1)A^{2(n-k)}A^{k-1}$$
$$= f''(1)A^{n-1}\sum_{k=1}^{n} A^{n-k}$$

Simplifying this we get

$$\mathbb{E}[Z(n)(Z(n)-1)] = f''(1)\frac{A^{n-1}(A^n-1)}{A-1},$$

if $A \neq 1$ and $\mathbb{E}[Z(n)(Z(n)-1)] = f''(1)n$ in the critical case. Consequently for $A \neq 1$,

$$\mathbb{E}[Z^2(n)] = f''(1)\frac{A^{n-1}(A^n - 1)}{A - 1} + A^n.$$
(3)

$$Var[Z(n)] = f''(1)\frac{A^{n-1}(A^n - 1)}{A - 1} + A^n - A^{2n}.$$
 (4)

But since $\sigma^2 = Var[\xi] = f''(1) - A(A-1)$ with Z(0) = 1 it follows that

$$Var[Z(n)] = \begin{cases} \sigma^2 \frac{A^{n-1}(A^n - 1)}{A - 1} & if \ A \neq 1, \\ \sigma^2 n & if \ A = 1. \end{cases}$$
 (5)

Coefficient CV of variation of a population is defined as

$$CV = \frac{\sqrt{Var[Z(n)]}}{EZ(n)}.$$

For supercritical populations

$$CV = \frac{\sigma}{\sqrt{A(A-1)}} \sqrt{1 - A^{-n}} \approx \frac{\sqrt{Var[Z(1)]}}{EZ(1)}$$

for large A and stabilizes quickly.

Calculation of iterations for the pure geometric reproduction law

$$f(s) = \sum_{k=0}^{\infty} q p^k s^k = \frac{q}{1 - ps}.$$

Clearly, f'(1) = A = p/q. Further we have

$$1 - f(s) = \frac{p(1-s)}{1-ps}$$

and

$$\frac{1}{1 - f(s)} - \frac{1}{A(1 - s)}$$

$$= \frac{1 - ps}{p(1 - s)} - \frac{q}{p(1 - s)} = 1.$$

Thus,

$$\frac{1}{1 - f_n(s)} - \frac{1}{A(1 - f_{n-1}(s))} = \frac{1}{1 - f(f_{n-1}(s))} - \frac{1}{A(1 - f_{n-1}(s))} = 1$$

or

$$\frac{1}{1 - f_n(s)} = 1 + \frac{1}{A(1 - f_{n-1}(s))} = 1 + \frac{1}{A} + \frac{1}{A^2(1 - f_{n-2}(s))} = \dots$$

The end of this is a simple closed form,

$$\frac{1}{1 - f_n(s)} = 1 + (1/A) + (1/A)^2 + \dots + (1/A)^{n-1} + 1/A^n(1 - s)$$

$$= \begin{cases} \frac{A^n - 1}{A^{n-1}(A-1)} + \frac{1}{A^n(1-s)} & \text{if } A \neq 1 \\ n + \frac{1}{1-s} & \text{if } A = 1. \end{cases}$$

Therefore, if $A \neq 1$ then

$$1 - f_n(s) = \frac{A^n(A-1)(1-s)}{A(A^n-1)(1-s) + A - 1}.$$
 (6)

and if A = 1 then

$$1 - f_n(s) = \frac{1}{n + (1 - s)^{-1}}.$$

Survival probability: if $A = p/q \neq 1$ then

$$P(Z(n) > 0) = 1 - f_n(0)$$

$$= \frac{A^n(A-1)}{A(A^n-1) + A - 1} = \frac{A^{n+1}(1-1/A)}{A^{n+1} - 1}$$

$$= \frac{\left(\frac{p}{q}\right)^n (1 - \frac{p}{q})}{1 - \left(\frac{p}{q}\right)^{n+1}},$$

if A = 1 then

$$P(Z(n) > 0) = \frac{1}{n+1}.$$

In particular, if A > 1 then

$$\lim_{n \to \infty} P(Z(n) > 0) = \lim_{n \to \infty} \frac{A^{n+1}(1 - 1/A)}{A^{n+1} - 1}$$
$$= 1 - \frac{1}{A}.$$