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We consider the problem of recovering items matching a partially spec-
ified pattern in multidimensional trees (quadtrees and k-d trees). We as-
sume the traditional model where the data consist of independent and uni-
form points in the unit square. For this model, in a structure on n points,
it is known that the number of nodes Cn(ξ) to visit in order to report the
items matching a random query ξ , independent and uniformly distributed on
[0,1], satisfies E[Cn(ξ)] ∼ κnβ , where κ and β are explicit constants. We
develop an approach based on the analysis of the cost Cn(s) of any fixed
query s ∈ [0,1], and give precise estimates for the variance and limit dis-
tribution of the cost Cn(x). Our results permit us to describe a limit pro-
cess for the costs Cn(x) as x varies in [0,1]; one of the consequences is
that E[maxx∈[0,1] Cn(x)] ∼ γ nβ ; this settles a question of Devroye [Pers.
Comm., 2000].

1. Introduction. Geometric databases arise in a number of contexts such as
computer graphics, management of geographical data or statistical analysis. The
aim consists in retrieving the data matching specified patterns efficiently. We are
interested in tree-like data structures which permit such efficient searches. When
the pattern specifies precisely all the data fields (we are looking for an exact
match), the query can generally be answered in time logarithmic in the size of
the database, and many precise analyses are available in this case, see, for exam-
ple, [17, 18, 20, 24, 25]. When the pattern only constrains some of the data fields
(we are looking for a partial match), the searches must explore multiple branches
of the data structure to report the matching data, and the cost usually becomes
polynomial.

The first investigations about partial match queries by Rivest [34] were based on
digital data structures (based on bit-comparisons). In a comparison-based setting,
where the data may be compared directly at unit cost, a few general purpose data
structures generalizing binary search trees permit to answer partial match queries,
namely the quadtree [15], the k-d tree [1] and the relaxed k-d tree [10]. Besides
the interest that one might have in partial match for its own sake, there are various
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reasons that justify the precise quantification of the cost of such general search
queries in comparison-based data structures. First, these multidimensional trees
are data structures of choice for applications that range from collision detection
in motion planning to mesh generation [22, 41]. Furthermore, the cost of partial
match queries also appears in (hence influences) the complexity of a number of
other geometrical search questions such as range search [12] or rank selection [11].
For general references on multidimensional data structures and more details about
their various applications, see the series of monographs by Samet [38–40].

In this paper, we provide refined analyses of the costs of partial match queries
in some of the most important two dimensional data structures. We mostly focus
on quadtrees. We extend our results to the case of k-d trees in Section 7. Similar
results also hold for relaxed k-d trees of Duch, Estivill-Castro, and Martínez [10].
However, even stating them carefully would require much space without shedding
anymore light on the phenomena, and we leave the straightforward modifications
to the interested reader.

QUADTREES AND MULTIDIMENSIONAL SEARCH. The quadtree [15] allows to
manage multidimensional data by extending the divide-and-conquer approach of
the binary search tree. Consider the point sequence p1,p2, . . . , pn ∈ [0,1]2. As
we build the tree, regions of the unit square are associated to the nodes where the
points are stored. Initially, the root is associated with the region [0,1]2, and the
data structure is empty. The first point p1 is stored at the root, and divides the unit
square into four regions, Q1, . . . ,Q4. Each region is assigned to a child of the
root. More generally, when i points have already been inserted, we have a set of
1 + 3i (lower-level) regions that cover the unit square. The point pi+1 is stored in
the node (say u) that corresponds to the region it falls in, and divides it into four
new regions that are assigned to the children of u. See Figure 1.

FIG. 1. An example of a (point) quadtree: on the left the partition of the unit square induced by the
tree data structure on the right (the children are ordered according to the numbering of the regions
on the left). Answering the partial match query materialized by the dashed line on the left requires
one to visit the colored nodes. Note that each one of the visited nodes correspond to a horizontal line
that is crossed by the query.
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ANALYSIS OF PARTIAL MATCH RETRIEVAL. For the analysis, we will focus
on the model of random quadtrees, where the data points are independent and
uniformly distributed in the unit square. In the present case, the data are just points
and the problem of partial match retrieval consists in reporting all the data with
one of the coordinates (say the first) being s ∈ [0,1]. It is a simple observation that
the number of nodes of the tree visited when performing the search is precisely
Cn(s), the number of regions in the quadtree that intersect a vertical line at s.
The first analysis of partial match in quadtrees is due to Flajolet et al. [16] (after
the pioneering work of Flajolet and Puech [19] in the case of k-d trees). They
studied the singularities of a differential system for the generating functions of
partial match cost to prove that, for a random query ξ , being independent of the
tree and uniformly distributed on [0,1], one has E[Cn(ξ)] ∼ κnβ where

κ = �(2β + 2)

2�(β + 1)3 and β =
√

17 − 3

2
,(1)

and �(x) denotes the Gamma function �(x) = ∫ ∞
0 tx−1e−t dt . Flajolet et al. [16]

actually proved a more precise version of this estimate which will be crucial for
us,

E
[
Cn(ξ)

] = κnβ − 1 + O
(
nβ−1)

.(2)

(This may also be obtained from the explicit expression for E[Cn(ξ)] devised by
Chern and Hwang [4].)

Our aim in this paper is to gain a refined understanding of the cost beyond the
level of expectations. In order to quantify the order of typical deviations from the
mean, we study the order of the variance together with limit distributions. How-
ever, deriving higher moments turns out to be subtle. In particular, when the query
line is random (like above) although the four subtrees at the root are independent
given their sizes, the contributions of the two subtrees that do hit the query line are
dependent. Indeed, the relative location of the query line inside these two subtrees
is again uniform, but unfortunately it is same in both regions. Hence, one cannot
easily setup recurrence relations and perform an asymptotic analysis exploiting
independence. This issue has not yet been addressed appropriately, and there is
currently no result on the variance or higher moments for Cn(ξ).

Another issue lies in the definition of the cost measure itself: even if the data
follow some distribution, should one assume that the query follows the same dis-
tribution? In other words, should we focus on Cn(ξ)? Maybe not. But then, what
distribution should one use for the query line?

One possible approach to overcome both problems is to consider the query line
to be fixed and to study Cn(s) for s ∈ [0,1]. This raises another problem: even
if s is fixed at the top level, as the search is performed, the relative location of the
queries in the recursive calls varies from one node to another. Thus, in following
this approach, one is led to consider the entire stochastic process (Cn(s))s∈[0,1];
this is the method we use here.
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Recently Curien and Joseph [6] obtained some results in this direction. They
proved that for every fixed s ∈ (0,1),

E
[
Cn(s)

] ∼ K1 · h(s)nβ with K1 = �(2β + 2)�(β + 2)

2�(β + 1)3�(β/2 + 1)2 ,(3)

where the function h defined below will play a central role in the entire study

h(s) := (
s(1 − s)

)β/2
.(4)

On the other hand, Flajolet et al. [16, 17] prove that, along the edge one has
E[Cn(0)] = �(n

√
2−1), so that E[Cn(0)] = o(nβ) (see also [6]). The behavior

about the x-coordinate U of the first data point certainly resembles that along the
edge, so that one has E[Cn(U)] = o(nβ). This suggests that Cn(s) should not be
concentrated around its mean, and that n−βCn(s) should converge to a nondegen-
erate random variable as n → ∞. Below, we confirm this and prove a functional
limit law for (n−βCn(s))s∈[0,1] and characterize the limit process. From this we
obtain refined asymptotic information on the complexity of partial match queries
in quadtrees.

2. Main results and implications. We denote by D[0,1] the space of càdlàg
functions on [0,1] and by ‖f ‖ := supt∈[0,1] |f (t)| the uniform norm of f ∈
D[0,1]. Our main contribution is to prove the following convergence result:

THEOREM 1. Let Cn(s) be the cost of a partial match query at a fixed line s in
a random quadtree. Then there exists a random continuous function Z such that,
as n → ∞, (

Cn(s)

K1nβ
, s ∈ [0,1]

)
d→ (

Z(s), s ∈ [0,1]).(5)

This convergence in distribution holds in D[0,1] equipped with the Skorokhod
topology.

The limit process Z may be characterized as follows (see Figure 2 for a simula-
tion):

PROPOSITION 2. The distribution of the random function Z in (5) is a fixed
point of the following functional recursive distributional equation, as process in
s ∈ [0,1]:

Z(s)
d= 1{s<U}

[
(UV )βZ(1)

(
s

U

)
+ (

U(1 − V )
)β

Z(2)

(
s

U

)]

+ 1{s≥U }
[(

(1 − U)V
)β

Z(3)

(
s − U

1 − U

)
(6)

+ (
(1 − U)(1 − V )

)β
Z(4)

(
s − U

1 − U

)]
,
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FIG. 2. A simulation of the limit process Z.

where U and V are independent [0,1]-uniform random variables and Z(i), i =
1, . . . ,4 are independent copies of the process Z, which are also independent
of U and V . Furthermore, Z in (5) is the only continuous solution of (6) with
E[‖Z‖2] < ∞ and E[Z(ξ)] = �(β/2 + 1)2/�(β + 2) where ξ is independent of
Z and uniformly distributed on [0,1].

The methods applied to prove Theorem 1 also guarantee convergence of the
variance of the costs of partial match queries. The following theorem for uniform
queries ξ is the direct extension of the pioneering work in [16, 19] for the cost of
partial match queries at a uniform line ξ in random two-dimensional trees.

THEOREM 3. If ξ is uniformly distributed on [0,1], independent of (Cn)

and Z, then

Cn(ξ)

K1nβ
→ Z(ξ)

in distribution, as n → ∞. Moreover, Var(Cn(ξ)) ∼ K4n
2β where K4 ≈

0.447363034 is given by, with K1 in (3),

K4 := K2
1 · Var

(
Z(ξ)

)
(7)

= K2
1

(
2(2β + 1)

3(1 − β)
B(β + 1, β + 1)2 − B(β/2 + 1, β/2 + 1)2

)
.



PARTIAL MATCH QUERIES IN RANDOM QUADTREES 2565

Here B(a, b) := ∫ 1
0 ta−1(1 − t)b−1 dt denotes the Eulerian integral for a, b >

−1. In particular, Theorem 3 identifies the first-order asymptotics of Var(Cn(ξ))

which is to be compared with studies that neglected the dependence between the
contributions of the subtrees mentioned above [26, 27, 29]. A refined result about
the variance Var(Cn(s)) at a fixed location reads

Var
(
Cn(s)

) ∼ K2
1 Var

(
Z(s)

)
n2β,

where s ∈ (0,1) and an explicit expression for Var(Z(s)) is given by

Var
(
Z(s)

) = K2h
2(s) =

[
2B(β + 1, β + 1)

2β + 1

3(1 − β)
− 1

]
h2(s).(8)

Another consequence of Theorem 1 concerns the order of the cost of the worst
query given by sups∈[0,1] Cn(s).

THEOREM 4. Let Sn = sups∈[0,1] Cn(s). Then as n → ∞,

Sn

K1nβ
→ S := sup

s∈[0,1]
Z(s),

in distribution and with convergence of all moments. In particular, E[S] < ∞,
Var(S) < ∞ and we have

E[Sn] ∼ K1n
βE[S] and Var(Sn) ∼ K2

1n2β Var(S).

Note that the sequence n−βE[Sn] is bounded. In particular, E[Sn] has the same
order of magnitude as the cost of a search query at any single location, and does
not include any extra factor growing with n. Interestingly, the one-dimensional
marginals of the limit process (Z(s), s ∈ [0,1]) are all the same up to a determin-
istic multiplicative constant given by the function h:

THEOREM 5. There exists a random variable � ≥ 0 such that for all s ∈
[0,1],

Z(s)
d= h(s) · �.(9)

The distribution of � is the unique solution of the fixed-point equation

�
d= Uβ/2V β� + Uβ/2(1 − V )β�(10)

with E[�] = 1 and E[�2] < ∞ where � ′ is an independent copy of � and (�,� ′)
is independent of (U,V ).

Convergence of all moments of the supremum n−βSn in Theorem 4 implies
uniform integrability of any moment of the process n−βCn, hence the following
result about convergence of all moments.
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COROLLARY 6. For all s ∈ [0,1], we have

E
[(

Cn(s)

K1nβ

)m]
→ E

[
Z(s)m

] = cmh(s)m

for all m ∈ N as n → ∞ where cm is given by

cm = βm + 1

(m − 1)(m + 1 − (3/2)βm)
(11)

×
m−1∑
	=1

(
m

	

)
B

(
β	 + 1, β(m − 	) + 1

)
c	cm−	

for m ≥ 2 where c1 = 1. An analogous result holds true for E[Cn(ξ)] where ξ is
uniform on [0,1] and independent of (Cn)n≥0 and Z, and for moments involving
queries at multiple locations.

PLAN OF THE PAPER. Our approach requires to work with the process
(Cn(s) : s ∈ [0,1]) and is based on the recursive decomposition of the tree at
the root. This yields a recursive distributional recurrence for (Cn(s) : s ∈ [0,1])
to which we apply a functional version of the contraction method. In Section 3,
we give an overview of this underlying methodology. In particular, we discuss the
novel results of Neininger and Sulzbach [32] about the contraction method in func-
tion spaces which we will apply. Sections 4 and 5 are dedicated to the proofs of
two of the main ingredients required to apply the results from [32], the existence of
a continuous solution of the limit recursive equation and the uniform convergence
of the rescaled first moment n−βE[Cn(s)] at an appropriate rate. In Section 6, we
identify the variance and the supremum of the limit process Z and deduce the
large n asymptotics for Cn(s) in Theorems 3 and 4. Finally, we prove analogous
results for the cases of 2-d trees in Section 7. Our results on quadtrees have been
announced in the extended abstract [3].

3. Contraction method in function spaces.

3.1. Overview of the method. The aim of this section is to give an overview of
the method we employ to prove Theorem 1. It is based on a contraction argument
in a certain space of probability distributions. In the context of the analysis of algo-
rithms, the method was first employed by Rösler [35] who proved convergence in
distribution for the rescaled total cost of the randomized version of quicksort. The
method was then further developed by Rösler [36], Rachev and Rüschendorf [33],
and later on in [9, 13, 28, 30, 31, 37] and has permitted numerous analyses in
distribution for random discrete structures.

So far, the method has mostly been used to analyze random variables taking
real values, though a few applications on function spaces have been made; see [9,
13, 21]. Here we are interested in the function space D[0,1] endowed with the
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Skorokhod topology (see, e.g., [2]), but the main idea persists: (1) devise a recur-
sive equation for the quantity of interest [here the process (Cn(s), s ∈ [0,1])], and
(2) based on a properly rescaled version of the quantity deduce a limit equation,
that is, a recursive distributional equation that the limit may satisfy; (3) if the map
of distributions associated to the limit equation is a contraction in a certain metric
space, then a fixed point is unique and may be obtained by iteration. The contrac-
tion may also be exploited to obtain weak convergence to the fixed point. We now
move on to the first step of this program.

Write I
(n)
1 , . . . , I

(n)
4 for the number of points falling in the four regions created

by the point stored at the root. Then, given the coordinates of the first data point
(U,V ), we have (cf. Figure 1)(

I
(n)
1 , . . . , I

(n)
4

)
(12)

d= Mult
(
n − 1;UV,U(1 − V ), (1 − U)(1 − V ), (1 − U)V

)
.

Observe that, for the cost inside a subregion, what matters is the location of the
query line relative to the region. Thus a decomposition at the root yields the fol-
lowing recursive relation for any n ≥ 1:

Cn(s)
d= 1 + 1{s<U}

[
C

(1)

I
(n)
1

(
s

U

)
+ C

(2)

I
(n)
2

(
s

U

)]
(13)

+ 1{s≥U}
[
C

(3)

I
(n)
3

(
1 − s

1 − U

)
+ C

(4)

I
(n)
4

(
1 − s

1 − U

)]
,

where U, I
(n)
1 , . . . , I

(n)
4 are the quantities already introduced and (C

(1)
k ), . . . , (C

(4)
k )

are independent copies of the sequence (Ck, k ≥ 0), independent of (U,V, I
(n)
1 ,

. . . , I
(n)
4 ). We stress that this equation does not only hold true pointwise for fixed

s but also as càdlàg functions on the unit interval. The relation in (13) is the fun-
damental equation for us.

Letting n → ∞ (formally) in (13) suggests that if n−βCn(s) does converge to
a random variable Z(s) in a sense to be made precise, then the distribution of the
process (Z(s),0 ≤ s ≤ 1) should satisfy the following fixed point equation:

Z(s)
d= 1{s<U}

[
(UV )βZ(1)

(
s

U

)
+ (

U(1 − V )
)β

Z(2)

(
s

U

)]

+ 1{s≥U }
[(

(1 − U)V
)β

Z(3)

(
s − U

1 − U

)
(14)

+ (
(1 − U)(1 − V )

)β
Z(4)

(
s − U

1 − U

)]
,

where U and V are independent [0,1]-uniform random variables and Z(i), i =
1, . . . ,4 are independent copies of the process Z, which are also independent of U

and V .
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The last step leading to the fixed point equation (14) needs now to be made
rigorous. It is at this point that the contraction method enters the game. The dis-
tribution of a solution to our fixed-point equation (14) lies in the set of probability
measures on the Polish space (D[0,1], d), which is the set we have to endow with
a suitable metric. Here, d denotes the Skorokhod metric; see, for example, [2].

The recursive equation (13) is an example for the following, more general set-
ting of random additive recurrences: Let (Xn) be D[0,1]-valued random variables
with

Xn
d=

K∑
r=1

A(n)
r

(
X

(r)

I
(n)
r

) + b(n), n ≥ 1,(15)

where (A
(n)
1 , . . . ,A

(n)
K ) are random continuous linear operators on D[0,1], b(n) is

a D[0,1]-valued random variable, I
(n)
1 , . . . , I

(n)
K are random integers between 0

and n − 1 and the sequences of process (X
(1)
n ), . . . , (X

(K)
n ) are distributed like

(Xn). Moreover (A
(n)
1 , . . . ,A

(n)
K , b(n), I

(n)
1 , . . . , I

(n)
K ), (X

(1)
n ), . . . , (X

(K)
n ) are inde-

pendent.
At this point, one should comment on the term random continuous linear oper-

ator: As explained explicitly in [32], A is a random continuous linear operator on
D[0,1], if it takes values in the set of endomorphisms on D[0,1] that are both con-
tinuous with respect to the supremum norm and to the Skorokhod metric. More-
over, for any f ∈ D[0,1] and t ∈ [0,1], the quantity Af (t) has to be a real-valued
random variable, and the same is assumed for ‖A‖op (see below for the definition).
Finally, we remember that convergence d(fn, f ) → 0 in the Skorokhod metric
means that there exists a sequence of monotonically increasing bijections (λn) on
the unit interval such that fn(λn(t)) → f (t) and λn(t) → t both uniformly in t as
n → ∞.

To establish Theorem 1 as a special case of this setting, we use Proposition 7
below. Proposition 7 is part of the main convergence theorem in Neininger and
Sulzbach [32]. We first state conditions needed to deal with the general recur-
rence (15); we will then justify that it can indeed be used in the case of cost
of partial match queries. Consider the following assumptions, where, for a ran-
dom variable X in D[0,1] we write ‖X‖2 := E[‖X‖2]1/2, for a linear operator
A we write ‖A‖2 := E[‖A‖2

op]1/2 with ‖A‖op := sup‖x‖=1 ‖A(x)‖. Suppose (Xn)

obeys (15) and the following:

(A1) CONVERGENCE AND CONTRACTION. We have ‖A(n)
r ‖2,‖b(n)‖2 < ∞

for all r = 1, . . . ,K and n ≥ 0 and there exist random continuous linear opera-
tors A1, . . . ,AK on D[0,1] and a D[0,1]-valued random variable b such that, for
some positive sequence R(n) ↓ 0, as n → ∞,

∥∥b(n) − b
∥∥

2 +
K∑

r=1

∥∥A(n)
r − Ar

∥∥
2 = O

(
R(n)

)
(16)
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and for all 	 ∈ N,

E
[
1{I (n)

r ∈{0,...,	}}
∥∥A(n)

r

∥∥2
op

] → 0

and

L∗ = lim sup
n→∞

E

[
K∑

r=1

∥∥A(n)
r

∥∥2
op

R(I
(n)
r )

R(n)

]
< 1.(17)

(A2) EXISTENCE AND EQUALITY OF MOMENTS. E[‖Xn‖2] < ∞ for all n and
E[Xn1(t)] = E[Xn2(t)] for all n1, n2 ∈ N0, t ∈ [0,1].

(A3) EXISTENCE OF A CONTINUOUS SOLUTION. There exists a solution X of
the fixed-point equation

X
d=

K∑
r=1

Ar

(
X(r)) + b(18)

with continuous paths, E[‖X‖2] < ∞ and E[X(t)] = E[X1(t)] for all t ∈ [0,1].
Again the random variables (A1, . . . ,AK,b),X(1), . . . ,X(K) are independent and
X(1), . . . ,X(K) are distributed like X.

(A4) PERTURBATION CONDITION. Xn = Wn + hn where ‖hn − h‖ → 0 with
h ∈ C[0,1] and random variables Wn in D[0,1] such that there exists a sequence
(rn) with, as n → ∞,

P
(
Wn /∈ Drn[0,1]) → 0.

Here, Drn[0,1] ⊂ D[0,1] denotes the set of functions on the unit interval contin-
uous at 1, for which there is a decomposition of [0,1] into intervals of length as
least rn on which they are constant.

(A5) RATE OF CONVERGENCE. R(n) = o(log−2(1/rn)).

The contraction method presented here for the space (D[0,1], d) is based on the
Zolotarev metric ζ2; see [32]. We state the part of the main convergence theorem
of Neininger and Sulzbach [32] that we will use. In the next section, we will prove
our main result, Theorem 1, with the help of Proposition 7.

PROPOSITION 7. Let (Xn) fulfill (15). Provided that assumptions (A1)–(A3)
are satisfied, the solution X of the fixed-point equation (18) is unique.

(i) For all t ∈ [0,1], Xn(t) → X(t) in distribution, with convergence of the
first two moments.

(ii) If ξ is independent of (Xn),X and distributed on [0,1], then Xn(ξ) →
X(ξ) in distribution again with convergence of the first two moments.

(iii) If also (A4) and (A5) hold, then Xn → X in distribution in (D[0,1], d).
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Note that Xn → X in distribution in (D[0,1], d) with X having continuous
sample paths implies that we can find versions of (Xn),X on a suitable probability
space such that ‖Xn − X‖ → 0 almost surely. However, in general we do not have
Xn → X in distribution in D[0,1] endowed with the uniform topology due to
problems with measurability; see [2], Section 15 and [32], Section 2.2.

3.2. The functional limit theorem: Proof of Theorem 1. The aim of this sec-
tion is to prove Theorem 1 with the help of Proposition 7 from Neininger and
Sulzbach [32]. More precisely, in the following we prove conditions (A1)–(A5),
except two which require much more work: the existence of a continuous solu-
tion (A3), and the uniform convergence of the mean in (A1) are treated separately
in Sections 4 and 5, respectively.

Following the heuristics in the Introduction we scale the additive recurrence (13)
by nβ . Let Q0(t) := 0 and

Qn(t) = Cn(t)

K1nβ
, n ≥ 1.

The recursive distributional equation then rewrites in terms of Qn as(
Qn(t)

)
t∈[0,1]

d=
(

1{t<U}
[(

I
(n)
1

n

)β

Q
(1)

I
(n)
1

(
t

U

)
+

(
I

(n)
2

n

)β

Q
(2)

I
(n)
2

(
t

U

)]
(19)

+ 1{t≥U}
[(

I
(n)
3

n

)β

Q
(3)

I
(n)
3

(
t − U

1 − U

)
+

(
I

(n)
4

n

)β

Q
(4)

I
(n)
4

(
t − U

1 − U

)]

+ 1

K1nβ

)
t∈[0,1]

,

where U, I
(n)
1 , . . . , I

(n)
4 are the quantities already introduced in Section 3.1

and (12) and (Q
(1)
n )n≥0, . . . , (Q

(4)
n )n≥0 are independent copies of (Qn)n≥0, in-

dependent of (U,V, I
(n)
1 , . . . , I

(n)
4 ). The convergence of the coefficients (I

(n)
j /n)β

suggests that a limit of Qn(t) should satisfy the fixed-point equation (14).
THE RECURRENCE RELATION. Most details consist in setting the right form

of the recurrence relation: for (A2) to be satisfied, we need to use a scaling that
leads to an expectation which is independent of n. This is not the case for Qn(t).
Denoting μn(t) = E[Cn(t)], we are naturally led to consider Y0(t) := 0 and

Yn(t) = Cn(t) − μn(t)

K1nβ
= Qn(t) − h(t) + O

(
n−ε), n ≥ 1,

where the error term is deterministic and uniform in t ∈ [0,1]. Hence it is suffi-
cient to prove convergence of the sequence (Yn)n≥1. The distributional recursion
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in terms of Yn is(
Yn(t)

)
t∈[0,1]

d=
(

1{t<U}
[(

I
(n)
1

n

)β

Y
(1)

I
(n)
1

(
t

U

)
+

(
I

(n)
2

n

)β

Y
(2)

I
(n)
2

(
t

U

)]

+ 1{t≥U}
[(

I
(n)
3

n

)β

Y
(3)

I
(n)
3

(
t − U

1 − U

)
+

(
I

(n)
4

n

)β

Y
(4)

I
(n)
4

(
t − U

1 − U

)]

+ 1{t<U}
[μ

I
(n)
1

(t/U) + μ
I

(n)
2

(t/U)

K1nβ

]

+ 1{t≥U}
[μ

I
(n)
3

((t − U)/(1 − U)) + μ
I

(n)
4

((t − U)/(1 − U))

K1nβ

]

+ 1 − μn(t)

K1nβ

)
t∈[0,1]

,

where (Y
(1)
n )n≥0, . . . , (Y

(4)
n )n≥0 are independent copies of (Yn)n≥0 which are also

independent of the vector (U,V, I
(n)
1 , . . . , I

(n)
4 ). Therefore, any possible limit Y of

Yn should satisfy the following distributional fixed-point equation:(
Y(t)

)
t∈[0,1]
d=

(
1{t<U}

[
(UV )βY (1)

(
t

U

)
+ (

U(1 − V )
)β

Y (2)

(
t

U

)]

+ 1{t≥U}
[(

(1 − U)V
)β

Y (3)

(
t − U

1 − U

)
(20)

+ (
(1 − U)(1 − V )

)β
Y (4)

(
t − U

1 − U

)]

+ 1{t≥U}h
(

t − U

1 − U

)((
(1 − U)V

)β + (
(1 − U)(1 − V )

)β) − h(t)

+ 1{t<U}h
(

t

U

)(
(UV )β + (

U(1 − V )
)β))

t∈[0,1]
.

Having Proposition 7 in mind, we define (random) operators A
(n)
r , r = 1,2,3,4,

by

A(n)
r (f )(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1{t<U}
(

I
(n)
r

n

)β

f

(
t

U

)
, if r = 1,2,

1{t≥U}
(

I
(n)
r

n

)β

f

(
t − U

1 − U

)
, if r = 3,4.
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Furthermore let b(n)(t) = ∑4
r=1 b

(n)
r (t) + (1 − μn(t))/(K1n

β) with

b(n)
r (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1{t<U} ·
μ

I
(n)
r

(t/U)

K1nβ
, if r = 1,2,

1{t≥U} ·
μ

I
(n)
r

((t − U)/(1 − U))

K1nβ
, if r = 3,4.

Then the finite-n version of the recurrence relation for (Yn)n≥0 is precisely of the
form of (15).

We define similarly the coefficients of the limit recursive equation (20). We will
then show that with these definitions, assumptions (A1)–(A5) are satisfied (again,
except the existence of a continuous limit solution and the uniform convergence
for the mean treated in Section 4 and 5). The operators A1, . . . ,A4 are defined by

A1(f )(t) = 1{t<U}(UV )βf

(
t

U

)
,

A2(f )(t) = 1{t<U}
(
U(1 − V )

)β
f

(
t

U

)
,

A3(f )(t) = 1{t≥U}
(
(1 − U)V

)β
f

(
t − U

1 − U

)
,

A4(f )(t) = 1{t≥U}
(
(1 − U)(1 − V )

)β
f

(
t

U

)

and b(t) = ∑4
r=1 br(t) − h(t) with

b1(t) = 1{t<U}(UV )βh

(
t

U

)
,

b2(t) = 1{t<U}
(
U(1 − V )

)β
h

(
t

U

)
,

b3(t) = 1{t≥U}
(
(1 − U)V

)β
h

(
t − U

1 − U

)
,

b4(t) = 1{t≥U}
(
(1 − U)(1 − V )

)β
h

(
t

U

)
.

The operators A1, . . . ,A4,A
(n)
1 , . . . ,A

(n)
4 are linear for each n. Moreover, they are

bounded above by one, which implies that they are norm-continuous. Their norm
functions are real-valued random variables. In order to establish that they are in-
deed random continuous linear operators on (D[0,1], d) it remains to check that
they are continuous with respect to the Skorokhod topology. To this end, it is suf-
ficient to prove that

d(fn, f ) → 0 ⇒ d

(
1{t<u}fn

(
t

u

)
,1{t<u}f

(
t

u

))
→ 0
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for any u ∈ [0,1]. This follows easily since ‖fn(λn(t)) − f (t)‖ → 0 with mono-
tonically increasing bijections λn on the unit interval such that ‖λn(t) − t‖ → 0
implies ‖1{βn(t)<u}fn(βn(t)/u) − 1{t<u}f (t/u)‖ → 0 where βn(t) = uλn(t/u) for
t ≤ u and βn(t) = t for t > u.

We are now ready to check that assumptions (A1)–(A5) indeed hold, taking the
results of Sections 4 and 5 for granted.

(A3) EXISTENCE OF A CONTINUOUS SOLUTION. In Section 4, we construct
a continuous solution Z of the fixed-point equation (14) with E[‖Z‖2] < ∞ and
E[Z(t)] = h(t) = (t (1− t))β/2. Hence the function Y(t) = Z(t)−h(t) is a contin-
uous solution of (20) with E[Y(t)] = 0 and E[‖Y‖2] < ∞. A direct computation
shows that E[‖Ar‖2

op] = E[(UV )2β] = (2β + 1)−2, for r = 1, . . . ,4. Observe that

L :=
4∑

r=1

E
[‖Ar‖2

op
] = 4

(2β + 1)2 < 1.

In particular, Y is the unique solution of (20) with E[Y(t)] = 0 and E[‖Y‖2] < ∞.
Thus, Z is the unique solution of (6) with E[Z(t)] = h(t) and E[‖Z‖2] < ∞. By
the arguments in [6], Section 5, the mean function of any process with càdlàg paths
and finite moments satisfying (6) is a multiple of h(s). Hence, we may replace the
condition E[Z(t)] = h(t) by E[Z(ξ)] = �(β/2 + 1)2/�(β + 2) as formulated in
Proposition 2.

(A2) EXISTENCE AND EQUALITY OF MOMENTS. The precise scaling we chose
ensures that E[Yn(t)] = 0, for all n ≥ 1 and t ∈ [0,1]. The second moments
E[‖Yn‖2] are finite as the random variables ‖Yn‖ are bounded for every fixed n.

(A1) CONVERGENCE AND CONTRACTION. It suffices to focus on the terms∥∥A(n)
1 − A1

∥∥
2 and

∥∥b(n)
1 − b1

∥∥
2,

and the remaining terms can obviously be treated in the same way. Establishing
the convergence only boils down to verifying that a binomial random variable
Bin(n,p) is properly approximated by np. Using the Chernoff–Hoeffding inequal-
ity for binomials [23], one easily verifies that for every α > 0,

E
[∣∣∣∣Bin(n,p)

n
− p

∣∣∣∣
α]

= O
(
n−α/2)

,(21)

uniformly in p ∈ [0,1]. Thus, since |xβ − yβ | ≤ |x − y|β for any x, y ∈ [0,1], we
have

∥∥A(n)
1 − A1

∥∥
2 ≤

∥∥∥∥
(

I
(n)
r

n

)β

− (UV )β
∥∥∥∥

2
= O

(
n−1/2)

.(22)

By Proposition 12 we have μn(t) = K1h(t)nβ + O(nβ−ε) uniformly in t ∈ [0,1].
Therefore

∥∥b(n)
1 − b1

∥∥
2 ≤

∥∥∥∥1{t<U}h
(

t

U

)((
I

(n)
r

n

)β

− (UV )β
)∥∥∥∥

2
+ C

∥∥∥∥(I
(n)
1 )β−ε

nβ

∥∥∥∥
2
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for some constant C > 0. Since h is bounded, the first summand is O(n−1/2) just
like in (22) above. The second term is trivially bounded by Cn−ε . Overall, we
have ‖b(n)

1 − b1‖2 = O(n−ε). Hence, since the coefficients A
(n)
r are bounded by

one in the operator norm and by distributional properties of I
(n)
1 , . . . , I

(n)
4 , the first

two constraints in assumption (A1) are satisfied with R(n) = Cn−ε for a suitable
constant C > 0, and ε > 0 may still be chosen as small as we want.

Next, we consider L∗ in (A1). By dominated convergence we have

L∗ = 4E
[
(UV )2β(UV )−ε] = 4

(2β − ε + 1)2 < 1

for ε > 0 sufficiently small. This completes the verification of (A1).
(A4) PERTURBATION CONDITION. Note that Qn is piecewise constant:

Qn(t) = Qn(s) for all s, t if no x-coordinate of the first n points lies between
s and t . There are n independent points, the probability that there exist two lying
within n−3 of each other is at most n−1. So (A4) is satisfied with rn = n−3.

(A5) RATE OF CONVERGENCE. With rn = n−3 and Rn = Cn−ε , we have Rn =
o(log−2 n) = o(log−2(1/rn)). Therefore, the condition on the rate of convergence
is satisfied.

4. The limit process. In this section, we prove the existence of a process
Z ∈ C[0,1], the space of continuous functions from [0,1] into R, that satisfies
the distributional fixed point equation (14) and whose mean matches the mean of
the rescaled version Yn(s) of Cn(s). We construct the process Z as the point-wise
limit of martingales. We then show that the convergence is actually almost surely
uniform, which allows us to conclude that Z ∈ C[0,1] with probability one. Fig-
ure 2 shows a simulation of the process Z.

We identify the nodes of the infinite quaternary tree with the set of finite words
on the alphabet {1,2,3,4},

T = ⋃
n≥0

{1,2,3,4}n.

For a node u ∈ T , we write |u| for its depth, that is, the distance between u and the
root ∅. The descendants of u ∈ T correspond to all the words in T with prefix u;
in particular, the children of u are u1, . . . , u4. Let {Uv, v ∈ T } and {Vv, v ∈ T }
be two independent families of i.i.d. [0,1]-uniform random variables. By C0[0,1]
we denote the set of continuous functions on the unit interval vanishing at the
boundary, that is, f (0) = f (1) = 0 for f ∈ C0[0,1]. Define the continuous opera-
tor G : (0,1)2 × C0[0,1]4 → C0[0,1] by

G(x,y,f1, f2, f3, f4)(s)

= 1{s<x}
[
(xy)βf1

(
s

x

)
+ (

x(1 − y)
)β

f2

(
s

x

)]
(23)

+ 1{s≥x}
[(

(1 − x)y
)β

f3

(
s − x

1 − x

)
+ (

(1 − x)(1 − y)
)β

f4

(
s − x

1 − x

)]
.
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Recall the definition of h in (4). For every node u ∈ T , let Zu
0 = h. Then define

recursively

Zu
n+1 = G

(
Uu,Vu,Z

u1
n ,Zu2

n ,Zu3
n ,Zu4

n

)
.(24)

Finally, define Zn = Z∅
n to be the value observed at the root of T when the iteration

has been started with h in all the nodes at level n. We will see that for every
s ∈ [0,1], the sequence (Zn(s), n ≥ 0) is a nonnegative discrete time martingale;
so it converges with probability one to a finite limit.

It will be convenient to have an explicit representation for Zn. For s ∈ [0,1],
Zn(s) is the sum of exactly 2n terms, each one being the contribution of one of the
boxes at level n that is cut by the line at s. Let {Qn

i (s),1 ≤ i ≤ 2n} be the set of
rectangles at level n whose first coordinate intersect s. Suppose that the projection
of Qn

i (s) on the first coordinate yields the interval [	n
i , r

n
i ]. Then

Zn(s) =
2n∑
i=1

Leb
(
Qn

i (s)
)β · h

(
s − 	n

i

rn
i − 	n

i

)
,(25)

where Leb(Qn
i (s)) denotes the volume of the rectangle Qn

i (s). The difference be-
tween Zn and Zn+1 only relies in what happens inside the boxes Qn

i (s): We have

Zn+1(s) − Zn(s)
(26)

=
2n∑
i=1

Leb
(
Qn

i (s)
)β ·

[
G

(
U ′

i , V
′
i , h, h,h,h

)( s − 	n
i

rn
i − 	n

i

)
− h

(
s − 	n

i

rn
i − 	n

i

)]
,

where U ′
i , V

′
i , 1 ≤ i ≤ 2n are i.i.d. [0,1]-uniform random variables. In fact, U ′

i and
V ′

i are some of the variables Uu,Vu for nodes u at level n. Observe that, although
the area Leb(Qn

i (s)) is not a product of n independent terms of the form UV

because of size-biasing, but U ′
i , V

′
i are in fact unbiased, that is, uniform. Let Fn

denote the σ -algebra generated by {Uu,Vu : |u| < n}. Then the family {U ′
i , V

′
i : 1 ≤

i ≤ 2n} is independent of Fn.
So, to prove that Zn(s) is a martingale, it suffices to prove that, for 1 ≤ i ≤ 2n,

E
[
G

(
U ′

i , V
′
i , h, h,h,h

)( s − 	n
i

rn
i − 	n

i

)∣∣∣Fn

]
= h

(
s − 	n

i

rn
i − 	n

i

)
.

Since U ′
i , V

′
i ,1 ≤ i ≤ 2n are independent of Fn, this clearly reduces to the follow-

ing lemma.

LEMMA 8. For the operator G defined in (23) and U,V two independent
[0,1]-uniform random variables and any s ∈ [0,1], we have

E
[
G(U,V,h,h,h,h)(s)

] = h(s).
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PROOF. Since V and 1 − V have the same distribution, we have

E
[
G(U,V,h,h,h,h)(s)

] = 2E
[
1{s<U}(UV )βh

(
s

U

)]

+ 2E
[
1{s≥U }

(
(1 − U)V

)β
h

(
1 − s

1 − U

)]
.

Similarly, since U and 1 − U are both uniform, we clearly have

E
[
G(U,V,h,h,h,h)(s)

] = f (s) + f (1 − s),

where we wrote f (s) = 2E[1{s<U}(UV )βh(s/U)]. To complete the proof, it suf-
fices to compute f (s). We have

f (s) = E
[
1{s<U}(UV )βh

(
s

U

)]
= 2

β + 1
E

[
1{s<U}sβ/2(U − s)β/2]

= 2

β + 1
sβ/2

∫ 1

s
(x − s)β/2 dx

= 4

(β + 1)(β + 2)
sβ/2(1 − s)β/2+1

= (1 − s)h(s),

where the last line follows since (β + 1)(β + 2) = 4 by definition of β . The result
follows readily. �

Our aim is now to prove the following proposition:

PROPOSITION 9. With probability one Zn converges uniformly to some con-
tinuous limit process Z on [0,1].

Assume for the moment that there exist constants a, b ∈ (0,1) and C such that

P
(

sup
s∈[0,1]

∣∣Zn+1(s) − Zn(s)
∣∣ ≥ an

)
≤ C · bn.(27)

Then, by the Borel–Cantelli lemma, the sequences Zn is almost surely Cauchy with
respect to the supremum norm. Completeness of (C[0,1],‖ ·‖) yields the existence
of a random process Z with continuous paths such that Zn → Z uniformly on
[0,1]. We now move on to showing that there exist constants a and b such that (27)
is satisfied. We start by a bound for a fixed value s ∈ [0,1]. We will then handle
the supremum using a sieve of the interval [0,1] by a large enough number of
deterministic points.

LEMMA 10. For every s ∈ [0,1], any a ∈ (0,1), and any integer n large
enough, we have the bound

P
(∣∣Zn+1(s) − Zn(s)

∣∣ ≥ an) ≤ 4
(
16e log(1/a)

)n
.
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PROOF. We use the representation (26). As we have already pointed out earlier
(Lemma 8), for every single rectangle Qn

i (s) at level n, we have

E
[
G

(
U ′

i , V
′
i , h, h,h,h

)( s − 	n
i

rn
i − 	n

i

)
− h

(
s − 	n

i

rn
i − 	n

i

)∣∣∣Fn

]
= 0.

Since h(x) ≤ 2−β for x ∈ (0,1), conditional on Fn, Zn+1 −Zn is a sum of 2n cen-
tered, bounded and moreover independent terms (but not identically distributed).
Moreover, conditional on Fn, the term corresponding to Qn

i (s) in (26) is bounded
by

Leb
(
Qn

i

)β · ∥∥G(
U ′

i , V
′
i , h, h,h,h

) − h
∥∥ ≤ Leb

(
Qn

i

)β2‖h‖
(28)

= Leb
(
Qn

i

)β21−β.

So when conditioning on Fn, one can bound the variations of Zn+1 − Zn using
the Chernoff–Hoeffding inequality [23]. We have

P
(∣∣Zn+1(s) − Zn(s)

∣∣ > an) = E
[
P

(∣∣Zn+1(s) − Zn(s)
∣∣ > an|Fn

)]
≤ E

[
2 exp

(
− a2n∑2n

i=1 Leb(Qn
i (s))

2β

)]
(29)

≤ 2 exp
(−a−2n) + 2P

( 2n∑
i=1

Leb
(
Qn

i (s)
)2β

> a4n

)
;

the precise constant in the exponent in the second inequality can be taken to be one
since it is the case that 2/(21−β)2 > 1.

Now, since 2β > 1 and all the volumes Leb(Qn
i (s)) are at most one, we have

P

( 2n∑
i=1

Leb
(
Qn

i (s)
)2β

> a4n

)
≤ P

( 2n∑
i=1

Leb
(
Qn

i (s)
)
> a4n

)

(30)
≤ P

(
Wn > a4n)

,

where Wn denotes the maximum width of any of the 4n cells at level n. Indeed, the
volume occupied by all rectangles Qn

i (s), 1 ≤ i ≤ 2n together is at most that of a
vertical tube of width Wn. Putting together (29) and (30), it follows that

P
(∣∣Zn+1(s) − Zn(s)

∣∣ ≥ an) ≤ 2 exp
(−a−2n) + 2P

(
Wn > a4n)

≤ 2 exp
(−a−2n) + 2

(
16e log(1/a)

)n
≤ 4

(
16e log(1/a)

)n
for all n large enough using Lemma 22 from the Appendix. �
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Now that we have good control on pointwise variations of Zn+1 −Zn, we move
on to the supremum on [0,1]. Consider the set Vn of x-coordinates of the verti-
cal boundaries of all the rectangles at level n. Let Ln = inf{|x − y| :x, y ∈ Vn}.
Suppose that 1/γ is an integer. Then we have

sup
s∈[0,1]

∣∣Zn+1(s) − Zn(s)
∣∣

≤ sup
1≤i≤γ −(n+1)

∣∣Zn+1
(
iγ n+1) − Zn

(
iγ n+1)∣∣

+ 2 sup
m∈{n,n+1}

sup
|s−t |≤γ n+1

∣∣Zm(s) − Zm(t)
∣∣.

We first deal with the second term, and suppose that we are on the event that
Ln+1 ≥ (4γ )n+1. Observe that the sieve we used, γ n, is much finer than the short-
est length of a cell at level n + 1 which is at least Ln+1. We use the represen-
tation in (25); for |t − s| ≤ γ n+1, the two collections {Qn

i (s),1 ≤ i ≤ 2n} and
{Qn

i (t),1 ≤ i ≤ 2n} differ at most on one cell. We obtain, for any |s − t | ≤ γ n+1,∣∣Zn(s) − Zn(t)
∣∣

≤
2n∑
i=1

Leb
(
Qn

i (s)
)β ·

∣∣∣∣h
(

s − 	n
i

rn
i − 	n

i

)
− h

(
t − 	n

i

rn
i − 	n

i

)∣∣∣∣ + 2 max
i

Leb
(
Qn

i (s)
)β

≤
2n∑
i=1

Leb
(
Qn

i (s)
)β · 4−βn + 2 max

i
Leb

(
Qn

i (s)
)β

≤ 3Wβ
n .

Here, the second inequality follows from the facts that |h(t) − h(s)| ≤ |t − s|β
for any s, t ∈ [0,1] and that Ln ≥ (4γ )n+1. The same upper bound is valid for
|Zn+1(s)−Zn+1(t)| for |s − t | ≤ γ n+1. In particular, it follows by the union bound
that, for any γ ∈ (0,1) (with 1/γ an integer),

P
(

sup
s∈[0,1]

∣∣Zn+1(s) − Zn(s)
∣∣ ≥ 2an

)

≤ γ −n sup
s∈[0,1]

P
(∣∣Zn+1(s) − Zn(s)

∣∣ ≥ an)
(31)

+ P
(
Ln+1 < (4γ )n+1) + P

(
12Wβ

n > an)
.

We are now ready to complete the proof of Proposition 9. From (31) and Lemma 24
from the Appendix, we have

P
(

sup
s∈[0,1]

∣∣Zn+1(s) − Zn(s)
∣∣ ≥ 2an

)
≤ 4

(
16eγ −1 log(1/a)

)n + 6 · 16nγ n/201

+ (
4e log

(
121/n/a

)
/β

)n
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for all γ < γ0/4 and n ≥ n0(γ, a). Now, first choose a < 1 sufficiently close to 1
such that we also have 16(e log(1/a))1/202 < 1/4 and then γ > 0 such that 1/γ is
an integer and γ 1/201 ≤ eγ −1 log(1/a).

It follows that, for n sufficiently large,

P
(

sup
s∈[0,1]

∣∣Zn+1(s) − Zn(s)
∣∣ ≥ 2an

)
≤ 11 · 4−n.

Increasing a < 1 and C ensures that (27) holds with b = 1/4 for all n ≥ 1. The
functions Z1

n, . . . ,Z
4
n at the four children of the root are each distributed as Zn−1,

and they also converge uniformly to continuous limits denoted Z(1), . . . ,Z(4).
The random functions Z(1), . . . ,Z(4) are independent and distributed as Z. Equa-
tion (24) and independence imply

Z(s) = 1{s<U}
[
(UV )βZ(1)

(
s

U

)
+ (

U(1 − V )
)β

Z(2)

(
s

U

)]

+ 1{s≥U }
[(

(1 − U)V
)β

Z(3)

(
s − U

1 − U

)

+ (
(1 − U)(1 − V )

)β
Z(4)

(
s − U

1 − U

)]
,

almost surely, considered as random continuous paths. In particular, the distribu-
tion of Z solves the distributional fixed-point equation (14).

Finally, we look at the moments of ‖Zn‖ = sups∈[0,1] |Zn(s)| and ‖Z‖ =
sups∈[0,1] |Z(s)|.

PROPOSITION 11. For every p ≥ 1, we have E[‖Z‖p] < ∞ and ‖Zn −Z‖ →
0 in Lp .

PROOF. Let �(x) = P(‖Zn+1 − Zn‖ ≥ x) and a < 1,C > 0 such that (27) is
satisfied with b = 1/4. Then, by (26) and the upper bound (28), we have

E
[‖Zn+1 − Zn‖] =

∫ ∞
0

�n(x)dx =
∫ an

0
�n(x)dx +

∫ 2n+1

an
�n(x) dx.(32)

The first summand is at most an, the second one at most C · 2−(n−1) by (27).
Altogether, there exist R > 0 and 0 < q < 1 with

E
[‖Zn+1 − Zn‖] ≤ Rqn

for all n. Furthermore, for any p ∈ N, our proof also provides (27) for a constant
C > 0 and b = 4−p by increasing the value of a. Therefore, replacing an and 2n+1

by anp , respectively, 2(n+1)p in (32) shows that the pth moment of ‖Zn+1 − Zn‖
is also exponentially small in n for any p > 1. Then, since Zn = h + ∑n

k=1(Zk −
Zk−1), using Minkowski’s inequality,

E
[‖Zn‖p]1/p ≤

n∑
k=1

E
[‖Zk − Zk−1‖p]1/p + ‖h‖,
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which is uniformly bounded in n. It follows that E[‖Z‖p] < ∞ for all p ≥ 1, and
that E[‖Zn − Z‖p] → 0 as n → ∞. �

5. Uniform convergence of the mean. The proof that assumption (A1)
holds for Proposition 7 requires that we show convergence of the first moment
n−βE[Cn(s)] toward μ1(s) = K1h(s) uniformly on [0,1]. Note that, since Cn(s)

is continuous at any fixed s ∈ [0,1] almost surely, the function s → E[Cn(s)] is
continuous for any n. Curien and Joseph [6] only show point-wise convergence,
and proving uniform convergence requires a good deal of additional arguments.
Unfortunately, a good portion of the work consists of a tedious tightening of the
strategy developed in [6].

PROPOSITION 12. There exists ε > 0 such that

sup
s∈[0,1]

∣∣n−βE
[
Cn(s)

] − μ1(s)
∣∣ = O

(
n−ε).

In other words, n−βE[Cn(s)] converges uniformly to μ1 on [0,1] with polynomial
rate.

We prove a Poissonized version. Since Cn(s) is increasing in n for every fixed s,
the de-Poissonization only relies on routine arguments based on concentration for
Poisson random variables, and we omit the details. Consider a Poisson point pro-
cess with unit intensity on [0,1]2 ×[0,∞). The first two coordinates represent the
location inside the unit square; the third one represents the time of arrival of the
point. Let Pt(s) denote the partial match cost for a query at x = s in the quadtree
built from the points arrived by time t .

PROPOSITION 13. There exists ε > 0 such that

sup
s∈[0,1]

∣∣t−βE
[
Pt(s)

] − μ1(s)
∣∣ = O

(
t−ε).

The proof of Proposition 13 relies crucially on two main ingredients: first,
a strengthening of the arguments developed by Curien and Joseph [6], and the
speed of convergence E[Cn(ξ)] to E[μ1(ξ)] for a uniform query line ξ ; see (2).
By symmetry, we write for any δ ∈ (0,1/2),

sup
s∈[0,1]

∣∣t−βE
[
Pt(s)

] − μ1(s)
∣∣

= sup
s∈[0,1/2]

∣∣t−βE
[
Pt(s)

] − μ1(s)
∣∣(33)

≤ sup
s≤δ

∣∣t−βE
[
Pt(s)

] − μ1(s)
∣∣ + sup

s∈(δ,1/2]
∣∣t−βE

[
Pt(s)

] − μ1(s)
∣∣.

The two terms on the right-hand side above are controlled by the following lem-
mas.
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LEMMA 14 (Behavior on the edge). We have

sup
s≤δ

∣∣t−βE
[
Pt(s)

] − μ1(s)
∣∣ ≤ 2β sup

r≥t/2
r−βE

[
Pr(δ)

] + K1δ
β/2.(34)

LEMMA 15 (Behavior away from the edge). There exist constants C1,C2, η

with 0 < η < β and γ ∈ (0,1) such that, for any integer k and real number δ ∈
(0,1/2) we have, for any real number t > 0,

sup
s∈[δ,1/2]

∣∣t−βE
[
Pt(s)

] − μ1(s)
∣∣ ≤ C1δ

−1(1 − γ )k + C2k2k(β − η)−2kt−η.

Before going further, we indicate how these two lemmas imply Proposition 13.
By Lemmas 14 and 15, we have for any δ ∈ (0,1/2) and natural number k ≥ 0

sup
s∈[0,1]

∣∣t−βE
[
Pt(s)

] − μ1(s)
∣∣

≤ 3K1δ
β/2 + 3C1δ

−1(1 − γ )k + 5C2kt−η2k(β − η)−2k.

Choosing δ = t−ν and k = �α log t� for ν,α > 0 to be determined, we obtain

sup
s∈[0,1]

∣∣t−βE
[
Pt(s)

] − μ1(s)
∣∣ ≤ 3K1t

−νβ/2 + 3C1t
ν(1 − γ )α log t−1

+ 5C2t
−η[

2/(β − η)2]α log t
α log t.

First pick α > 0 small enough that

α log
(

2

(β − η)2

)
< η.

This α being fixed, choose ν > 0 small enough that ν + α log(1 − γ ) < 0. The
claim follows.

Since Curien and Joseph [6] prove convergence at any s ∈ (0,1), it comes as
no surprise that the convergence may be strengthened to uniform convergence on
compacts of (0,1) by checking carefully the (long) sequence of bounds in [6]
(Lemma 15). We provide the details in the Appendix for the sake of completeness.
The behavior at the edge, however (Lemma 14), consists precisely of controlling
what happens when the bounds in [6] do not work any longer; this is why we
provide here the additional arguments. To deal with the term involving the values
of s ∈ [0, δ], we relate the value E[Pt(s)] to E[Pt(δ)]. The term E[Pt(δ)] will then
be shown to be small using the pointwise convergence and choosing δ small.

The function μ1(s) = limt→∞ E[Pt(s)] is monotonic for s ∈ [0,1/2]. It seems,
at least intuitively, that for any fixed real number t > 0, E[Pt(s)] should also be
monotonic for s ∈ [0,1/2], but we were unable to prove it. The following weaker
version will be sufficient for our needs.
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PROPOSITION 16 (Almost monotonicity). For any s < 1/2 and ε ∈ [0,1 −
2s), we have

E
[
Pt(s)

] ≤ E
[
Pt(1+ε)

(
s + ε

1 + ε

)]
.

The idea underlying Proposition 16 requires that we understand what happens
to the quadtree upon considering a larger point set. For a finite point set P ⊂
[a, b] × [0,1] × [0,∞), we let V (P) and H(P) denote, respectively, the set of
vertical and horizontal line segments of the quadtree built from P .

LEMMA 17. Let P = {p1, . . . , pn} be a set of points with pi = (xi, yi, ti) ∈
[a2, a3]× [0,1]× [0,∞) ordered by their t coordinate, that is, ti ≤ ti+1. Addition-
ally we assume P to be in general position, meaning that all x-coordinates are
pairwise different, and the same holds true for the y and t coordinates. Further-
more let Q = {p′

1, . . . , p
′
m} ⊆ [a1, a2]× [0,1]× [0,∞) with p′

i = (x′
i , y

′
i , t

′
i ) again

ordered according to their third coordinate such that P ∪ Q ⊆ [a1, a3] × [0,1] ×
[0,∞) is again in general position. Then we have

H(P ∪ Q) ⊃ H(P) and V (P ∪ Q) ⊂ V (P).

PROOF. We assume for a contradiction that the assertion is wrong and focus
on the case that H(P) �⊂ H(P ∪ Q); the other case is handled analogously. Let i1
be the index of the “first” point in P such that the horizontal line of pi1 is shorter
(at least on the right or left-hand side of the point) in the quadtree built from P ∪ Q
than it is in the one built from P . Here, first refers to the time coordinate t . Now,
by construction there must be an index i2 such that the vertical line of pi2 blocks
the horizontal line of pi1 in P ∪ Q but not in P . We again choose i2 such that ti2
is minimal with this property; by construction ti2 < ti1 . Repeating the argument
gives the existence of an index i3 and a point pi3 whose horizontal line blocks the
vertical line of pi2 in P but not in P ∪ Q with ti3 < ti2 . This obviously contradicts
the choice of i1. �

PROOF OF PROPOSITION 16. Consider the unit square [0,1]2 and the ex-
tended box [−ε,1]×[0,1], and a single Poisson point process on [−ε,1]×[0,1]×
[0, t] with unit intensity. Write P ε

t (s) for the number of (horizontal) lines intersect-
ing {x = s} in the quadtree formed by all the points. Similarly, let Pt(s) = P 0

t (s)

be the corresponding quantity when the quadtree is formed using only the points
falling inside [0,1]2. Then, for this coupling, we have by Lemma 17,

Pt(s) ≤ P ε
t (s)

d= Pt(1+ε)

(
s + ε

1 + ε

)
.

Taking expectations completes the proof. �
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PROOF OF LEMMA 14. We use Proposition 16 to relate E[Pt(s)] to E[Pt ′(δ)]
for some t ′. Choosing ε = (δ−s)/(1−δ) yields t ′ = t (1−s)/(1−δ) ≤ t (1−δ)−1.
Thus, for any δ ∈ (0,1/2) and t > 0 we have

sup
s≤δ

∣∣t−βE
[
Pt(s)

] − μ1(s)
∣∣

≤ sup
s≤δ

t−βE
[
Pt(s)

] + μ1(δ)

≤ sup
s≤δ

t−βE
[
Pt ′(δ)

] + μ1(δ)

≤ t−βE
[
Pt/(1−δ)(δ)

] + μ1(δ)

≤ (1 − δ)−β sup
r≥t/2

r−βE
[
Pr(δ)

] + μ1(δ).

This completes the proof since δ ≤ 1
2 and μ1(s) ≤ K1δ

β/2. �

6. Moments and supremum: Proofs of Theorems 4, 5 and Corollary 6.
Our main result implies the convergence of the second moment of the discrete
toward that of the limit process. This section is devoted to identifying this limit; in
particular, it provides an explicit expression for the limit variance.

We first focus on the moments. The definition of the process Z(s) implies that
the second moment μ2(s) = E[Z(s)2] satisfies an integral equation. We have

μ2(s) = 2E
[
Y 2β]{∫ 1

s
x2β · μ2

(
s

x

)
dx +

∫ s

0
(1 − x)2β · μ2

(
1 − s

1 − x

)
dx

}

+ 2E
[[

Y(1 − Y)
]β] ·

{∫ 1

s
x2βh

(
s

x

)2

dx +
∫ s

0
(1 − x)2βh

(
1 − s

1 − x

)2

dx

}
.

It now follows that μ2 satisfies the following integral equation:

μ2(s) = 2

2β + 1

{∫ 1

s
x2βμ2

(
s

x

)
dx +

∫ s

0
(1 − x)2βμ2

(
1 − s

1 − x

)
dx

}

+ 2B(β + 1, β + 1) · h2(s)

β + 1
.

One easily verifies that the function f given by f (s) = c2h
2(s) solves the above

equation when c2 is given by

c2 = 2B(β + 1, β + 1)
2β + 1

3(1 − β)
.(35)

In order to show that μ2 = c2h(s)2, it now suffices to prove that the integral
equation satisfied by μ2 admits a unique solution in a suitable function space. To
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this end, we show that the map K defined below is a contraction for the supremum
norm:

Kf (s) = 2

2β + 1

{∫ 1

s
x2βf

(
s

x

)
dx +

∫ s

0
(1 − x)2βf

(
1 − s

1 − x

)
dx

}
(36)

+ 2B(β + 1, β + 1)
h(s)2

β + 1
.

For any two functions f and g, measurable and bounded on [0,1], we have

‖Kf − Kg‖
= 2

2β + 1
sup

s∈[0,1]

∣∣∣∣
∫ 1

s
x2β

(
f

(
s

x

)
− g

(
s

x

))
dx

+
∫ s

0
(1 − x)2β

(
f

(
1 − s

1 − x

)
− g

(
1 − s

1 − x

))
dx

∣∣∣∣
≤ 2

2β + 1

(
sup

s∈[0,1]

{∫ 1

s
x2β dx

}
+ sup

s∈[0,1]

{∫ s

0
(1 − x)2β dx

})
‖f − g‖

= 4

(2β + 1)2 ‖f − g‖.

Since 2β + 1 > 2, the operator K is a contraction on the set of measurable and
bounded functions on [0,1] equipped with the supremum norm. Banach fixed
point theorem then ensures that the fixed point is unique, which shows that indeed
E[Z(s)2] = c2h

2(s). Then, K2 = c2 − 1 and one obtains easily the expression for
Var(Z(ξ)) in (7) by integration.

Analogously one shows that the mth moment of Z(s) is of the form cmh(s)m

where cm solves (11). The Lipschitz constant of the corresponding operator in (36)
is 4/(βm + 1)2, hence again smaller than one. This immediately implies that
(cm)m≥1 are the moments of Z(s)/h(s), independently of s.

Furthermore, there is only one distribution with these moments. We let � de-
note the corresponding random variable. To prove this, we show that there exists a
constant A1 > 0 such that

cm ≤ Am
1 mm, m ≥ 1,(37)

which completes the proof of the proposition by the Carleman condition; see, for
example, [14], page 228.

Suppose that (37) is satisfied for all m < m0. By Stirling’s formula, there exists
a constant A2 such that for all m ≥ 1 and 1 ≤ 	 < m,(

m

	

)
B

(
β	 + 1, β(m − 	) + 1

) ≤ A2

m

(
		(m − 	)m−	

mm

)β−1

.
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Next, the prefactor in (11) is of order 1/m, and hence bounded by A3/m for some
A3 > 0 and all m > 1. Using this, the induction hypothesis and xx(1 − x)1−x ≤ 1
for all x ∈ [0,1] it follows that

cm0 ≤ A2A3

m2
0

m0−1∑
	=1

(
		(m0 − 	)m0−	)β−1

m
m0(1−β)
0 c	cm0−	

≤ A
m0
1 A2A3

m2
0

m0−1∑
	=1

m
βm0
0 m

m0(1−β)
0

≤ A
m0
1 m

m0
0 ,

if m0 is chosen large enough. Finally, it is easy to see that any solution of (10)
with unit mean and finite second moment has finite moments of all orders. Thus,
its moments also satisfy (11) and it must coincide with � in distribution.

We now consider the supremum Sn = sups∈(0,1) Cn(s). The uniform conver-
gence of n−βCn directly implies, as n → ∞,

S̄n := Sn

K1nβ
→ S

in distribution with S = supt∈[0,1] Z(t) where Z is the process constructed in Sec-
tion 4. The results obtained so far yield that, stochastically,

S ≤ (
(UV )βS(1) + (

U(1 − V )
)β

S(2))
∨ ((

(1 − U)V
)β

S(3) + (
(1 − U)(1 − V )

)β
S(4)),

where S(1), . . . , S(4) are independent copies of S, also independent of (U,V )

which are themselves independent and uniform on [0,1]. To complete the proof
of Theorem 4, it remains to prove that, for all m, E[Sm] < ∞ and that E[S̄m

n ] →
E[Sm], as n → ∞. Theorem 12 and Corollary 21 in [32] provide uniform inte-
grability of S̄2

n . It follows that S̄n is bounded in L2 and hence also in L1. For
higher moments, we proceed by induction. Let B1 be such that E[S̄m

n ] ≤ B1 for all
m < m0 and n ≥ 1 with m0 ≥ 2. Furthermore, choose B2 such that E[S̄m0

n ] ≤ B2

for all n < n0. Then, the recurrence for Cn(t) yields

E
[
S̄m0

n0

] ≤ E
[((

I
(n)
1

n

)β

S̄
(1)

I
(n)
1

+
(

I
(n)
2

n

)β

S̄
(1)

I
(n)
2

)m0]

+ E
[((

I
(n)
3

n

)β

S̄
(3)

I
(n)
3

+
(

I
(n)
4

n

)β

S̄
(4)

I
(n)
4

)m0]

≤ 4m0B2
1 + 4B2E

[(
I

(n)
1

n

)βm0]
.
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Note that, as n → ∞, we have E[(I (n)
1 /n)βm0] → E[(UV )βm0] = (βm0 + 1)−2,

thus choosing n0 and B2 appropriately we have E[S̄m0
n0 ] ≤ B2 since m0 ≥ 2. This

shows that S̄n is bounded in Lm0 , and the assertion follows.

7. Partial match queries in random 2-d trees.

7.1. 2-d trees: Constructions and recursions. The random 2-d tree was in-
troduced by Bentley [1] and is used to store two-dimensional data just as the
two-dimensional quadtree. It is also called two-dimensional binary search tree
since it is binary and mimics the construction rule of binary search tree for two-
dimensional data. Our aim in this section is to introduce 2-d trees, and extend to 2-d
trees the results for partial match queries in quadtrees we obtained in the previous
sections. All the results can be transferred (convergence as a process, convergence
of all moments at one or multiple points, convergence of the supremum in distri-
bution and for all moments); we will mainly state the forms of the theorems for
2-d trees, and focus on the points that deserve some verifications.

CONSTRUCTION OF 2-D TREES. The data are partitioned recursively, as in
quadtrees, but the splits are only binary; since the data is two-dimensional, one al-
ternates between vertical and horizontal splits, depending on the parity of the level
in the tree. More precisely, consider a point sequence p1,p2, . . . , pn ∈ [0,1]2. As
we build the tree, regions are associated to each node. Initially, the root is associ-
ated with the entire square [0,1]2. The first item p1 is stored at the root, and splits
vertically the unit square in two rectangles, which are associated with the two chil-
dren of the root. More generally, when i points have already been inserted, the
tree has i internal nodes, and i + 1 (lower level) regions associated to the external
nodes and forming a partition of the square [0,1]2. When point pi+1 is stored in
the node, say u, corresponding to the region it falls in, divides the region in two
sub-rectangles that are associated to the two children of u, which become external
nodes; that last partition step depends on the parity of the depth of u in the tree: if
it is odd we partition horizontally, if it is even we partition vertically. See Figure 3.
(Of course, one could start at the root with a horizontal split.)

PARTIAL MATCH QUERIES. From now on, we assume that data consists of a set
of independent random points, uniformly distributed on the unit square. Unlike in
the case of quadtrees, the direction of a partial match query line with respect to the
direction of the root does matter. Let C=

n (t) and C⊥
n (t) denote the number of nodes

visited by a partial match for a query at position t ∈ [0,1] when the directions
of the split at the root and the query are parallel and perpendicular, respectively.
Subsequently, we will analyze both quantities synchronously as far as possible. We
will always consider directions with respect to the query line, and although some
of the expressions (for the sizes of the regions, e.g.) will be symmetric, we keep
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FIG. 3. An example of a 2-d tree is shown: on the left, the partition of [0,1]2 induced by the points;
on the right, the corresponding binary tree. The colored nodes are the ones that are visited when
performing the partial match query materialized by the dashed line.

them distinct for the sake of clarity. (We also assume without loss of generality
that the query line is always vertical, and that the direction of the cut at the root
may change.)

As in a quadtree, a node is visited by a partial match query if and only if it is
inserted in a subregion that intersects the query line. Unfortunately, these nodes
are not easily identifiable after the insertion of n points; the value of the quantity
C=

n (s) is obtained by adding twice the number of lines intersecting the query line
at s and the number of boxes that are intersected by the query line and will have
their next split perpendicular to the query line (i.e., the depth of the corresponding
external nodes in the tree have odd parity).

RECURSIVE DECOMPOSITIONS. Let (U,V ) be the first point which partitions
the unit square. By construction, since the directions of the partitioning lines alter-
nate, both processes C=

n (t) and C⊥
n (t) are coupled: when the query line is perpen-

dicular to the split direction, the recursive search occurs in both child sub-regions
whose sizes we denote by Nn and Sn, and we have

C⊥
n (s)

d= 1 + C
(=,1)
Nn

(s) + C
(=,2)
Sn

(s);(38)

when the query line and the first split at the root are parallel, only one of the sub-
regions (of sizes Ln and Rn) is recursively visited, and we have

C⊥
n (s)

d= 1 + 1{s<U}C(=,1)
Ln

(
s

U

)
+ 1{s≥U }C(=,2)

Rn

(
s − U

1 − U

)
.(39)

Here (C
(=,1)
n )n≥0, (C

(=,2)
n )n≥0 are independent copies of (C=

n )n≥0, independent of
(Nn,Sn) in (38) and (C

(⊥,1)
n )n≥0, (C(⊥,2))n≥0 are independent copies of (C⊥

n )n≥0,
independent of (Ln,Rn) in (39). Moreover, here and in the following distributional
recurrences and fixed-point equations involving a parameter s ∈ [0,1] are to be
understood on the level of càdlàg or continuous functions unless stated otherwise.
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As in the case of partial match in random quadtrees, the expected value at a
random uniform query line ξ , independent of the tree is of order nβ for the same
constant β defined in (1), and we have

E
[
C=

n (ξ)
] ∼ κ=nβ, E

[
C⊥

n (ξ)
] ∼ κ⊥nβ

for some constants κ= > 0, κ⊥ > 0. This was first proved by Flajolet and
Puech [19]. A more detailed analysis by Chern and Hwang [5] shows that

E
[
C=

n (ξ)
] = κ=nβ − 2 + O

(
nβ−1)

, κ= = 13(3 − 5β)

4
· �(2β + 2)

�(β + 1)3 ,(40)

E
[
C⊥

n (ξ)
] = κ⊥nβ − 3 + O

(
nβ−1)

, κ⊥ = 13(2β − 1)

2
· �(2β + 2)

�(β + 1)3 .(41)

Observe that κ= = 1
213(3 − 5β)κ and κ⊥ = 13(2β − 1)κ , where κ is the leading

constant for E[Cn(ξ)] in the case of quadtrees defined in (1).
HOMOGENEOUS RECURSIVE RELATIONS AND LIMIT BEHAVIOR. For our pur-

poses, and although it yields more complex expressions, it is more convenient to
expand the recursion one more level to obtain recursive relations that only involve
quantities of the same type, only (C=

n )n≥0 or only (C⊥
n )n≥0: each one of the first

two sub-region at the root is eventually split, and this gives rise to a partition into
four regions at level two of the tree. Let (U	,V	) and (Ur,Vr) be, respectively, the
first points on each side (left and right) of the first cut, when it is parallel to the
query line. Let also (Uu,Vu) and (Ud,Vd) be the first points on each side of the
cut (up and down) when it is perpendicular to the query line. Note that U,V	,Vr

are independent and uniform on [0,1], and so are V,Uu and Ud .
Let I

(n)
=,1, . . . , I

(n)
=,4 and I

(n)
⊥,1, . . . , I

(n)
⊥,4 denote the number of data points falling

in these regions when the root and the query line are parallel and perpendicular,
respectively. The distributions of I

(n)
=,1, . . . , I

(n)
=,4 on the one hand, and I

(n)
⊥,1, . . . , I

(n)
⊥,4

on the other hand are slightly more involved than in the case of quadtrees. One has,
for example, given the values of U,V	,Vr it holds

I
(n)
=,1

d= Bin
((

Bin(n − 1;U) − 1
)
+,V	

)
and given V,Ud,Uu

I
(n)
⊥,1

d= Bin
((

Bin(n − 1;V ) − 1
)
+,Ud

)
,

where the inner and outer binomials are independent. Analogous expressions hold
true for the remaining quantities.

Substituting (38) and (39) into each other gives

C=
n (s)

d= 1 + 1{s<U}
[
1{Ln>0} + C

(=,1)

I
(n)
=,1

(
s

U

)
+ C

(=,2)

I
(n)
=,2

(
s

U

)]
(42)

+ 1{s≥U}
[
1{Rn>0} + C

(=,3)

I
(n)
=,3

(
s − U

1 − U

)
+ C

(=,4)

I
(n)
=,4

(
s − U

1 − U

)]
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and

C⊥
n (s)

d= 1 + 1{Sn>0} + 1{Nn>0} + 1{s<Ud }C(⊥,1)

I
(n)
⊥,1

(
s

Ud

)

+ 1{s<Uu}C(⊥,2)

I
(n)
⊥,2

(
s

Uu

)
(43)

+ 1{s≥Ud }C(⊥,3)

I
(n)
⊥,3

(
s − Ud

1 − Ud

)
+ 1{s≥Uu}C(⊥,4)

I
(n)
⊥,4

(
s − Uu

1 − Uu

)
,

where (C
(=,i)
n )n≥0, i = 1, . . . ,4, are independent copies of (C=

n )n≥0, which are
also independent of the family (U, I

(n)
=,1, I

(n)
=,2, I

(n)
=,3, I

(n)
=,4) in (42), and (C

(⊥,i)
n )n≥0,

i = 1, . . . ,4, are independent copies of (C⊥
n )n≥0, which are also independent

of (Ud,Uu, I
(n)
⊥,1, I

(n)
⊥,2, I

(n)
⊥,3, I

(n)
⊥,4) in (43). Asymptotically, any limit Z=(s) of

n−βC=
n (s) should satisfy the following fixed-point equation:

Z=(s)
d= 1{s<U}

[
(UV	)

βZ(=,1)

(
s

U

)
+ (

U(1 − V	)
)β

Z(=,2)

(
s

U

)]

+ 1{s≥U }
[(

(1 − U)Vr

)β
Z(=,3)

(
s − U

1 − U

)
(44)

+ (
(1 − U)(1 − Vr)

)β
Z(=,4)

(
s − U

1 − U

)]
,

where Z(=,i), i = 1, . . . ,4, are independent copies of Z=, independent of
(U,V	,Vr). Likewise any limit of n−βC⊥

n (s) should satisfy

Z⊥(s)
d= 1{s<Ud }(UdV )βZ(⊥,1)

(
s

Ud

)
+ 1{s<Uu}

(
Uu(1 − V )

)β
Z(⊥,2)

(
s

Uu

)

+ 1{s≥Ud }
(
(1 − Ud)V

)β
Z(⊥,3)

(
s − Ud

1 − Ud

)
(45)

+ 1{s≥Uu}
(
(1 − Uu)(1 − V )

)β
Z(⊥,4)

(
s − Uu

1 − Uu

)
,

where Z(⊥,i), i = 1, . . . ,4, are independent copies of Z⊥, independent of
(Ud,Uu,V ). Moreover, according to (38) and (39), we expect a connection be-
tween these two limits. This will be stated in the first result of the next section and
always allows us to focus on C=

n (s) first. The result for C⊥
n can then be deduced

easily afterwards.

7.2. About the conditions to use the contraction argument. EXISTENCE OF

CONTINUOUS LIMIT PROCESSES. As in the case of quadtrees, one of the first
steps consists of showing the existence of the limit processes Z⊥ and Z=.
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PROPOSITION 18. There exist two random continuous processes Z=,Z⊥ with
E[Z=(s)] = E[ZH(s)] = h(s), finite absolute moments of all orders such that Z=
satisfies (44) and Z⊥ satisfies (45). The laws of Z= and Z⊥ are both unique under
these constraints. Additionally:

•
2

β + 1
Z⊥(s)

d= V βZ(=,1)(s) + (1 − V )βZ(=,2)(s)(46)

and

β + 1

2
Z=(s)

d= 1{s<U}UβZ(⊥,1)

(
s

U

)
+ 1{s≥U }(1 − U)βZ(⊥,2)

(
s − U

1 − U

)
.

• For every fixed s ∈ [0,1], Z=(s) is distributed like Z(s) where Z is the pro-
cess constructed in Section 4. In particular, Var(Z=(s)) is given in (8) and
Var(Z⊥(s)) = K⊥

2 h2(s), where

K⊥
2 =

(
2c2

2β + 1

(
β + 1

2

)2

+ 2B(β + 1, β + 1)

(
β + 1

2

)2

− 1
)
,(47)

and c2 is defined in (35).
• If ξ is uniform on [0,1] and independent of Z=,Z⊥, then Var(Z=(ξ)) =

Var(Z(ξ)) and

Var
(
Z⊥(ξ)

)
= K⊥

3 =
(

2c2

2β + 1
+ 2B(β + 1, β + 1)

)(
β + 1

2

)2

B(β + 1, β + 1)(48)

−
(

B
(

β

2
+ 1,

β

2
+ 1

))2

.

PROOF. The fixed-point equation (44) is very similar to that in (14), and we
use the approach that has proved fruitful in Section 4. More precisely, the con-
struction of Z(s) slightly modified to Z=(s). Define the operator G= : [0,1]3 ×
C[0,1]4 → C[0,1] by

G=(x, y, z, f1, f2, f3, f4)(s)

= 1{s<x}
[
(xy)βf1

(
s

x

)
+ (

x(1 − y)
)β

f2

(
s

x

)]

+ 1{s≥x}
[(

(1 − x)z
)β

f3

(
s − x

1 − x

)
+ (

(1 − x)(1 − z)
)β

f4

(
s − x

1 − x

)]
.

Then let (as in Section 4)

Z
=,u
n+1 = G=(

Uu,Vu,Wu,Z
=,u1
n ,Z=,u2

n ,Z=,u3
n ,Z=,u4

n

)
, Z

=,u
0 = h(s)
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for all u ∈ T , where {Uv, v ∈ T }, {Vv, v ∈ T } and {Wv,v ∈ T } are three indepen-
dent families of i.i.d. [0,1]-uniform random variables. Lemma 10 remains true for
Z=

n := Z=,∅
n since W=

n equals Wn in distribution where Wn appears in (30). Since
also L=

n and Ln (appearing in Lemma 24) coincide in distribution, (27) holds true
for Z=

n and therefore Proposition 9 remains valid. The existence of all moments
of sups∈[0,1] Z=(s) follows in the same way. Finally, note that Z=

n (s) is distributed
as Zn(s) for all fixed n, s, hence the one-dimensional distributions of Z= and Z

coincide. It is now easy to see that Z⊥ defined by (46) solves (45). The unique-
ness of Z=(s) [resp., Z=(s)] follows by contraction with respect to the ζ2 metric;
compare Lemma 18 in [32]. Finally, the variance of Z⊥(s) can be computed as in
Section 6 but it is much easier to use (46), we omit the calculations. �

UNIFORM CONVERGENCE OF THE MEAN. Comparing construction and recur-
rence for partial match queries in 2-d trees and quadtrees it seems very likely that
this quantities are not only of the same asymptotic order in the case of a uniform
query but also closely related for fixed s ∈ [0,1] and n ∈ N. This can be formalized
by the following lemma:

LEMMA 19. For any s ∈ [0,1] and n ∈ N, we have
1
5E

[
Cn(s)

] ≤ E
[
C=

n (s)
] ≤ 2E

[
Cn(s)

]
.

PROOF. We prove both bounds by induction on n using the recursive decom-
positions (13), (42). Both inequalities are obviously true for n = 0,1. Assume that
the assertions were true for all m ≤ n − 1 and s ∈ [0,1]. We start with the upper
bound which is easier. By (42), we have

E
[
C=

n (s)
] ≤ 2 + E

[
1{s<U}

[
C

(=,1)

I
(n)
=,1

(
s

U

)
+ C

(=,2)

I
(n)
=,2

(
s

U

)]]

+ E
[
1{s≥U }

[
C

(=,3)

I
(n)
=,3

(
s − U

1 − U

)
+ C

(=,4)

I
(n)
=,4

(
s − U

1 − U

)]]
.

Hence, it suffices to show that

E
[
1{s<U}C(=,1)

I
(n)
=,1

(
s

U

)]
≤ 2E

[
1{s<U}C(1)

I
(n)
1

(
s

U

)]
.

This can be done in two steps. First, by conditioning on I
(n)
=,1 and U , using the

induction hypothesis, we have

E
[
1{s<U}C(=,1)

I
(n)
=,1

(
s

U

)]
≤ 2E

[
1{s<U}C(1)

I
(n)
=,1

(
s

U

)]
.

Finally, conditioning on U , I
(n)
=,1 is stochastically smaller than I

(n)
1 which gives

E
[
1{s<U}C(1)

I
(n)
=,1

(
s

U

)]
≤ 2E

[
1{s<U}C(1)

I
(n)
1

(
s

U

)]
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by monotonicity of n → E[Cn(s)]. For the lower bound, note that

E
[
C=

n (s)
] ≥ 1 + E

[
1{s<U}

[
C

(=,1)

I
(n)
=,1

(
s

U

)
+ C

(=,2)

I
(n)
=,2

(
s

U

)]]

+ E
[
1{s≥U}

[
C

(=,3)

I
(n)
=,3

(
s − U

1 − U

)
+ C

(=,4)

I
(n)
=,4

(
s − U

1 − U

)]]
.

Therefore, it is enough to prove

E
[
1{s<U}C(=,1)

I
(n)
=,1

(
s

U

)]
≥ 1

5

(
E

[
1{s<U}C(1)

I
(n)
1

(
s

U

)]
− 1

)
.

This can be done as for the upper bound. First, by the induction hypothesis, we
have

E
[
1{s<U}C(=,1)

I
(n)
=,1

(
s

U

)]
≥ 1

5
E

[
1{s<U}C(1)

I
(n)
=,1

(
s

U

)]
.

The result follows as for the upper bound by the fact that I
(n)
=,1 is stochastically

larger than (I
(n)
1 − 1)+ and C

(1)

(I
(n)
1 −1)+

≥ C
(1)

I
(n)
1

− 1. �

Recalling (40) and (41), it is natural to introduce the constants

K=
1 = κ=

B(β/2 + 1, β/2 + 1)
, K⊥

1 = κ⊥
B(β/2 + 1, β/2 + 1)

(49)

with K⊥
1 = 2

1 + β
K=

1 ,

and the functions μ⊥
1 (s) = K⊥

1 h(s), and μ=
1 (s) = K=

1 h(s).

PROPOSITION 20. There exists ε= > 0 such that

sup
s∈[0,1]

∣∣n−βE
[
C=

n (s)
] − μ=

1 (s)
∣∣ = O

(
n−ε=)

,

and the analogous result holds true for E[C⊥
n (s)].

We proceed as in Section 5 by considering the continuous-time process P =
t (s).

Since we have already proved an analogous result for the case of quadtree, we give
a brief sketch that focuses on the few locations where the arguments have to be
modified.

SKETCH OF PROOF. The first step is to prove point-wise convergence which
is done as Curien and Joseph [6]. By Lemma 19, using a Poisson(t) number of
points, we have

1
5 E

[
Pt(s)

] ≤ E
[
P =

t (s)
] ≤ 2E

[
Pt(s)

]
.(50)
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Let τ=
1 be the arrival time of the first point which yields a partitioning line that

intersects the query line {x = s}, and let Q=
1 = Q=

1 (s) be the lower of the two
rectangles created by this cut (for the expected value we are about to compute,
they both look the same). Let ξ=

1 := ξ=
1 (s) be the relative position of the query

line s within the rectangle Q=
1 and M=

1 = Leb(Q=
1 ). Then, denoting τ the arrival

time of the first point in the process, we have

E
[
P =

t (s)
] = P(t ≥ τ) + P

(
t ≥ τ=

1
) + 2E

[
P̃ =

M=
1 t−τ=

1

(
ξ=

1
)]

,

where (P̃ =(t))t≥0 denotes an independent copy of (P =(t))t≥0 and P̃ =(t) = 0 for
t < 0. Similarly, let τ=

k be the arrival time of the first point which cuts Q=
k−1 per-

pendicularly to the query line. Let Q=
k be the lower of the two rectangles created

by this cut, and let ξ=
k be the position of the query line s relative to the rectangle

Q=
k . With this notation and M=

k = Leb(Q=
k ), we have

E
[
P =

t (s)
] = g=

k (t) + 2kE
[
P̃ =

M=
k t−τ=

k

(
ξ=
k

)]
,

where 0 ≤ g=
k (t) ≤ 2k+1.

We need to modify the inter-arrival times ζ ′=
k = τ=

k − τ=
k−1. We can split ζ ′=

k

in the time it takes for the first vertical point to fall in Q=
k−1 which we denote by

ζ ′=,1
k and the remaining time by ζ ′=,2

k . Letting M=
k = Leb(Q=

k ), the normalized
versions of the inter-arrival times with unit mean are

ζ
=,1
k = ζ ′=,1

k · M=
k−1,

ζ
=,2
k =

(
ξ=
k

ξ=
k−1

1{ξ=
k <ξ=

k−1} + ξ=
k−1

ξ=
k

1{ξ=
k ≥ξ=

k−1}
)
ζ ′=,2

k · M=
k−1 ≥ ζ ′=,2

k · M=
k−1.

Write Mk = Mk/Mk−1. Observe that, given M=
0 , . . . , M=

k , the random variable
F=

k = M=
k · τ=

k is not independent of (ξ	)0≤	≤k , a property which is used in [6]
and in the proof of Lemma 15 in the present paper. However we can use the trivial
lower bound 0 ≤ Fk and the upper bound obtained by bounding ζ ′=,2

k from above

by ζ
=,2
k /M=

k−1. Then, using almost sure monotonicity of Pt(s) (in t) and (50) to
transform bounds for the mean in the quadtree to bounds in the 2-d tree (and vice
versa), it is easy to see that the techniques of Section 4 in [6] work equally well
in this case. The limit μ=

1 (s) is identified as in Section 5 of [6] since both limits
satisfy the same fixed-point equation.

The generalization to uniform convergence with polynomial rate can be worked
out as in Section 5 (of the present document) using the modifications we have
described above. The constants appearing in the course of Section 5 need to be
modified, but ε= may be chosen to equal the value of ε in Proposition 13. The
de-Poissonization is routine, and we omit the details.

Finally, we indicate how to proceed with E[C⊥
n (s)]. The arguments above can

be used to treat prove uniform convergence of n−βE[C⊥
n (s)] on [0,1]; we present
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a direct approach relying on (38). We have

n−βE
[
C⊥

n (s)
] = n−β + 2n−βE

[
C=

Sn
(s)

]

= n−β + 2
∫ 1

0

n−1∑
k=0

(
μ=

1 (s) + O
(
k−ε=))kβ

nβ
P

(
Bin(n − 1, v) = k

)
dv

= n−β + 2μ=
1 (s) · E[Bin(n − 1,V )β]

nβ

+ O
(
n−βE

[
Bin(n − 1,V )β−ε=])

= μ⊥
1 (s) + O

(
n−ε=)

,

uniformly in s ∈ [0,1] using Minkowski’s inequality, the concentration for bino-
mial in (21), and (49) for the first term and Jensen’s inequality for the second.

�

7.3. The limiting behavior in 2-d trees. We are finally ready to state the ver-
sion of our main result for 2-d trees. It is proved along the same lines we used for
the case of quadtrees, and we omit the details.

THEOREM 21. With the processes Z= and Z⊥ of Proposition 18 we have(
C=

n (s)

K=
1 nβ

)
s∈[0,1]

→ (
Z=(s)

)
s∈[0,1],

(
C⊥

n (s)

K⊥
1 nβ

)
s∈[0,1]

→ (
Z⊥(s)

)
s∈[0,1],

in distribution in D[0,1] endowed with the Skorokhod topology. Here K=
1 and K⊥

1
are defined in (49). For s ∈ [0,1]

n−βE
[
C=

n (s)
] → K=

1 h(s), n−2β Var
(
C=

n (s)
) → (

K=
1

)2
K2h(s)2

and

n−βE
[
C⊥

n (s)
] → K⊥

1 h(s), n−2β Var
(
C⊥

n (s)
) → (

K⊥
1

)2
K⊥

2 h(s)2,

where K2 is given in (8) and K⊥
2 in (47).

If ξ is uniformly distributed on [0,1], independent of (C=
n )n≥0, (C

⊥
n )n≥0 and

Z=,Z⊥, then

C=
n (ξ)

K=
1 nβ

d−→ Z=(ξ),
C⊥

n (ξ)

K⊥
1 nβ

d−→ Z⊥(ξ),

with convergence of the first two moments in both cases. In particular

Var
(
C=

n (ξ)
) ∼ K=

4 n2β, Var
(
C⊥

n (ξ)
) ∼ K⊥

4 n2β,

where K=
4 = (K=

1 )2K3 ≈ 0.69848, K⊥
4 = (K⊥

1 )2KV
3 ≈ 0.77754, with K3 =

Var(Z(ξ)) in (7) and K⊥
3 in (48).
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Note that since Z=(s) equals Z(s) in distribution for fixed s ∈ [0,1] we can
characterize Z=(s) as in (9). (46) together with Proposition 18 implies that for
fixed s ∈ [0,1]

Z⊥(s)
d= �⊥ · h(s) with �⊥ = β + 1

2

(
V β� + (1 − V )β� ′),

where � ′ is an independent copy of � , � being defined in Theorem 5 and V is
independent of (�,� ′). In particular, we have

E
[(

�⊥)m] =
(

β + 1

2

)m m∑
	=0

(
m

	

)
B

(
β	 + 1, β(m − 	) + 1

)
c	cm−	

for m ≥ 2 where cm = E[�m] satisfies recursion (11) and c0 = c1 = 1.
Also, as in the quadtree case, it is possible to give convergence of mixed mo-

ments of arbitrary order, compare Corollary 6, and distributional and moment con-
vergence of the suprema of the processes after rescaling as in Theorem 4.

APPENDIX A: ABOUT THE GEOMETRY OF RANDOM QUADTREES

LEMMA 22. Let Wn denote the maximum width of a cell at level n in the
construction of Zn and c < 1. Then

P
(
Wn ≥ cn) ≤ (

4e log(1/c)
)n

.

PROOF. Let Ui , i ≥ 1 be a family of i.i.d. [0,1]-uniform random variables and
Ei , i ≥ 1, be a family of i.i.d. exponential(1) random variables. Then, the union
bound and a large deviations argument yields

P
(
Wn ≥ cn) ≤ 4n · P

(
U1 · U2 · · ·Un ≥ cn)

= 4n · P

(
n∑

i=1

Ei ≤ n log(1/c)

)

≤ 4n exp
(−n

(
log(1/c) − 1 − log log(1/c)

))
≤ (

4e log(1/c)
)n

as desired. �

LEMMA 23. Let Fk be the fill-up level of a random quadtree of size k. Then,
for every integer number x > 22 there exists an integer n0(x) with

P(Fxn < n) ≤ 4n+1x−n/100, n ≥ n0(x).

PROOF. We consider the 4n possible nodes in level n. By symmetry each of
them is occupied by a key with the same probability. Looking at a specific one, for
example, the leftmost, size of the corresponding subtree is stochastically bounded
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by Bin(xn;U1V1 · · ·UnVn) − n where {Ui, i ≥ 1} and {Vi, i ≥ 1} are independent
families of i.i.d. [0,1]-uniform random variables. Then by the union bound applied
to the 4n cells at level n, using Chernoff’s inequality, we have

P(Fxn < n) ≤ 4n · P
(
Bin

(
xn;U1V1 · · ·UnVn

) ≤ n
)

≤ 4n · exp
(−(

1 − n2−n)22n+1)
(51)

+ 4nP
(
U1V1 · · ·UnVn ≤

(
2

x

)n)
.

However, using once again the large deviations principle for sums of i.i.d. expo-
nential random variables Ei, i ≥ 1,

P
(
U1V1 . . .UnVn ≤ (2/x)n

) = P

( 2n∑
i=1

Ei ≥ n log(x/2)

)

≤ exp
(
−2n

(
log(x/2)

2
− 1 − log

log(x/2)

2

))
(52)

≤ x−n/100

for all x > 22 since then e2

2 log2(x/2) ≤ x99/100. Putting (51) and (52), we obtain

P(Fxn < n) ≤ 4n exp
(−2n−1) + 4n · x−n/100 ≤ 4n+1x−n/100

for x > 22 and n large enough. �

LEMMA 24. There exists 0 < γ0 < 1 such that any positive real number γ <

γ0, there exists an integer n1(γ ) with

P
(
Ln < γ n) ≤ 6n+1γ n/201, n ≥ n1(γ ).

PROOF. The joint distribution of the x-coordinates of the vertical lines in the
tree developed up to level n is complex. In particular, it is not that of independent
uniform points on [0,1]. However, we can use a simple coupling with a family of
i.i.d. random points on [0,1]2 that yields a good enough lower bound on Ln.

Let ξi = (Ui,Vi), i ≥ 1 be i.i.d. uniform random points on [0,1]2. Let Tk be the
quadtree obtained by inserting the random points ξi , 1 ≤ i ≤ k, in this order. Write
Di for the depth at which the point ξi is inserted; so, for instance, D1 = 0. Let Kn

be the first k for which the tree Tk is complete up to level n; we mean here that Tk

should have 4n cells at level n, so it should have 4n−1 nodes at level n − 1. Then,
by definition {ξi : i ≥ 1,Di < n} has the distribution of the set of points used to
construct the process Zn. Obviously, {ξi : i ≥ 1,Di < n} ⊆ {ξi : 1 ≤ i ≤ Kn}, and
for any natural number x > 0,

P
(
Ln < γ n) ≤ P

(∃i, j ≤ Kn : i �= j, |Ui − Uj | < γ n)
≤ P

(∃i, j ≤ xn : i �= j, |Ui − Uj | < γ n) + P
(
Kn > xn)

≤ x2n · 2γ n + P
(
Kn > xn)

,
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by the union bound. The random variable Kn is related to the fill-up level of a
random quadtree, which has been studied by [7]; see also [8]. We could not find
a reference giving a precise tail bound, so we proved one here in Lemma 23. We
obtain

P
(
Kn > xn) = P(Fxn < n) ≤ 4

(
4x−1/100)n

as long as x ≥ 22 and n ≥ n0(x) (the condition for the bound in Lemma 23 to
hold). It follows readily that

P
(
Ln < γ n) ≤ 2

(
x2γ

)n + 4
(
4x−1/100)n

≤ 6n+1γ n/201,

upon choosing x = �4100/201γ −100/201� (i.e., x2γ ≈ 4x−1/100) and γ < 4 ·22−2.01

which implies x > 22. This completes the proof. �

APPENDIX B: COMPLEMENTS TO THE PROOF OF PROPOPSITION 12

B.1. Behavior away from the edge: Proof of Lemma 15. The core of the
work is to bound the second term in (33) involving s ∈ (δ,1/2]. We prove that
E[Pt(s)] is uniformly Cauchy on (δ,1/2] by tightening some of the arguments
in [6]. We could start from (14) there, but we feel that the reader would follow
more easily if we re-explain the approach. Observe that most of the quantities
defined in the remaining of the section will depend on s which we will neglect in
the notation for the sake of readability.

The first step is to unfold k levels of the fundamental recurrence (13) in the
Poisson case. Let τ1 be the arrival time of the first point in the Poisson process and
Q1 = Q1(s) be the lower of the two rectangles that intersect the line {x = s} after
inserting the first point. Inductively let τk = τk(s) be the arrival time of the first
point of the process in the region Qk−1 and Qk be the lower of the two rectangles
that hit the line {x = s} at time τk . For convenience, set Q0 = [0,1]2. Finally, let
P̃t be an independent copy of the process Pt (set P̃t ≡ 0 for t < 0). At level one,
using the horizontal symmetry, we have

E
[
Pt(s)

] = P(t ≥ τ1) + 2E
[
P̃Leb(Q1)(t−τ1)(ξ1)

]
,

where ξ1 = ξ1(s) ∈ [0,1] denotes the location of the line {x = s} relative to the
region Q1. If the interval [	1, r1] denotes the projection of Q1 on the first axis, we
have

ξ1(s) = s − 	1

r1 − 	1
.

Write ξk = ξk(s) ∈ [0,1] for the location of the line {x = s} relatively to the region
Qk , and Mk = Leb(Qk). Then, unfolding up to level k, we obtain

E
[
Pt(s)

] = gk(t) + 2kE
[
P̃Mk(t−τk)(ξk)

]
,(53)
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where 0 ≤ gk(t) ≤ 2k −1. Next, we introduce the inter-arrival times ζ ′
k = τk −τk−1

with ζ ′
0 := 0 and their normalized versions ζk = ζ ′

kMk−1 (again ζ0 := 0). Defining
Fk = Mkτk , we can rewrite (53) as

E
[
Pt(s)

] = gk(t) + 2kE
[
P̃Mkt−Fk

(ξk)
]
.(54)

Note that (ζk)k≥1 are i.i.d. exponential random variables with unit mean, also in-
dependent of (ξk,Qk)k≥1.

Before going any further, note that, as we have already seen in Section 4, the re-
gion Qk , is not distributed like a typical rectangle at level k; in particular Leb(Qk)

is not distributed as X1Y1 · · ·XkYk , for independent [0,1]-uniform random vari-
ables Xi,Yi , i ≥ 1. Intuitively, Qk should be stochastically larger than a typical
cell, since it is conditioned to intersect the line {x = s}. This is verified by the
following lemma.

LEMMA 25. For any s ∈ (0,1), any integer k ≥ 0 and 1 ≤ i ≤ 2k , we have

Leb(Qk) = Mk ≥st X1Y1 · · ·XkYk,

where Xi,Yi , i ≥ 1 are independent random variables uniform on [0,1].

PROOF. Consider one split, at a point (X,Y ) uniform inside the unit square.
The split creates four new boxes, two of them being hit by s. Let L be the length
these two cells. Their height is either Y or (1 − Y), which are both uniform. So it
suffices to prove that L ≥st X. By symmetry, it suffices to consider s ≤ 1/2. We
have

L = 1{s≤X}X + 1{s>X}(1 − X).

Write FL(y) = P(L ≤ y) and FX(y) = P(X ≤ y) = y. It is then easy to see that

FL(y) = P(L ≤ y) =
⎧⎪⎨
⎪⎩

0, y ≤ s,

y − s, s ≤ y ≤ 1 − s,

2y − 1, y ≥ 1 − s.

Hence, for all s ∈ (0,1/2) and all y ∈ (0,1) we have FL(y) ≤ y = FX(y). The
result follows. �

The second term will be treated using results for the case s = ξ , for a uni-
form random variable ξ independent of everything else. Curien and Joseph [6]
found a very clever way to circumvent the problem that for any k ≥ 1, the ran-
dom variable ξk is not uniformly distributed on [0,1]. In their Proposition 4.1
they introduce a version of the homogeneous Markov chain (ξk, Mk)k≥1 where
Mk := Mk/Mk−1 together with a random time T such that for any k ∈ N, con-
ditionally on {T ≤ k}, the random variable ξk is uniformly distributed on [0,1],
independent of (M1, . . . , Mk, T ). Choosing these random variables independent
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of the process P̃t we will use them in the following without changing the notation
[Fk can be constructed using (M	)1≤	≤k and an additional set of i.i.d. exponential
random variables with mean one]. The details of the definition of T are not impor-
tant for us. The only crucial thing is that T has exponential tails. Indeed, we have
page 15 of [6],

E
[
1.15T ] ≤ C4

(
s ∧ (1 − s)

)−1/2 ≤ C4δ
−1/2(55)

for some constant C4 in the present case, δ < s ≤ 1/2.
Then, using (54) and the triangle inequality, we obtain for any t and r such that

r ≥ t , ∣∣t−βE
[
Pt(s)

] − r−βE
[
Pr(s)

]∣∣
≤ 2k

∣∣t−βE
[
P̃Mkt−Fk

(ξk)
] − r−βE

[
P̃Mkr−Fk

(ξk)
]∣∣ + 2k+1r−β

≤ 2k
∣∣t−βE

[
P̃Mkt−Fk

(ξk)1{T ≤k}
] − r−βE

[
P̃Mkr−Fk

(ξk)1{T ≤k}
]∣∣(56)

+ 2k
∣∣t−βE

[
P̃Mkt−Fk

(ξk)1{T >k}
] − r−βE

[
P̃Mkr−Fk

(ξk)1{T >k}
]∣∣

+ 2k+1r−β.

To complete the proof of Lemma 15, we now devise explicit bounds for the two
main terms in (56) when we can ensure that coupling occured by level k (i.e.,
T ≤ k) or not.

(i) No coupling by level k, T > k. In this case, we bound the terms roughly. We
obtain

2k
∣∣t−βE

[
P̃Mkt−Fk

(ξk)1{T >k}
] − r−βE

[
P̃Mkr−Fk

(ξk)1{T >k}
]∣∣

≤ 2k+1 sup
u≥t

u−βE
[
P̃Mku−Fk

(ξk)1{T >k}
]
.

One then essentially uses the uniform bound sups supu u−βE[Pu(s)] ≤ C5 (see (10)
in [6]) and Hölder’s and Markov’s inequalities to leverage a bound that makes
profit of the exponential tails of T . The details are found in [6], page 16. For any
u > 0 and s ∈ (δ,1/2], one has

u−β2kE
[
P̃Mku−Fk

(ξk)1{T >k}
]

≤ C52ks−1/p

(
2

(βp + 1)(βp + 2)

)(k−1)/p(
E[1.15T ]

1.15k

)1−1/p

≤ C4C5δ
−1/2−1/(2p)

(
2
{

2

(βp + 1)(βp + 2)

}1/p

1.151/p−1
)k

,

by the upper bound in (55). Choosing p close enough to one that the term in the
brackets above is strictly less than one, we obtain for any s ∈ (δ,1/2] and real



2600 N. BROUTIN, R. NEININGERN AND H. SULZBACH

numbers t, r > 0,

2k
∣∣t−βE

[
P̃Mkt−Fk

(ξk)1{T >k}
] − r−βE

[
P̃Mkr−Fk

(ξk)1{T >k}
]∣∣

≤ 2C4C5δ
−1/2−1/(2p)(1 − γ )k(57)

≤ C1δ
−1(1 − γ )k,

where C1 denotes a constant and γ > 0 (and p > 1 is now fixed).
(ii) Coupling has occurred before level k, T ≤ k. In this case, we need to be a

little more careful and match some terms. In what follows, we write x+ = x ∨ 0.
We start with

t−β2kE
[
P̃Mkt−Fk

(ξk)1{T ≤k}
] = 2kE

[
1{T ≤k}

(
Mk − t−1Fk

)β
+θ(Mkt − Fk)

]
,

where θ(x) = x
−β
+ E[Px(X)] with X a [0,1]-uniform random variable indepen-

dent of everything else. The estimate in (2) is easily transferred to the Poissonized
version, and we have θ(x) = κ + O(x−η) for any 0 < η < β. Therefore

2k
∣∣t−βE

[
P̃Mkt−Fk

(ξk)1{T ≤k}
] − r−βE

[
P̃Mkr−Fk

(ξk)1{T ≤k}
]∣∣

≤ 2k
∣∣E[

1{T ≤k}
(
Mk − t−1Fk

)β
+θ(Mkt − Fk)

]
(58)

− E
[
1{T ≤k}

(
Mk − r−1Fk

)β
+θ(Mkr − Fk)

]∣∣
≤ 2kE

[∣∣(Mk − t−1Fk

)β
+θ(Mkt − Fk) − (

Mk − r−1Fk

)β
+θ(Mkr − Fk)

∣∣].
Fix η < β . For x > 0, we have, as x → ∞(

Mk − x−1Fk

)β
+ · θ(Mkx − Fk)

= M
β
k

(
1 − O

(
x−1FkM

−1
k

))(
κ + O

(
M

−η
k x−η))

= κM
β
k + O

(
FkM

β−1
k x−1) + O

(
M

β−η
k x−η) + O

(
FkM

β−1−η
k x−1−η)

= κM
β
k + O

(
FkM

β−1
k x−1) + O

(
x−η) + O

(
FkM

β−1−η
k x−1−η)

,

since Mk ∈ (0,1) and η < β , the O(·) terms being deterministic and uniform in
s ∈ [0,1]. Going back to (58), the terms κM

β
k coming from the two terms with

t and r cancel out, and there exist constants C7,C8 such that, for all t, r large
enough such that moreover t ≤ r , we have

2k
∣∣t−βE

[
P̃Mkt−Fk

(ξk)1{T ≤k}
] − r−βE

[
P̃Mkr−Fk

(ξk)1{T ≤k}
]∣∣

≤ C72k(t−1E
[
FkM

β−1
k

] + t−η + t−1−ηE
[
FkM

β−1−η
k

])
≤ C82kt−ηE

[
FkM

β−1−η
k

]
.

Since it will be necessary to choose k tending to infinity with r to control the term
in (57), it remains to estimate E[FkM

β−1−η
k ]. By definition of Fk = Mkτk , one
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easily verifies that Fk ≤ ∑k
i=1 ζk , where the normalized inter-arrival times ζi were

defined right after (53). Since Mi ≤ 1 for every i, we have

E
[
FkM

β−1−η
k

] ≤ kE
[
M

β−1−η
k

]
≤ kE

[
Xβ−1−η]2k = k(β − η)−2k,

by the lower bound on Mk in Lemma 25, X denoting a uniform on [0,1]. We
finally obtain

2k
∣∣t−βE

[
P̃Mkt−Fk

(ξk)1{T ≤k}
] − r−βE

[
P̃Mkr−Fk

(ξk)1{T ≤k}
]∣∣

(59)
≤ C8kt−η2k(β − η)−2k.

Putting (57) and (59) together with (56) yields, for any t, r > 0 such that t ≤ r∣∣t−βE
[
Pt(s)

] − r−βE
[
Pr(s)

]∣∣
≤ C1δ

−1(1 − γ )k + C8k2k(β − η)−2kt−η + 2k+1t−β

≤ C1δ
−1(1 − γ )k + C2k2k(β − η)−2kt−η

for some constant C2. The statement in Lemma 15 follows readily from the triangle
inequality.
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