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Abstract

For an Itô asset price process and under quite mild structural assumptions, we show that
the accumulated payments of a linear tax on trading gains are of infinite variation if the
quadratic covariation of the trading strategy and the asset price is negative. By contrast, if
the strategy is a smooth function of the asset price and some finite variation processes with
positive partial derivative with respect to the price variable, then accumulated tax payments
are of finite variation.

An interesting example are Constant Proportion Portfolio Insurance (CPPI) strategies
which we extend to models with capital gains taxes. The associated tax payment stream is
of finite variation if the tax-adjusted constant multiple of the cushion which is invested in
the risky asset is bigger or equal to one. Otherwise, it is of infinite variation.
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1 Introduction

In most countries, trading gains have to be taxed. The modeling is complicated by the rule that
gains on assets are taxed when assets are sold and not when gains actually occur. This means
that an investor can influence the timing of her tax payments, i.e., she holds a timing option.

Dybvig and Koo [7] model the so-called exact tax basis or specific share identification method
in discrete time, which corresponds, e.g., to the tax legislation in the US and seems economically
the most reasonable tax basis. Here, an investor who wants to reduce her position, say, the
amount of Apple stocks, can freely choose which of the Apple stocks in her portfolio are relevant
for taxation. Though all Apple stocks possess the same market price, they have in general
different purchasing prices if bought at different points in time. Thus, their book profits, i.e.,
the difference between current market price and purchasing price that are linearly taxed at
the liquidation time are different. To capture this, strategies in Dybvig and Koo [7] are double-
indexed: they specify the number of identical shares which are purchased at some time s and kept
in the portfolio until some time t. Other tax bases are the first-in-first-out rule and an average
of past purchasing prices (for continuous time models, see Jouini, Koehl, and Touzi [11, 12] and
Ben Tahar, Soner, and Touzi [3], respectively).
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As observed in Dybvig and Koo [7], for a nonnegative interest rate, it is pathwise optimal
to wash sale every share with negative book profit and, when reducing the total position, to sell
the shares with the lowest book profits first (see also Subsection 3.1 of Constantinides [6]). A
wash sale is a sale with the aim to declare a loss to the tax office, but the security is immediately
re-purchased. By following a procedure which consists of “automatic” wash sales and the rule
to sell shares with the lowest book profits first, one can get rid of the above mentioned double-
indexing, and a strategy can be identified with a one-dimensional predictable process which
specifies only the time-dependent total number of identical stocks that the investor holds in her
portfolio (see Appendix A of Kühn and Ulbricht [14]). Taxes are either triggered by wash or
“real” sales. Wash sales always lead to negative tax payments (tax credits). On the other hand,
by the wash sales, unrealized book profits are always nonnegative, and thus real sales always
lead to nonnegative tax payments. In continuous time, the tax payment stream for elementary
trading strategies can be uniquely extended to all adapted and càglàd strategies (see [14]).

Of course, the above mentioned simplification relies on many idealized assumptions. It
fails if there are, for example, different tax rates for short and long term capital. In this case,
wash sales need not be optimal anymore since they reduce the residence time of the shares in
the portfolio and may force the investor later on to pay the usually higher short term rate.
In practice, there are also legal wash sales restrictions. E.g., in the US, a realized loss can
only be claimed to the tax office if the same asset is not repurchased within 30 days, see [1].
To get a better view on the nature of capital gains taxes, it may nevertheless be helpful to
abstract from special restrictions which are different in each country and need not remain forever.

From a theoretical point of view, it is important to note that, in contrast to models with
proportional transaction costs, in models with taxes, reasonable strategies are not restricted to
processes of finite variation. The reason for this is that taxes are proportional to the product of
price movements and changes of the position.

In this article, we investigate the fine structure of the tax payment stream. We are interested
in the basic mathematical question for what trading strategies typically appearing in continuous
time finance the tax process is of (in)finite variation. Put differently: for what strategies do total
tax payments, positive or negative, explode when passing to the continuous time limit ? In doing
so, we focus on Itô asset price processes.

If gains were taxed immediately when they occur (i.e., based on a marking to market of the
asset), the answer would be obvious because accumulated taxes would then just be the tax rate
times accumulated trading gains. Trading gains are modeled by stochastic integrals that are
of infinite variation if the integrator is a diffusion process and the integrand does not vanish.
Actually, the (not necessarily positive) settlement payments of futures are taxed immediately.
Thus, even when futures are traded in discrete time, their continuous settlement payments
trigger tax payments of infinite variation.

However, in the case of stocks, by the deferment of tax payments, the question becomes
tricky. It turns out that the key quantity which decides whether it is of (in)finite variation is the
quadratic covariation of the stock price and the strategy (this process exists for the strategies
we consider). Roughly speaking, if this quadratic covariation is negative, the investor reduces
her position after the asset price goes up (profit-taking), and she is thus be forced to realize
some of her book profits. After the price goes down, the position is increased, but there might
be negative tax payments by wash sales. Surprisingly, it turns out that this is sufficient to
produce infinite variation of the tax payment stream – even though the quadratic covariation
of asset price and strategy, which may be seen as a proxy of tax payments when ignoring book
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profits from the past, is finite. By contrast, if the strategy depends positively on the price,
the position is more frequently reduced after the asset price goes down. This requires less
realizations of positive gains, and thereby less positive tax payments. As a result, the variation
of the tax payment stream is finite. The conditions under which we show the (in)finite variation
property cover a wide range of reasonable trading strategies. An interesting example with a
plausible economic motivation are Constant Proportion Portfolio insurance (CPPI) strategies.

The second main goal of the article is to incorporate capital gains taxes into the concept
of Constant Proportion Portfolio insurance. CPPI strategies were first studied by Perold [16],
Black and Jones [4], and Black and Perold [5] in a Black-Scholes framework. They invest a
constant multiple m ∈ (0,∞) of some cushion in a risky asset (or index). For m ≥ 1, this leads
to a superlinear participation in upward price movements while guaranteeing a given part of the
invested capital, even if the cushion gets completely lost. First, we extend the standard definition
of CPPI strategies for frictionless markets to models with capital gains taxes. This is possible
because the tax payment stream can be constructed for all càglàd trading strategies, including
strategies of infinite variation which appear in the CPPI concept. The portfolio value process of
the CPPI strategy is given by the unique solution of a similar SDE as in the tax-free case, but
with a coefficient that depends on the past history of the portfolio value process and not only
on the current portfolio value. The deferred taxes have a major impact on the portfolio value
and thereby on the investment strategy. By contrast, proportional transaction costs, another
major market friction, can only be incorporated into discrete time CPPI strategies, because
they would explode otherwise (see Section 5 of Balder, Brandl, and Mahayni [2] for calculations
of the gap risk of discrete time CPPI strategies with transaction costs). For empirical studies
on the impact of capital gain taxes on the performance of CPPI products, we refer the reader
to Gregory, Knox, and Ewald [8].

It can be derived from the main results of the current article that the tax payment stream
of CPPI strategies is of finite variation if m ≥ 1/(1 − α) and of infinite variation otherwise.
Here, α ∈ (0, 1) denotes the tax rate. The main reason for this is that, after an upward price
movement, the asset position is increased if m > 1/(1 − α) and reduced if m < 1/(1 − α).
m(1 − α) can be seen as the tax-adjusted multiple of the cushion that is invested in the risky
asset. It is also discussed how the (in)finite variation property of the tax payment process is
related to the (im)possibility to defer taxes while following a CPPI strategy. We think that the
analysis of CPPI strategies provides some good intuition about the nature of a linear tax on
trading gains, especially by looking at the impact of taxes on risky and riskless investments.

Finally, we analyze the tax effect of the taming of a trading strategy of infinite variation. It
turns out that possible benefits by an increase of deferred tax payments are quite moderate.
Based on this result, we make a conjecture about the total variation of the optimal strategy in
a typical continuous time utility maximization problem.

The article is organized as follows. In Section 2, we introduce the tax payment process and
state the main results of the article (Theorem 2.3 and Theorem 2.4). In Section 3, we discuss
the extension of CPPI strategies to models with taxes (Theorem 3.3). The strategies satisfy the
conditions of Theorem 2.3 which yields Corollary 3.7. In Section 5, we analyze tamed strategies
(Theorem 5.1). The proofs of the main theorems can be found in Section 4, and the article ends
with a conclusion.
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2 Statement of main results

Throughout the article, we fix a filtered probability space (Ω,F , (Ft)t∈R+ , P ) satisfying the usual
conditions, and S denotes the stochastic price process of the risky asset. A sequence of optional
processes (Xn)n∈N converges to an optional process X uniformly on compacts in probability iff
for every t ∈ R+, sups∈[0,t] |Xn

s −Xs| converges to 0 in probability. For a random variable Y , we
set Y + := max(Y, 0) and Y − := max(−Y, 0).

For the convenience of the reader, we briefly repeat the construction of the continuous time
tax payment process from [14]. Motivated by pathwise optimality in discrete time, it is implicitly
assumed that, when reducing her position in the risky asset, the investor liquidates the (identical)
shares with the lowest book profits and, when book profits become negative, shares are wash sold
(i.e., sold and immediately re-purchased). By these implicit assumptions, the strategy becomes
a one-dimensional process, denoted by ϕ, that only specifies the total number of identical shares
that the investor holds – but not their purchasing times.

Let ϕ ∈ L+ with ϕ0 = 0, where L+ denotes the set of nonnegative adapted processes with
càglàd paths (i.e., ϕ0+ ≥ 0 is interpreted as the initial position built-up by a purchase at
price S0). The tax rate is denoted by α ∈ (0, 1). For every t, the stocks are sorted by the time
spending in the portfolio and labeled by x: the bigger x the longer the residence time in the
portfolio. The procedure described above is in line with defining the purchasing time of the xth
share by

τt,x := sup{u ∈ R+ | (u ≤ t and ϕu ≤ ϕt − x) or (u < t and ϕu+ ≤ ϕt − x)}, x ∈ [0, ϕt]. (2.1)

Based on τt,x, the book profit function: F : Ω× [0, T ]× R+ → R+ is defined by

Fω(t, x) := St(ω)− inf
τt,x(ω)≤u≤t

Su(ω) for x ∈ [0, ϕt(ω)] (2.2)

and zero otherwise. τt,x is interpreted as the purchasing time of share x ignoring later wash
sells. Actually, share x is lastly wash sold at the point at which the infimum in (2.2) is attained.
As a consequence of the wash sales, the shares with the shortest residence time in the portfolio
possess the lowest book profit, i.e., x 7→ Fω(t, x) is nondecreasing.

For a nonnegative elementary strategy ϕ, i.e., ϕ =
∑k

i=1Hi−11Kκi−1,κiK, where 0 = κ0 ≤ κ1 ≤
. . . ≤ κk = T are stopping times and Hi−1 is Fκi−1−measurable, accumulated tax payments are
defined by

Πt(ϕ) :=α

k∑
i=1

1(κi−1<t)

∫ (Hi−1−Hi−2)−

0
F (κi−1, x) dx

+ α

k∑
i=1

1(κi−1<t)

∫ ϕt

0

(
F (κi−1+, x) + inf

κi−1≤u≤t∧κi
(Su − Sκi−1)

)
∧ 0 dx, (2.3)

where H−1 := 0. The first sum are the positive tax payments triggered by real sales. Since F is
nondecreasing in x, one sells the shares with the lowest book profits. The second sum are the
negative tax payments (tax credits) caused by wash sales.

Assumption 2.1. Let the asset price be a positive Itô process given by

St = s0 +

∫ t

0
µs ds+

∫ t

0
σs dBs, s0 > 0, (2.4)

where µ is a locally bounded optional process, σ is a locally bounded, continuous process, and B
is a standard Brownian motion.
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Definition 2.2 (cf. [14]). The tax payment stream ϕ 7→ Π(ϕ) is the unique continuous extension
of (2.3) to L+, where continuity is understood w.r.t. the convergence “uniformly on compacts
in probability” (see Theorem 2.7 of [14] for the required continuity of operator Π in (2.3)).

Π(ϕ) is optional and làglàd (i.e., paths possess finite left and right limits). We define its
variation process Var(Π(ϕ)) by setting Var(Π(ϕ))t equal to the variation of Π(ϕ) on [0, t], which
can be infinite. For continuous ϕ and S, which we consider here, one knows by (2.8) and (2.9)
in [14] that Π(ϕ) is also continuous. Consequently, we have for Π = Π(ϕ)

Var(Π)t = sup
n∈N

∞∑
k=1

∣∣∣Πt∧ k
n
−Πt∧ k−1

n

∣∣∣ .
One says that Π is of finite variation iff P (Var(Π)t < ∞) = 1 for all t ∈ R+ and of infinite
variation iff P (Var(Π)t =∞) = 1 for some t ∈ R+.

The following theorems are the main results of the article. The conditions are satisfied by
CPPI strategies that are constructed in Section 3.

Theorem 2.3. Let ϕt = g(St, At) for all t > 0, where g ∈ C2,1(R+×Rd), d ∈ N, is a nonnegative
function and A is an Rd-valued finite variation process that is absolutely continuous with a locally
bounded rate and initial value a0 ∈ Rd.

(i) If ∂1g(s0, a0) < 0 and the volatility process σ satisfies σ0 > 0, then Π(ϕ) is of infinite
variation.

(ii) If inf(s,a)∈K ∂1g(s, a) > 0 for all compact sets K ⊂ (0,∞) × Rd, then Π(ϕ) is of finite
variation.

Theorem 2.4. Let

ϕt = ϕ0+ +

∫ t

0
Hs dSs +

∫ t

0
Gs ds ≥ 0 for all t > 0, (2.5)

where H is a continuous process with H0 < 0 and G is a locally bounded process. Assume that
σ0 > 0. Then, Π(ϕ) is of infinite variation.

Remark 2.5. Theorem 2.4 is a slightly stronger version of Theorem 2.3(i). This can easily be
seen by applying Itô’s formula to the function g and the processes S and A.

If the filtration is generated by a one-dimensional Brownian motion, (2.5) is essentially
equivalent to the property that the quadratic covariation of the strategy and the asset price is
negative. By contrast, if ∂1g(s0, a0) > 0, this quadratic covariation is positive (for the intuition
behind these conditions, we refer to the introduction).

Remark 2.6. Theorems 2.3 tells us under what conditions total tax payments explode if the
frequency at which tax liabilities are settled tends to infinity. Since the theorem is stated for
continuous time strategies, it is not immediate what it implies for the case that the frequencies
of portfolio turnovers and tax payments explode simultaneously. To provide some clarification,
we state the following consequences of Theorems 2.3:
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(i) Let ϕ satisfy the assumptions in Theorems 2.3(i). Let (ϕn)n∈N be a sequence of elementary
strategies converging to ϕ uniformly in probability, and (Tnk )k=0,...,kn, n ∈ N, be a refining
sequence of grids on [0, 1] with stopping times 0 = Tn0 ≤ Tn1 ≤ . . . ≤ Tnkn = 1 and
maxk=1,...,kn |Tnk − Tnk−1| → 0, P -a.s. Then, one has

kn∑
k=1

∣∣∣ΠTnk
(ϕn)−ΠTnk−1

(ϕn)
∣∣∣→∞ in probability, n→∞.

Indeed, by Theorem 2.3(i) and the continuity of Π(ϕ), for every ε > 0, there is an n1 ∈ N
s.t.

P

kn1∑
k=1

∣∣∣ΠT
n1
k

(ϕ)−ΠT
n1
k−1

(ϕ)
∣∣∣ ≤ 1/ε+ 1

 ≤ ε/2.
From ϕn → ϕ and thus Π(ϕn) → Π(ϕ) both uniformly in probability, we conclude that
there exists an n2 ∈ N s.t.

P

kn1∑
k=1

∣∣∣ΠT
n1
k

(ϕn)−ΠT
n1
k−1

(ϕn)
∣∣∣ ≤ 1/ε

 ≤ ε ∀n ≥ n2.

Since the sequence of grids is refining the latter probability is bigger or equal to

P
(∑kn

k=1

∣∣∣ΠTnk
(ϕn)−ΠTnk−1

(ϕn)
∣∣∣ ≤ 1/ε

)
for all n ≥ n1 ∨ n2, and we are done.

(Furthermore, for fixed n, the continuous time wash sales of the elementary strategy ϕn,
cf. definition (2.3), can be approximated pointwise by realizing looses along a discrete time
grid.)

(ii) Now let ϕ satisfy the assumptions in Theorems 2.3(ii). Since the limit of the total vari-
ations of a sequence of processes exceeds, in general, the total variation of the pointwise
limiting process, we cannot estimate the variation from above for arbitrary approximating
ϕn. Instead, we take the particular approximating sequence

ϕn :=
∞∑
l=1

ϕTnl−1+1(Tnl−1,T
n
l ], n ∈ N,

where Tn0 := 0 and Tnl := inf{t > Tnl−1 | |ϕt − ϕTnl−1+| = 1/n}, l ≥ 1. One has

P

(
lim inf
n→∞

n∑
k=1

∣∣Πk/n(ϕn)−Π(k−1)/n(ϕn)
∣∣ <∞) = 1. (2.6)

(2.6) follows along the lines of the proof of Theorem 2.3(ii). Namely, in the calculations
for the variation of Π(ϕ) along the grid {0, 1/n, 2/n, . . . , 1}, the strategy ϕ can be replaced
by ϕn, and the expectation of the additional error term is of order 1/

√
n. We leave this

exercise to the reader.
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3 CPPI for models with taxes

The goal of Constant Proportion Portfolio Insurance (CPPI) strategies is to participate in
upward price movements of an asset (or index) in a superlinear way, while guaranteeing a given
part of the invested capital. For this, a constant multiple (usually much bigger than one) of the
difference between the current portfolio value and some floor is invested in the risky asset. Since
the portfolio value process itself is influenced by investor’s tax liability, the standard definition
of a CPPI strategy for frictionless markets has to be extended to models with taxes.

Besides the risky asset with price process S, there is a riskless bank account paying interest
rate r = (rt)t≥0, where r is a nonnegative, locally bounded predictable process. For simplicity,
we assume that gains from the bank account are taxed immediately (like dividends). Formally,
the bank account is an asset with price 1 and dividend process

Dt =

∫ t

0
rs ds, t ≥ 0,

i.e., the after-tax interest rate is (1− α)rt.

Definition 3.1. Let η be a predictable process modeling the number of monetary units in the
bank account, and ϕ ∈ L+ with ϕ0 = 0 models the number of risky assets the investor holds. The
portfolio value process of (η, ϕ) is defined as the liquidation value

Vt := ηt + ϕtSt − α
∫ ϕt

0
F (t, x) dx, (3.1)

and (η, ϕ) is called self-financing iff

Vt = V0 + (1− α)η • Dt + (1− α)ϕ • St, t ≥ 0, (3.2)

where • denotes the stochastic integral.

Remark 3.2. α
∫ ϕt

0 F (t, x) dx are the deferred tax payments, i.e., tax rate times unrealized book
profits that the investor would have to pay if the stock position was liquidated. By implicit wash
sales, this term is always nonnegative. Thus, the liquidation value is a conservative valuation.
Like in illiquid markets, there is no canonical valuation: since taxes are actually payed later
and the interest rate is nonnegative, this obligation could be valued lower. The most aggressive
portfolio valuation would just ignore this obligation and define the portfolio value by Ṽt := ηt +
ϕtSt (of course, with another self-financing condition).

The construction of the CPPI strategy depends on the valuation by the cushion from which
a given multiple is risked. But, we think that the liquidation value V is economically the most
reasonable one as it takes unavoidable future tax payments into account. This holds in particular
for CPPI strategies, which may dictate the investor to liquidate her risky position quite quickly
if the market goes down.

For elementary strategies, it can be seen that the self-financing condition (3.2) is equivalent
to the assumption that portfolio re-groupings do not involve costs. For this, one uses the identity

αϕ • St = Πt + α

∫ ϕt

0
F (t, x) dx (3.3)

(see Proposition 4.1 of [14]). Since actual tax payments flow away from the portfolio and
deferred tax payments are subtracted from the portfolio value by definition, only fraction 1− α
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of the trading gains enters in (3.2). Nevertheless, the model is different from a tax-free model
with interest rate (1−α)r and stock price s0E ((1− α)(1/S) • S), where E denotes the stochastic
exponential, since the money that is only reserved but not yet spent for taxes earns some interest.

Let us now define CPPI strategies. At time zero, the amount λV0 is reserved for the riskless
investment, where λ ∈ [0, 1). Since the bank account is immediately taxed, this leads to the

wealth λV0 exp
(

(1− α)
∫ t

0 rs ds
)

at time t. In addition, multiple m of the cushion

Ct := Vt − λV0 exp

(
(1− α)

∫ t

0
rs ds

)
(3.4)

is invested in the risky asset, i.e.,

ϕt =
mCt
St

. (3.5)

Theorem 3.3. For given v0 > 0, there exists a unique self-financing strategy (η, ϕ) s.t. (3.4)
and (3.5) hold with V0 = v0, where V is the portfolio value process of (η, ϕ). ϕ can be written as

ϕt = g(St, At), t > 0, (3.6)

where

g(s, a) =
m(1− λ)v0

s
(1−α)m
0

s(1−α)m−1 exp(a)

and A is a one-dimensional process of finite variation with locally bounded rate.

Remark 3.4. For α = 0, it is well-known that ϕ can be written as a smooth function of S and
a process of finite variation which can be determined explicitly, see Theorem 5 of Schied [18],
who considers a very general probability-free CPPI model. For α > 0, the process A is not given
explicitly, but with representation (3.6), one can apply Theorem 2.3.

Remark 3.5. One may interpret

m̃ := (1− α)m

as the effective or tax-adjusted fraction of the cushion which is invested in the risky asset.
Namely, by tax payments and credits, only fraction 1−α of the price movements enters into the
portfolio value as defined in (3.1). Thus, in the short run or for r = 0, choosing multiplier m
in the model with taxes leads to the same portfolio value process as the smaller multiplier m̃
for a tax-exempt investor. But, in general, the relation is more complicated. One reason is that
the deferred tax payments, for which the portfolio value is already adjusted, earn some interest.
Furthermore, the bigger after-tax interest rate of the tax-exempt investor influences the cushion,
cf. (3.12). These effects can only be ignored for short time intervals for which fluctuations of the
risky asset dominate.

Proof of Theorem 3.3. Step 1: By

ϕt =
mVt −mλv0 exp

(
(1− α)

∫ t
0 rs ds

)
St

(3.7)
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and

ηt = Vt − ϕtSt + α

∫ ϕt

0
F (t, x) dx

= (1−m)Vt +mλV0 exp

(
(1− α)

∫ s

0
ru du

)
+ α

∫ ϕt

0
F (t, x) dx,

the self-financing condition (3.2) leads to the following path-dependent SDE for V :

Vt = v0

+ (1− α)

∫ t

0

(
(1−m)Vs +mλV0 exp

(
(1− α)

∫ s

0
ru du

)
+ α

∫ ϕs∨0

0
Fϕ∨0(s, x) dx

)
rs ds

+ (1− α)

∫ t

0

m
(
Vs − λV0 exp

(
(1− α)

∫ s
0 ru du

))
Ss

dSs, (3.8)

where ϕ still appearing in
∫ ϕs∨0

0 Fϕ∨0(s, x) dx depends on V through (3.7). s 7→∫ ϕs∨0
0 Fϕ∨0(s, x) dx is a làglàd process, but in (3.8) it can of course be replaced by its left-

continuous verification without changing anything. The right-continuous verification of s 7→∫ ϕs∨0
0 Fϕ∨0(s, x) dx is the outcome G(V ) of an operator G : D→ D, where D denotes the set of

càdlàg adapted processes. Namely, it depends on the paths of ϕ and S, where ϕ depends on V ,
S, and r by (3.7). This means that the mapping G itself depends on the exogenous processes S
and r, but its single argument is V . The maximum with 0 is taken because F is only defined
for nonnegative strategies. Later on, it is seen that the solution is nonnegative anyway. For two
strategies ϕ1 and ϕ2, one has∣∣∣∣∣
∫ ϕ1

s∨0

0
Fϕ

1∨0(s, x) dx−
∫ ϕ2

s∨0

0
Fϕ

2∨0(s, x) dx

∣∣∣∣∣ ≤ 3 sup
0≤u≤s

|ϕ1
u − ϕ2

u|
(

sup
0≤u≤s

Su − inf
0≤u≤s

Su

)
(see Lemma 3.1 of [14]). If V 1 and V 2 are the corresponding portfolio value processes, the RHS
is smaller or equal to

3m sup0≤u≤s |V 1
u − V 2

u |
inf0≤u≤s Su

(
sup

0≤u≤s
Su − inf

0≤u≤s
Su

)
.

Thus, the operator G is functional Lipschitz in V in the sense of Protter [17], page 250, and by
Theorem V.7 of [17], (3.8) has a unique strong solution (note that the theorem is stated under
Assumption 2.1). A solution of (3.8) with ϕ ≥ 0 induces a CPPI strategy and vice versa. By
(3.4), C and V only differ by an exogenous process of finite variation. One has a completely
analogue path-dependent SDE for C instead of V which reads

Ct = C0 + (1− α)

∫ t

0

(
(1−m)Cs + α

∫ ϕs∨0

0
Fϕ∨0(s, x) dx

)
rs ds+ (1− α)

∫ t

0

mCs
Ss

dSs (3.9)

and which possesses again a unique strong solution. Since rs
∫ ϕs∨0

0 Fϕ∨0(s, x) dx ≥ 0, one has
by standard comparison arguments that

inf
s≤t

Cs > 0 for all t ∈ R+, (3.10)

i.e., there is no gap risk. This already shows that ϕ ∈ L+ for ϕt = mCt/St for all t > 0.
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Step 2: It remains to prove that ϕ is of the form given in the theorem. With (3.9), this could
be deduced from the corresponding property in the tax-free model with interest rate (1−α)r and
stock price s0E ((1− α)(1/S) • S) by the Yoeurp-Yor formula for inhomogeneous linear SDEs
(see, e.g., (5) in [10]). Alternatively, applying Itô’s formula, one obtains

ln(Ct) = ln(C0) +

∫ t

0

1

Cs
dCs −

1

2

∫ t

0

1

C2
s

d[C,C]s

= ln((1− λ)v0) + (1− α)

∫ t

0

(
1−m+

α
∫ ϕs

0 Fϕ(s, x) dx

Cs

)
rs ds

+(1− α)m

∫ t

0

1

Ss
dSs −

1

2
(1− α)2m2

∫ t

0

1

S2
s

d[S, S]s. (3.11)

For α > 0, (3.11) is not explicit, but one can nevertheless apply the same arguments as in
Schied [18] because on the RHS, C enters only in the finite variation part. Namely, the infinite
variation process

∫ t
0

1
Ss
dSs appearing in (3.11) is not a function of St, but, by Itô’s formula, it

can be written as the sum of ln(St) and a process of finite variation. This yields

Ct = (1− λ)v0 exp

(
(1− α)m ln(St)− (1− α)m ln(s0) +

(1− α)m

2

∫ t

0

1

S2
s

d[S, S]s

−(1− α)2m2

2

∫ t

0

1

S2
s

d[S, S]s + (1− α)

∫ t

0

(
1−m+

α
∫ ϕs

0 Fϕ(s, x) dx

Cs

)
rs ds

)
= (1− λ)v0

S
(1−α)m
t

s
(1−α)m
0

exp

(
(1− α)m(1− (1− α)m)

2

∫ t

0
σ2
s ds+ (1− α)(1−m)

∫ t

0
rs ds

)
× exp

(
(1− α)α

∫ t

0

∫ ϕs
0 Fϕ(s, x) dx rs

Cs
ds

)
. (3.12)

Thus, one has

ϕt =
mCt
St

= g(St, At),

where

g(s, a) =
m(1− λ)v0

s
(1−α)m
0

s(1−α)m−1 exp(a)

and

At =
(1− α)m(1− (1− α)m)

2

∫ t

0
σ2
s ds+ (1− α)(1−m)

∫ t

0
rs ds

+(1− α)α

∫ t

0

∫ ϕs
0 Fϕ(s, x) dx rs

Cs
ds.

By (3.10), A possesses a locally bounded rate. �

By

∂1g(s, a) =
m(1− λ)v0((1− α)m− 1)

s
(1−α)m
0

s(1−α)m−2 exp(a) for m 6= 1/(1− α),
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it follows that for m < 1/(1 − α), ϕ satisfies the assumptions of Theorem 2.3(i) and for
m > 1/(1−α), the assumptions of Theorem 2.3(ii) are satisfied. It remains to consider the case
m = 1/(1− α).

For m = 1/(1 − α), i.e., m̃ = 1, the effective fraction of the cushion which is risked is one,
and the CPPI strategy satisfies

ϕt =
(1− λ)v0

(1− α)s0
exp

(
−α

∫ t

0
rs ds+ (1− α)α

∫ t

0

∫ ϕs
0 Fϕ(s, x) dx rs

Cs
ds

)
. (3.13)

This means that it is not buy-and-hold, as in the case without taxes, but, in contrast to the
case m̃ 6= 1, the strategy is of finite variation. Compared to the case m̃ = 1 without taxes, there
appear two new effects: Since the “nominal” fraction of the cushion that is risked is bigger than
one, there is leverage, i.e., a part of the risky investments has to be financed by a short position
in the bank account earning negative interest. In addition, there is the already mentioned effect
with the deferred tax payments α

∫ ϕs
0 Fϕ(s, x) dx, which can be considered as a reserve for

which the portfolio value is adjusted, but which is nevertheless available for investment. Now,
the negative interest caused by leverage and the positive interest for the reserve let the wealth
decrease or increase. The additional wealth is invested or disinvested in stocks. Of course, for
r = 0, both effects disappear, and the strategy is again buy-and-hold.

For ϕ from (3.13) the associated tax payment stream is of finite variation. More generally,
one has:

Proposition 3.6. For every trading strategy of finite variation, the corresponding tax payment
stream is also of finite variation.

Proof. Let ϕ ∈ L+ with ϕ0 = 0 be of finite variation. There exists a sequence of nonnegative
elementary strategies (ϕn)n∈N with ϕn → ϕ uniformly in probability for n→∞ and Var(ϕn) ≤
Var(ϕ) for all n ∈ N (take the construction in the proof of Theorem II.10 of [17]). It follows imme-
diately from the definition of Π for elementary strategies, see (2.3), that (Πt2(ϕn)−Πt1(ϕn))+ ≤
α (Var(ϕn)t2 −Var(ϕn)t1)

(
supu∈[0,t] Su − infu∈[0,t] Su

)
for all t1 ≤ t2 ≤ t. By |x| = 2x+−x, this

implies that Var(Π(ϕn))t ≤ 2αVar(ϕn)t

(
supu∈[0,t] Su − infu∈[0,t] Su

)
− Πt(ϕ

n). Since, by con-

struction, Π(ϕn)→ Π(ϕ) uniformly in probability, one arrives at

Var(Π(ϕ))t ≤ lim inf
n→∞

Var(Π(ϕn))t ≤ 2αVar(ϕ)t

(
sup
u∈[0,t]

Su − inf
u∈[0,t]

Su

)
−Πt(ϕ), P -a.s,

where the first inequality holds by Proposition A.1 of Guasoni, Lépinette, and Rásonyi [9] that
captures processes with double-jumps (the proof in [9] also works if the limiting process is not
ex ante of finite variation, but only làglàd). �

We conclude:

Corollary 3.7 (Corollary of Theorem 2.3). The tax process of a CPPI strategy is of infinite
variation if m ∈ (0, 1/(1− α)) and of finite variation if m ∈ [1/(1− α),∞).

Remark 3.8 (Tax-efficieny). Whereas it is always optimal to realize losses immediately by wash
sales, following a strategy ϕ may require premature realizations of positive gains. Intuitively, ϕ
seems to be “tax-efficient” if positive taxes can be deferred to a large extent.
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For m < 1/(1 − α), the CPPI strategy is rather tax-inefficient because the stock position is
reduced after its price goes up which requires the realization of positive book profits.

For m > 1/(1− α), the CPPI strategy is more tax-efficient. First note that there is leverage
which implies that the investor immediately earns negative taxes on borrowing costs. In addition,
the asset position is reduced after the price goes down. Finally, new shares are purchased after
the price goes up. As a result, even when the asset price lies much above its initial price, the
investor may still declare losses to the tax office for some of her newly purchased shares. This
is in contrast to buy-and-hold strategies where positive tax payments can perfectly be deferred
but where the possibility to declare losses disappears after a positive market development. Since
in practice m(1 − α) is much bigger than one, this can be seen as good news for CPPI. If the
strategy were an increasing function of the asset price alone (and not also depending on a
finite variation process as in Theorem 3.3), there would only be negative tax payments prior to
maturity (see Section 7 of [14]).

Thus, for CPPI strategies, the (im)possibility to defer taxes is related to the (in)finite vari-
ation property of the tax payment process (cf. Corollary 3.7). Namely, since trading losses are
always realized immediately by wash sells, infinite variation occurs if the strategy forces frequent
realizations of positive book profits. However, this relationship between tax-efficiency and the
variation of the tax process is not robust, i.e., in general, it does not hold beyond the family of
CPPI strategies.

4 Proofs of Theorems 2.3 and 2.4

For both proofs we need the following technical lemma.

Lemma 4.1. Let s, t ∈ R+ with s ≤ t and ϕ ∈ L+ be nonincreasing on the interval [s, t]. Then,
the associated tax payment process Π and the book profit function F satisfy

Πt −Πs = α

∫ ϕs−ϕt

0

(
F (s, x) + Sϕ−1(ϕs−x) − Ss

)
dx

+α

∫ ϕs

ϕs−ϕt

(
F (s, x) + inf

s≤u≤t
Su − Ss

)
∧ 0 dx (4.1)

where ϕ−1(y) := sup{u ∈ [s, t] | ϕu > y} ∨ s.

The first integral covers the total profits of the shares which are liquidated between s and t
in order to reduce the stock position – including realized losses from wash sales of these shares
between s and t. The second integral are the realized losses from those wash sales between
s and t for which the re-bought shares are still in the portfolio at time t. Of course, such a
decomposition of the tax process is only available if the strategy is monotone on [s, t].

Intuitively, the assertion appears to be obvious, but nevertheless, it needs a verification which
only makes use of the formal definition of the tax payment process and the book profit function.

Proof. Step 1: Let us first prove the assertion for nonincreasing elementary strategies, i.e., ϕ =
H−11{κ0} +

∑k
i=1Hi−11(κi−1,κi] on [s, t], where s = κ0 ≤ κ1 ≤ . . . ≤ κk = t and H−1 ≥ H0 ≥
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. . . ≥ Hk−1 with H−1 := ϕs. By definition of the tax payment process, see (2.3), one has

Πt −Πs = α
k∑
i=1

∫ Hi−2−Hi−1

0
F (κi−1, x) dx

+α
k∑
j=1

∫ Hj−1

0

(
F (κj−1+, x) + inf

κj−1≤u≤κj
(Su − Sκj−1)

)
∧ 0 dx.

We split the integrals of the second sum into∫ Hj−1

0
=

∫ Hj−1−Hj

0
+

∫ Hj−1−Hj+1

Hj−1−Hj
+ . . .+

∫ Hj−1−Hk−1

Hj−1−Hk−2

+

∫ Hj−1

Hj−1−Hk−1

and define Ij,i :=
∫ Hj−1−Hi−1

Hj−1−Hi−2
for j = 1, . . . , k, i = j + 1, . . . , k, Ij :=

∫ Hj−1

Hj−1−Hk−1
. Ij,i are the

negative tax payments triggered by wash sales between κj−1 and κj for the shares which are
liquidated at time κi−1. Ij are the corresponding negative tax payments for shares which are
still in the portfolio at t (note that purchases “at time t” enter into ϕ not before t+). One has

Πt −Πs = α

k∑
i=1

∫ Hi−2−Hi−1

0
F (κi−1, x) dx+ α

k∑
j=1

k∑
i=j+1

Ij,i + α

k∑
j=1

Ij

= α
k∑
i=1

∫ Hi−2−Hi−1

0
F (κi−1, x) dx+

i−1∑
j=1

Ij,i

+ α

k∑
j=1

Ij , (4.2)

where
∑0

j=1 . . . = 0. Let us show that

Hi−2−Hi−1∫
0

F (κi−1, x) dx =

H−1−Hi−1∫
H−1−Hi−2

F (κ0, x) dx+ (Hi−2 −Hi−1)(Sκi−1 − Sκ0)−
i−1∑
j=1

Ij,i (4.3)

for i = 1, . . . , k. (4.3) says that the book profits of the shares liquidated at κi−1 are their initial
book profits plus price change minus the sum of realized (negative) profits in the periods in
between. By definition of F , one has∫ H0−Hi−1

H0−Hi−2

F (κ0+, x) dx =

∫ H0−Hi−1

H0−Hi−2

F (κ0, x+H−1 −H0) dx =

∫ H−1−Hi−1

H−1−Hi−2

F (κ0, x) dx, (4.4)

i.e., by real sells, shares are shifted to the left, and by Lemma 4.2 of [14],∫ H0−Hi−1

H0−Hi−2

F (κ1, x) dx =

∫ H0−Hi−1

H0−Hi−2

F (κ0+, x) dx+ (Hi−2 −Hi−1)(Sκ1 − Sκ0)− I1,i. (4.5)

By iterating the calculations in (4.4)/(4.5) up to time κi−1, one arrives at (4.3). Summing up
over all i yields

α

k∑
i=1

∫ Hi−2−Hi−1

0
F (κi−1, x) dx+

i−1∑
j=1

Ij,i

 = α

∫ ϕs−ϕt

0

(
F (s, x) + Sϕ−1(ϕs−x) − Ss

)
dx,
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using that Sϕ−1(ϕs−x) = κi−1 for x ∈ (H−1 − Hi−2, H−1 − Hi−1]. To complete the proof for
elementary strategies, by (4.2), it remains to show that∫ H−1

H−1−Hk−1

(
F (κ0, x) + inf

κ0≤u≤κk
Su − Sκ0

)
∧ 0 dx =

k∑
j=1

Ij . (4.6)

(4.6) tells us how negative tax payments by wash sells accumulate over different periods. By
definition of F , one has∫ H−1

H−1−Hk−1

(
F (κ0, x) + inf

κ0≤u≤κk
Su − Sκ0

)
∧ 0 dx

=

∫ H0

H0−Hk−1

(
F (κ0+, x) + inf

κ0≤u≤κk
Su − Sκ0

)
∧ 0 dx. (4.7)

For x ∈ (H0−Hk−1, H0] fixed, we distinguish two cases: For F (κ0+, x)+infκ0≤u≤κ1 Su−Sκ0 ≥ 0,
one has(

F (κ0+, x) + inf
κ0≤u≤κk

Su − Sκ0
)
∧ 0 =

(
F (κ0+, x) + inf

κ1≤u≤κk
Su − Sκ0

)
∧ 0

=

(
F (κ0+, x) + Sκ1 − Sκ0 + inf

κ1≤u≤κk
Su − Sκ1

)
∧ 0

and for F (κ0+, x) + infκ0≤u≤κ1 Su − Sκ0 < 0,(
F (κ0+, x) + inf

κ0≤u≤κk
Su − Sκ0

)
∧ 0 = F (κ0+, x) + inf

κ0≤u≤κ1
Su − Sκ0

+

(
inf

κ1≤u≤κk
Su − inf

κ0≤u≤κ1
Su

)
∧ 0.

Putting together, one arrives at(
F (κ0+, x) + inf

κ0≤u≤κk
Su − Sκ0

)
∧ 0

=

(
F (κ0+, x) + inf

κ0≤u≤κ1
Su − Sκ0

)
∧ 0

+

(
max

(
F (κ0+, x) + Sκ1 − Sκ0 , Sκ1 − inf

κ0≤u≤κ1
Su

)
+ inf
κ1≤u≤κk

Su − Sκ1
)
∧ 0.

Again by Lemma 4.2 of [14], it follows that max (F (κ0+, x) + Sκ1 − Sκ0 , Sκ1 − infκ0≤u≤κ1 Su) =
F (κ1, x) and thus ∫ H0

H0−Hk−1

(
F (κ0+, x) + inf

κ0≤u≤κk
Su − Sκ0

)
∧ 0 dx

=

∫ H0

H0−Hk−1

(
F (κ0+, x) + inf

κ0≤u≤κ1
Su − Sκ0

)
∧ 0 dx︸ ︷︷ ︸

=I1

+

∫ H0

H0−Hk−1

(
F (κ1, x) + inf

κ1≤u≤κk
Su − Sκ1

)
∧ 0 dx. (4.8)
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Iterating the calculations in (4.7)/(4.8) up to time κk yields (4.6).

Step 2: Now we proceed to general strategies. Let ϕ ∈ L+ be nonincreasing on [s, t]. There
exists a sequence (ϕn)n∈N of elementary strategies that are nonincreasing on the interval [s, t]
s.t. ϕn → ϕ uniformly in probability (cf., e.g., the construction in the proof of Theorem II.10
in [17]). Then, on both sides of (4.1), the terms associated with the strategies ϕn converge in
probability to those associated with ϕ. On the LHS, the convergence holds just by definition
of Π(ϕ). On the RHS, one can estimate the integrands against each other with slightly shifted
values for the variable x. Namely, the book profit function is bounded by supu∈[0,t] Su−S0 <∞.

By a shift in x, one can ensure that the liquidation times ϕ−1(ϕs − x) of the limiting strategy
are approximated from the right by those of the elementary strategies, and then one can use the
right-continuity of the paths of S. To estimate the book profit functions against each other, one
can use (3.2) of [14]. �

Proof of Theorem 2.4. Outline of the proof: The main idea of the proof is the following. At each
grid point (k−1)/n, k = 2, . . . , n, one considers the time reversal of the trading strategy, i.e., the
process t 7→ ϕ(k−1)/n−t − ϕ(k−1)/n. By continuity of σ and H, after a random time change, this

process is essentially a standard Brownian motion B̃ on a small time scale. Thus, the purchasing
time τ(k−1)/n,1/

√
n of share 1/

√
n is (k− 1)/n minus the first time B̃ hits the level −1/

√
n. If H

were a negative constant H0, the book profit of this share would essentially be

F

(
k − 1

n
,

1√
n

)
= sup

τ(k−1)/n,1/
√
n≤u≤(k−1)/n

(S(k−1)/n − Su)

≈ − 1

H0
sup

τ(k−1)/n,1/
√
n≤u≤(k−1)/n

(ϕu − ϕ(k−1)/n)

≈ 1

|H0|
sup

0≤t≤inf{s≥0 | B̃s=−1/
√
n}
B̃t. (4.9)

By the scaling property of Brownian motion, the last line coincides in distribution with

1

|H0|
√
n

sup
0≤t≤inf{s≥0 | B̃s=−1}

B̃t =:
1

|H0|
√
n
Z. (4.10)

For every a ∈ R+, one has P (Z > a) = 1/(1+a). This means that the book profit of share 1/
√
n

is of order 1/
√
n with a nonintegrable prefactor. Since the reduction of the asset position on

the interval ((k − 1)/n, k/n] is of order 1/
√
n (and shares with the lowest book profit are sold

first), this leads to positive tax payments of order 1/n with a nonintegrable prefactor. Since
the tax payments in different periods (that are of course not stochastically independent) are
strongly mixing, it can be shown that this leads to

∑n
k=1(Πk/n(ϕ) − Π(k−1)/n(ϕ))+ → ∞. It is

crucial that H0 < 0. Otherwise, the supremum in the second line of (4.9) would turn into an
infimum, and the approximation of F ((k − 1)/n, 1/

√
n) would be bounded by 1/(|H0|

√
n). The

tax payments described above would still be of order 1/n, but now with integrable prefactor
which leads to finite variation (cf. the proof of Theorem 2.3(ii)).

So far, this is only heuristics. In the following steps, we work out this vague idea in
detail. Of course, there appear several difficulties. First, the time reversal of the inte-
gral t 7→ ϕ0+ +

∫ t
0 Hsσs dBs ≈ ϕt is in general no time-changed Brownian motion, unless the

integrand is not deterministic. But, using the continuity of σ and H, it can be shown that
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the process behaves similar to Brownian motion on a small time scale. In addition, H is not a
constant, while the non-integrability of (4.10) is caused by large values of the first hitting times
of the level −1. Furthermore, book profits are not realized at grid points but continuously, and
they fluctuate also between (k − 1)/n and k/n (this is analyzed by using the decomposition
in Step 1). Most importantly, between two grid points, there is an overlapping with negative
tax payments triggered by wash sells. It has to be shown that given some time scale 1/n, there
are enough intervals ((k − 1)/n, k/n], k = 1, . . . , n in which realizations of large book profits
dominate the overall tax payments. Of course,

∑n
k=1(Πk/n(ϕ) − Π(k−1)/n(ϕ))+ → ∞ implies

that
∑n

k=1(Πk/n(ϕ) − Π(k−1)/n(ϕ))− → ∞ because Π1(ϕ) is known to be finite. Thus, there
would also be intervals with dominating negative tax payments triggered by wash sales.

Step 1: We start with a decomposition of the tax payment process which turns out to be useful
for both the current proof and that of Theorem 2.3(i). This step holds without any restriction
on the strategy ϕ ∈ L+.

Let n ∈ N and k ∈ {1, . . . , n}. For each period ((k − 1)/n, k/n], we decompose ϕ into the
number of “old shares” that are already in the portfolio at time (k − 1)/n and “new shares”
that are purchased afterwards:

ϕold
t :=

{
ϕt for t ≤ (k − 1)/n
inf(k−1)/n≤u≤t ϕu for t > (k − 1)/n

“old shares”, purchased before k−1
n (4.11)

and

ϕnew
t :=

{
0 for t ≤ (k − 1)/n
ϕt − inf(k−1)/n≤u≤t ϕu for t > (k − 1)/n

“new shares”, purchased after k−1
n .(4.12)

The precise mathematical meaning of this property is the following: For all t ≥ (k−1)/n, x ≤ ϕt,
the equivalence

x ≤ ϕnew
t ⇔ τt,x ≥ (k − 1)/n (4.13)

holds, i.e., shares with label smaller than ϕnew
t are purchased after (k − 1)/n and shares with

bigger label prior to that. Thus, ϕnew
t is the Lebesgue-measure of the set {x | τt,x ≥ (k− 1)/n}.

One has that ϕold, ϕnew ≥ 0 and ϕold + ϕnew = ϕ. Denote the corresponding book profit
functions by F old and F new and the purchasing times from (2.1) by τold and τnew. We have
that ϕold is nonincreasing on [(k − 1)/n, k/n] (which allows us to apply Lemma 4.1) and
F new((k − 1)/n, ·) = 0.

Let us show that

Π(ϕ) = Π(ϕold) + Π(ϕnew) (4.14)

(Note that Π is in general only subadditive in the strategy, see Proposition 2.13 in [14]). For
t ≤ (k−1)/n, (4.14) is obvious. Let t > (k−1)/n and x ≤ ϕnew

t . By (4.13), the share with label x
in the book profit function F is purchased not before (k − 1)/n. In addition, it is purchased at
the same time as the share with label x in F new, i.e., τt,x = τnew

t,x . Indeed, by definition, τt,x is
not smaller than the biggest u (or u+) at which inf(k−1)/n≤u≤t ϕu is attained. But, between this
u and t, the increments of ϕ and ϕnew coincide. By construction, this implies τt,x = τnew

t,x and
thus F (t, x) = F new(t, x).

Now let t > (k− 1)/n and x > ϕnew
t . The share x of F is purchased before (k− 1)/n and at

the same time as the share x−ϕnew
t of F old, i.e., τt,x = τold

t,x−ϕnew
t

(cf. again the definition of the
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purchasing time and note that ϕu = ϕold
u for all u ≤ (k − 1)/n and x − ϕt = x − ϕnew

t − ϕold
t ).

Thus F (t, x) = F old(t, x− ϕnew
t ). Putting together, one obtains

F (t, x) = 1(x≤ϕnew
t )F

new(t, x) + 1(x>ϕnew
t )F

old(t, x− ϕnew
t ), t > (k − 1)/n, x ∈ (0, ϕt].

Thus, the deferred tax payments split into

α

∫ ∞
0

F (t, x) dx = α

∫ ∞
0

F old(t, x) dx+ α

∫ ∞
0

F new(t, x) dx. (4.15)

By ϕ • St = ϕold • St + ϕnew • St and Πt(ψ) = αψ • St − α
∫∞

0 Fψ(t, x) dx (see Proposition 4.1
in [14], which holds by continuity not only for elementary strategies, but for all strategies from
L+), we arrive at (4.14).

Since ϕnew
(k−1)/n = 0, we have the trivial estimate

∫∞
0 F new(k/n, x) dx ≤ ϕnew

k/n(Sk/n −
inf(k−1)/n≤u≤k/n Su) which yields, again by Proposition 4.1 in [14],

Π k
n

(ϕnew)−Π k−1
n

(ϕnew) ≥ −αϕnew
k/n(Sk/n − inf

(k−1)/n≤u≤k/n
Su) + α

∫
((k−1)/n,k/n]

ϕnew
t dSt. (4.16)

Let

An,k :=

{
F

(
k − 1

n
,

1√
n

)
≥ 1√

n
, inf

(k−1)/n≤u≤k/n
Su − S k−1

n
≥ − 1√

n
, ϕold

k
n

− ϕold
k−1
n

≤ − 2√
n

}
⊂ Ω.

On the set An,k, one can easily estimate the negative tax payments of ϕold between (k − 1)/n
and k/n, while it turns out that there are still enough positive tax payments when restricting
to intervals ((k − 1)/n, k/n], k = 1, . . . , n with ω ∈ An,k. Especially, on An,k, there is a large
enough reduction of old shares.

By Lemma 4.1 applied to ϕ̃ = ϕold and by the monotonicity of x 7→ F old((k − 1)/n, x), one
has that

Πk/n(ϕold)−Π(k−1)/n(ϕold) ≥ α

(
F old

(
k − 1

n
,

1√
n

)
− 1√

n

)
1√
n︸ ︷︷ ︸

lower bound for taxes triggered by “real” sales

−α
n

on An,k.(4.17)

Namely, on the set An,k, shares possessing labels greater than 1/
√
n at time (k − 1)/n are not

affected at all by wash sales, and tax rebates of other shares are bounded by α/
√
n per share.

This gives α/n as an upper bound for tax rebates of ϕold. Putting (4.14), (4.16), and (4.17)
together and using F old((k − 1)/n, ·) = F ((k − 1)/n, ·), one obtains

(Πk/n(ϕ)−Π(k−1)/n(ϕ))+

≥ 1An,k(Πk/n(ϕ)−Π(k−1)/n(ϕ))

≥ 1An,k

(
αF

(
k − 1

n
,

1√
n

)
1√
n
− 2α

n
− αϕnew

k/n(Sk/n − inf
(k−1)/n≤u≤k/n

Su)

+α

∫
((k−1)/n,k/n]

ϕnew
t dSt

)
. (4.18)

This lower estimate for the positive part of the difference between positive and negative
tax payments on the interval ((k − 1)/n, k/n] is used in the next steps. It turns out that
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1An,kαF ((k − 1)/n, 1/
√
n) /
√
n, i.e., tax payments triggered by realizations of “old” book

profits, is the dominating term on the RHS of (4.18).

Step 2: We want to prove that Π(ϕ) is of infinite variation already “shortly” after time
zero. For this, we estimate the sum over k of the RHS of (4.18) from below. We need
properties like that the local volatilities of the stock price and the strategy are bounded
and bounded away from zero. Under the assumptions of the theorem, these properties do
not hold globally. Moreover, there does not even exist a nonnegative trading strategy, i.e., a
strategy for which the tax payment stream is declared, which satisfies these properties globally.
However, one can do some localization that is based on the observation that near to zero
the properties hold with high probability. In the following, we work out these arguments in detail.

Let σmin := σ0/2, σmax := 2σ0, hmax := H0/2, hmin := 2H0, and

Cδ := {ω | ϕt(ω) ≥ ϕ0+/2, σt(ω) ∈ [σmin, σmax], Ht(ω) ∈ [hmin, hmax] ∀t ∈ (0, δ]}, δ > 0.

Under the assumptions of the theorem, one has ϕ0+ > 0. Thus, by continuity of ϕ, σ, and H, one
has P (Cδ)→ 1 for δ → 0. In addition, for every η > 0, there exist a mapping ξ : N→ R+ \ {0}
and K ∈ R+ s.t.

P (Dη) ≥ 1− η, where

Dη := {|µ| ∨ |G| ≤ K} ∩
⋂
j∈N
{|σs − σt| ∨ |Hs −Ht| ≤ 1/j ∀s, t ∈ [0, 1], |s− t| ≤ ξ(j)} .

Thus, it is sufficient to prove that for all δ, η > 0

P ({Var(Π(ϕ))δ <∞} ∩ Cδ ∩Dη) = 0. (4.19)

To prove (4.19), given δ, η, we can modify σ, H, µ, and G outside (Cδ ∩ Dη) × [0, δ] in a
predictable manner s.t. the modified quantities satisfy

(I) 0 < σmin ≤ σ ≤ σmax <∞

(II) −∞ < hmin ≤ H ≤ hmax < 0

(III) |σs − σt| ∨ |Hs −Ht| ≤ 1/j ∀s, t ∈ [0, 1], |s− t| ≤ ξ(j)

(IV) |µ| ∨ |G| ≤ K

everywhere, for some mapping ξ : N→ R+ \ {0} and some K ∈ R+ \ {0}.

Now, we fix some δ, η ∈ (0, 1). In the following, we denote by σ, µ, S, H, G, and ϕ the
modified quantities that satisfy Properties (I) to (IV) on Ω× [0, 1]. The modifications coincide
with the original quantities on (Cδ ∩Dη) × [0, δ]. Outside this set, the strategy ϕ may become
negative, but the following estimates still make sense because Fϕ(t, x) from (2.2) is declared for
all t, x with 0 ≤ x ≤ ϕt.

Step 3: By (2.4) and (2.5), the strategy can be written as

ϕt = ϕ0+ +

∫ t

0
Hsσs dBs +

∫ t

0
(Hsµs +Gs) ds, t > 0. (4.20)
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Define

M1
n,k,l :=

{
sup

(k−1−l)/n≤u≤(k−1)/n

∣∣σ(k−1−l)/n(B(k−1)/n −Bu)− (S(k−1)/n − Su)
∣∣ > 1√

n

}
for k = l + 1, . . . , n

and

M2
n,k,l :=

{
sup

(k−1−l)/n≤u≤(k−1)/n

∣∣H(k−1−l)/nσ(k−1−l)/n(B(k−1)/n −Bu)− (ϕ(k−1)/n − ϕu)
∣∣ > 1

2
√
n

}
for k = l + 1, . . . , n.

This means that for each triple (n, k, l), one considers piecewise constant approximations of the
integrands σ and H in (2.4) and (4.20). The larger l, the larger one has to choose n to obtain
good approximations of the price process and the strategy.

We want to express the book profit F ((k − 1)/n, 1/
√
n) appearing in (4.18) by the time

reversed process

B̂t := B(k−1)/n −B(k−1)/n−t, t ∈ [0, (k − 1)/n],

that is again a Brownian motion. Throughout the proof, a triple (n, k, l) satisfies 1 ≤ l ≤ k−1 ≤
n− 1. One has

F

(
k − 1

n
,

1√
n

)
= sup

τ(k−1)/n,1/
√
n≤u≤(k−1)/n

(
S(k−1)/n − Su

)
≥ sup

τ(k−1)/n,1/
√
n∨(k−1−l)/n≤u≤(k−1)/n

(
S(k−1)/n − Su

)
≥ 1Ω\M1

n,k,l
σ(k−1−l)/n sup

τ(k−1)/n,1/
√
n∨(k−1−l)/n≤u≤(k−1)/n

(
B(k−1)/n −Bu

)
− 1√

n

≥ 1Ω\M1
n,k,l

σ(k−1−l)/n sup
0≤t≤((k−1)/n−τ(k−1)/n,1/

√
n)∧l/n

B̂t −
1√
n

≥ 1Ω\(M1
n,k,l∪M

2
n,k,l)

σ(k−1−l)/n sup
0≤t≤inf{s≥0 | B̂s=1/(2H(k−1−l)/nσ(k−1−l)/n

√
n)}∧l/n

B̂t −
1√
n

≥ 1Ω\(M1
n,k,l∪M

2
n,k,l)

σmin sup
0≤t≤inf{s≥0 | B̂s=1/(2hminσmax

√
n)}∧l/n

B̂t −
1√
n

on the set {ϕ(k−1)/n ≥
1√
n
}. (4.21)

By the scaling property of Brownian motion, the process

B̂n
t := 2|hmin|σmax

√
n B̂t/(4h2minσ

2
maxn)

is again a standard Brownian motion, and we conclude

F

(
k − 1

n
,

1√
n

)
≥ 1Ω\(M1

n,k,l∪M
2
n,k,l)

σmin

2|hmin|σmax
√
n

sup
0≤t≤inf{s≥0 | B̂ns =−1}∧4h2minσ

2
maxl

B̂n
t −

1√
n

on the set {ϕ(k−1)/n ≥
1√
n
}.
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Define

M3
n,k :=

{
sup

(k−1)/n≤u≤k/n

∣∣σ(k−1)/n(Bu −B(k−1)n)− (Su − S(k−1)/n)
∣∣ > 1

2
√
n

}
and

M4
n,k :=

{
sup

(k−1)/n≤u≤k/n

∣∣H(k−1)/nσ(k−1)/n(Bu −B(k−1)/n)− (ϕu − ϕ(k−1)/n)
∣∣ > 1√

n

}
.

We conclude

1An,k
1√
n
F

(
k − 1

n
,

1√
n

)
≥ 1Ω\(M1

n,k,l∪M
2
n,k,l∪M

3
n,k∪M

4
n,k)

σmin

2|hmin|σmaxn
1Dn,k sup

0≤t≤inf{s≥0 | B̂ns =−1}∧4h2minσ
2
maxl

B̂n
t −

2

n

on
{
ϕ(k−1)/n ≥ 1/

√
n
}

, where An,k is defined in Step 1 and

Dn,k =

{
inf

(k−1)/n≤u≤k/n
Bu −B(k−1)/n ≥ −

1

2σmax
√
n
,

sup
(k−1)/n≤u≤k/n

Bu −B(k−1)/n ≥
3

|hmax|σmin
√
n

}
.

Let

In,k,l1 :=
σmin

2|hmin|σmax
1Dn,k sup

0≤t≤inf{s≥0 | B̂ns =−1}∧4h2minσ
2
maxl

B̂n
t (4.22)

and

In,k,l2 := In,k,l1 1M1
n,k,l∪M

2
n,k,l∪M

3
n,k∪M

4
n,k
, (4.23)

i.e.,

1An,k
1√
n
F

(
k − 1

n
,

1√
n

)
≥ In,k,l1 − In,k,l2 − 2

n
on

{
ϕ(k−1)/n ≥

1√
n

}
. (4.24)

Define

In,k3 := −ϕnew
k/n

(
Sk/n − inf

(k−1)/n≤u≤k/n
Su

)
+

∫
((k−1)/n,k/n]

ϕnew
t dSt.

Putting (4.18) and (4.24) together, one obtains that on the set {ω | ϕt(ω) ≥ 0, ∀t ∈ [0, 1]},
where the process Π(ϕ) is declared,

(Πk/n(ϕ)−Π(k−1)/n(ϕ))+ ≥ α

n

(
In,k,l1 − In,k,l2

)
1{

ϕ(k−1)/n≥ 1√
n

} − 4α

n
+ α1An,kI

n,k
3 . (4.25)

Step 4: As already mentioned in the outline of the proof, one has

E
(

sup
0≤t≤inf{s≥0 | B̂ns =−1} B̂

n
t

)
=∞, which implies

lim
l→∞

E

 sup
0≤t≤inf{s≥0 | B̂ns =−1}∧4h2minσ

2
maxl

B̂n
t

→∞, l→∞.
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Since the event Dn,k is independent of B̂n and possesses a positive probability, one arrives at

E(I2l,2l,l
1 )→∞, l→∞. (4.26)

Note that the distribution of In,k,l1 does not depend on n and k. This means that by truncating

the first hitting time of B̂n at 4h2
minσ

2
maxl, the random factor in (4.22) becomes integrable, but

by choosing l large, its expectation can be made arbitrary large. Then, given some l ∈ N, it is
shown that the expectation of In,k,l2 , the error term introduced in (4.23), tending to get bigger
for bigger l, becomes arbitrary small for n→∞.

Note that if H were positive, the supremum in the sixth line of (4.21) would be bounded
from above by 1/(2|H(k−1−l)/n|σ(k−1−l)/n

√
n), which is smaller than 1/(2|hmax|σmin

√
n).

By construction, In,k1,l1 and In,k2,l1 are independent for |k2 − k1| ≥ 4h2
minσ

2
maxl+ 1. Thus, for

l fixed, the triangular array (In,k,l1 )n∈N,k∈{l+1,...,n} is obviously strongly mixing. Since it has even
bounded second moments, it satisfies the weak law of large numbers, i.e.,

lim
n→∞

∑bδnc
k=l+1 I

n,k,l
1

n
→ δE(I2l,2l,l

1 ) in probability, n→∞ (4.27)

(this follows, e.g., from Theorem 2.1 of Peligrad [15]).

By Doob’s maximal quadratic inequality and Itô’s isometry, and Property (III), one has

E

(
√
n sup

(k−1−l)/n≤u≤(k−1)/n

∣∣σ(k−1−l)/n(B(k−1)/n −Bu)− (S(k−1)/n − Su)
∣∣)2

≤ 3nE

(∫ (k−1)/n

(k−1−l)/n
(σ(k−1−l)/n − σs) dBs

)2

+3nE

(
sup

(k−1)/n≤u≤(k−1)/n

∫ u

(k−1−l)/n
(σ(k−1−l)/n − σs) dBs

)2

+ 3K2l2/n

≤ 15l

j2
+

3K2l2

n
for l/n ≤ ξ(j). (4.28)

For l fixed, the last line of (4.28) can be made arbitrary small by choosing j big. We conclude:
for every l and ε > 0, we find nl,ε s.t.

P (M1
n,k,l) ≤ ε, ∀n ≥ nl,ε, k = l + 1, . . . , n.

By the same arguments, the assertion holds for M2
n,k,l and by similar but simpler arguments for

M3
n,k and M4

n,k. This means: for every l and ε > 0, one finds nl,ε s.t.

P (M1
n,k,l ∪M2

n,k,l ∪M3
n,k ∪M4

n,k) ≤ ε, ∀n ≥ nl,ε, k = l + 1, . . . , n.

Since I2l,2l,l
1 is integrable and the distribution of In,k,l1 does not depend on n, k, one has

∀ε > 0 ∃δ > 0 ∀A ∈ F ∀n, k P (A) ≤ δ =⇒ E
(
In,k,l1 1A

)
≤ ε

(see, e.g., Theorem 7.37 of [13]). We arrive at: for every l and ε > 0, we find nl,ε s.t.

E(In,k,l2 ) = E
(
In,k,l1 1M1

n,k,l∪M
2
n,k,l∪M

3
n,k∪M

4
n,k

)
≤ ε, ∀n ≥ nl,ε, k = l + 1, . . . , n. (4.29)
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It remains to estimate In,k3 , i.e., taxes of new shares. By (2.4), Cauchy-Schwarz’s inequality,
Itô’s isometry, and Doob’s maximal quadratic inequality, one has

E

(
Sk/n − inf

(k−1)/n≤u≤k/n
Su

)2

≤ 3E

(∫ k/n

(k−1)/n
σs dBs

)2

+ 3E

(
inf

(k−1)/n≤u≤k/n

∫ u

(k−1)/n
σs dBs

)2

+ 3K2/n2

≤ 15σ2
max

n
+ 3K2/n2. (4.30)

By (4.20), an analogue estimate holds for E
((
ϕk/n − inf(k−1)/n≤u≤k/n ϕu

))
and by Cauchy-

Schwarz’s inequality, one arrives at

E

((
ϕk/n − inf

(k−1)/n≤u≤k/n
ϕu

)(
Sk/n − inf

(k−1)/n≤u≤k/n
Su

))
≤ K̂

n
for some K̂ ∈ R+ (4.31)

and all n, k ∈ N with k ≤ n. Again by Itô’s isometry,

E

(∣∣∣∣∣
∫

( k−1
n
, k
n

]
(ϕt − inf

k−1
n
≤u≤t

ϕu) dSt

∣∣∣∣∣
)

≤ K

E ∣∣∣∣∣
∫

( k−1
n
, k
n

]
(ϕt − inf

k−1
n
≤u≤t

ϕu) dt

∣∣∣∣∣+ σmax

√√√√E

(∫
( k−1
n
, k
n

]
(ϕt − inf

k−1
n
≤u≤t

ϕu)2 dt

)

≤ K

n
E

 sup
k−1
n
≤u≤ k

n

ϕu − inf
k−1
n
≤u≤ k

n

ϕu

+
σmax√
n

√√√√√E

 sup
k−1
n
≤u≤ k

n

ϕu − inf
k−1
n
≤u≤ k

n

ϕu

2

≤ K̂

n
for some K̂ ∈ R+ (4.32)

and all n, k ∈ N with k ≤ n. For the last estimate, we use that

E
(

sup(k−1)/n≤u≤k/n ϕu − inf(k−1)/n≤u≤k/n ϕu

)2
≤ 24h2

minσ
2
max/n + 3(|hmin| + 1)K/n2. (4.31)

and (4.32) imply that E(
∑n

k=1 |I
n,k
3 |) is bounded in n ∈ N. Especially, there exists a K̃ ∈ R+

s.t.

E

(
n∑
k=1

(
In,k3

)−)
≤ K̃ for all n ∈ N. (4.33)

Step 5: Now, we complete the proof by combining the estimates of the previous step. Re-
member that we have to estimate the total variation of Π on the subinterval [0, δ] ⊂ [0, 1] and
given that ω ∈ Cδ ∩Dη. Let L, ε > 0. For K̃ from (4.33), one has that

P

bδnc∑
k=1

(
In,k3

)−
≥ 2K̃/ε

 ≤ ε/2. (4.34)

By (4.26)/(4.27), one can find l s.t.

P

(∑bδnc
k=l+1 I

n,k,l
1

n
≥ L

α
+

2K̃

ε
+ 6

)
→ 1, n→∞. (4.35)
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Fixing l, by (4.29), one has

P

(∑bδnc
k=l+1 I

n,k,l
2

n
≤ 1

)
→ 1, n→∞, (4.36)

Now let ϕ be again the original trading strategy. Putting (4.25), (4.34), (4.35), and (4.36)
together, we arrive at

P

1Cδ∩Dη

bδnc∑
k=l+1

(Πk/n(ϕ)−Π(k−1)/n(ϕ))+ ≤ L

 ≤ ε for n large enough,

where we use that Cδ ⊂ {ϕ(k−1)/n ≥ 1/
√
n for k = 1, . . . , bδnc} if n ≥ (ϕ0+/2)−2 and ϕ, S

have only be modified outside the set (Cδ ∩ Dη) × [0, δ]. Since L, ε > 0 are arbitrary chosen,∑bδnc
k=1 |Πk/n(ϕ)−Π(k−1)/n(ϕ)| converges to infinity in probability for n→∞ on the set Cδ ∩Dη.

Since limn→∞
∑bδnc

k=1 |Πk/n(ϕ)−Π(k−1)/n(ϕ)| exists pointwise, one has

P (Var(Π(ϕ))δ =∞) ≥ P (Cδ ∩Dη) ≥ P (Cδ)− η for all δ ∈ (0, 1), η > 0.

This implies

P (Var(Π(ϕ))δ0 =∞) ≥ lim sup
δ↓0

P (Var(Π(ϕ))δ =∞) ≥ lim sup
δ↓0

P (Cδ) = 1 for all δ0 > 0.

�

Lemma 4.2. One has

n∑
k=1

∫ ϕ(k−1)/n−inf(k−1)/n≤u≤k/n ϕu

0

(
k − 1

n
− τ(k−1)/n,x

)
dx ≤ sup

0≤u≤1
ϕu. (4.37)

Proof. Define

Mk :=

{
(t, y) ∈ [0, 1]× R+ | inf

(k−1)/n≤u≤k/n
ϕu < y < ϕ(k−1)/n, τ(k−1)/n,ϕ(k−1)/n−y < t <

k − 1

n

}
.

Let l < k and assume that (t, y) ∈ Ml ∩ Mk. One obtains that inf(l−1)/n≤u≤l/n ϕu < y <
ϕ(k−1)/n and thus τ(k−1)/n,ϕ(k−1)/n−y > (l − 1)/n, which is a contradiction to (l − 1)/n >

t > τ(k−1)/n,ϕ(k−1)/n−y. Thus, we have that Ml ∩ Mk = ∅ implying that λ2(∪k=1,...,nMk) =∑n
k=1 λ

2(Mk), where λ2 denotes the Lebesgue measure on R2. Since λ2(∪k=1,...,nMk) ≤
sup0≤u≤1 ϕu and

λ2(Mk) =

∫ ϕ(k−1)/n

inf(k−1)/n≤u≤k/n ϕu

(
k − 1

n
− τ(k−1)/n,ϕ(k−1)/n−y

)
dy

=

∫ ϕ(k−1)/n−inf(k−1)/n≤u≤k/n ϕu

0

(
k − 1

n
− τ(k−1)/n,x

)
dx,

this implies the assertion. �
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Remark 4.3. One may interpret Lemma 4.2 and its proof as follows: Consider the
reparametrization y := ϕt− x of shares which are in the portfolio at t. The bigger y, the shorter
is the residence time. With this parametrization, a share keeps its label until it is liquidated by
a real sale. Thus, (t, y) ∈ Mk, t < (k − 1)/n means that share y being in the portfolio at t is
liquidated between (k−1)/n and k/n. Since every shares can be liquidated only once, Mk and Ml

are disjunct for l 6= k. Thus, λ2(∪k=1,...,nMk) =
∑n

k=1 λ
2(Mk). It coincides with the accumulated

residence times of all shares which are liquidated until time 1, but without including the time in
the period the share is sold. It is bounded by the product of time horizon and the maximal total
number of shares.

Proof of Theorem 2.3(ii). We turn again to the decomposition (4.11)/(4.12) of “old shares” and
“new shares”. ϕold, the number of shares being “old” in the kth period, is nonincreasing on
((k− 1)/n, k/n], which allows us to apply Lemma 4.1 to the corresponding tax payment process
and to obtain(

Πk/n(ϕold)−Π(k−1)/n(ϕold)
)+

(4.38)

≤ α
∫ ϕold

(k−1)/n
−ϕold

k/n

0
F

(
k − 1

n
, x

)
dx+ α(ϕold

(k−1)/n − ϕ
old
k/n)

(
sup

(k−1)/n≤u≤k/n
Su − S(k−1)/n

)
.

For ϕnew, the number of “new” shares in the kth period, one has the estimate

Πk/n(ϕnew)−Π(k−1)/n(ϕnew) ≤ α
∫

((k−1)/n,k/n]
ϕnew
t dSt, (4.39)

using that F new((k−1)/n, ·) = 0, F new(k/n, ·) ≥ 0, and (3.3). By (4.14), one can put (4.38) and
(4.39) together and obtains(

Πk/n(ϕ)−Π(k−1)/n(ϕ)
)+

≤ α
∫ ϕold

(k−1)/n
−ϕold

k/n

0
F

(
k − 1

n
, x

)
dx+ α(ϕold

(k−1)/n − ϕ
old
k/n)

(
sup

(k−1)/n≤u≤k/n
Su − S(k−1)/n

)

+α

(∫
((k−1)/n,k/n]

ϕnew
t dSt

)+

=: Jn,k1 + Jn,k2 + Jn,k3 . (4.40)

By scaling properties, it is sufficient to prove the finite variation property on the time interval
[0, 1]. In addition, the sequence

Tm := inf {t ≥ 0 | St 6∈ [1/m,m], |µt| > m, σt > m,

or Ait 6∈ [−m,m] for some i = 1, . . . , d
}
∧ 1, m ∈ N,

is localizing by Assumption 2.1, and one only needs to show that the stopped tax processes ΠTm ,
m ∈ N, are of finite variation. Thus, given m, we can modify g outside the compact set [1/m,m]×
[−m,m]d ⊂ (0,∞)× Rd s.t. the modified function, still denoted by g, satisfies

(I) ∂1g is positive, bounded, and bounded away from zero on R+ × Rd,

(II) ∂2g and ∂11g are bounded on R+ × Rd,
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and one still has

ϕTmt = g
(
STmt , ATmt

)
, t > 0.

In the following, for notational convenience and w.l.o.g., we put d = 1 and At = t. In
addition, the stopped processes are still denoted by µ, σ, S, and ϕ. By the implicit func-
tion theorem, it follows that St = f(ϕt, t), t > 0, for some smooth function f with ∂1f > 0
and ∂1f, ∂2f bounded on R+×[0, 1]. For the later, one needs that ∂1g is bounded away from zero.

Let us first estimate
∑n

k=1 J
n,k
1 . For all k ≥ 2 and x ∈ (0, ϕ(k−1)/n), one has

F

(
k − 1

n
, x

)
= f

(
ϕ(k−1)/n,

k − 1

n

)
− inf
τ(k−1)/n,x<u≤(k−1)/n

f (ϕu, u)

≤ f

(
ϕ(k−1)/n,

k − 1

n

)
− inf
τ(k−1)/n,x<u≤(k−1)/n

f

(
ϕu,

k − 1

n

)
+

(
k − 1

n
− τ(k−1)/n,x

)
sup

(p,t)∈R+×[0,1]
|∂2f(p, t)| (4.41)

≤ x sup
(p,t)∈R+×[0,1]

∂1f(p, t) +

(
k − 1

n
− τ(k−1)/n,x

)
sup

(p,t)∈R+×[0,1]
|∂2f(p, t)|.

For the equality, one uses that S0 = f(ϕ0+, 0) and thus infτ(k−1)/n,x≤u≤(k−1)/n Su =

infτ(k−1)/n,x<u≤t f (ϕu, u). For the crucial last inequality one needs that f is increasing in its
first argument, which leads to

inf
τ(k−1)/n,x<u≤(k−1)/n

f

(
ϕu,

k − 1

n

)
= f

(
inf

τ(k−1)/n,x<u≤(k−1)/n
ϕu,

k − 1

n

)

= f

(
(ϕ(k−1)/n − x) ∨ inf

0<u≤(k−1)/n
ϕu,

k − 1

n

)
≥ f

(
ϕ(k−1)/n − x,

k − 1

n

)
.

Putting (4.41) and Lemma 4.2 together, one obtains

n∑
k=1

Jn,k1 ≤ α

2
sup

(p,t)∈R+×[0,1]
∂1f(p, t)

n∑
k=1

(
ϕold

(k−1)/n − ϕ
old
k/n

)2
+ α sup

(p,t)∈R+×[0,1]
|∂2f(p, t)| sup

0≤u≤1
ϕu

≤ M1

n∑
k=1

(
ϕold

(k−1)/n − ϕ
old
k/n

)2
+M2 (4.42)

for some M1,M2 ∈ R+ which do not depend on n. By Itô’s formula, ϕ satisfies

dϕt = ∂1g(St, t) dSt + ∂2g(St, t) dt+
1

2
∂11g(St, t) d[S, S]t. (4.43)

From Properties (I), (II), S ≤ m, |µ| ≤ m, and σ ≤ m, one concludes that both the drift rates
and the rates of the continuous quadratic variation processes of S and ϕ are bounded. Thus, by
(4.42) and the same estimates as in (4.30) and (4.32), one has that

n∑
k=1

E(Jn,k1 ),

n∑
k=1

E(Jn,k2 ),

n∑
k=1

E(Jn,k3 ) are bounded in n ∈ N. (4.44)
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Putting (4.40) and (4.44) together yields that

E

(
n∑
k=1

(
Πk/n(ϕ)−Π(k−1)/n(ϕ)

)+)
is bounded in n ∈ N.

By the Lemma of Fatou, this implies that

E

(
lim inf
n→∞

n∑
k=1

(
Πk/n(ϕ)−Π(k−1)/n(ϕ)

)+)
<∞.

As |x| = 2x+ − x and Π1(ϕ) is almost surely finite, one concludes that

P

(
lim inf
n→∞

n∑
k=1

∣∣Πk/n(ϕ)−Π(k−1)/n(ϕ)
∣∣ <∞) = 1.

By continuity of the tax payment process, Var(Π(ϕ))1 is attained by any sequence of grids with
vanishing mesh, and we are done. �

5 Tax effect of taming strategies and a conjecture

In this section, we argue why we belief that for a risky asset price following geometric Brownian
motion and preferences given by CRRA-utility (“constant relative risk aversion”) from terminal
wealth, the optimal strategy with the exact tax basis is of infinite variation if the parameters
are suitably chosen. This would mean that it behaves like in a frictionless market and different
from a market with proportional transaction costs. In the latter, the optimal strategy consists
of a no-trading region. Since the portfolio optimization problem with the exact tax basis is
not solved (and maybe it is even far away from being tractable), the considerations about the
optimal strategy are pure heuristics that may stimulate further research (see Remark 5.3). They
are however based on a rigorous result on the tax effect of the taming of a strategy which follows
Brownian motion with drift (Theorem 5.1) that is interesting in itself.

To make an educated guess about the path properties of the optimal strategy, we are inter-
ested in strategies of the form ϕt = g(St, At), ∂1g > 0, i.e., we focus on leverage, and want to
compare them with their tamed approximations ϕε, ε > 0, where

ϕεt := ϕs with s := sup {u < t | ϕu ∈ {0,±ε,±2ε, . . .}} , t > 0

and ϕε0 = 0, i.e., ϕε is piecewise constant and |ϕε − ϕ| ≤ ε.
For simplicity, we restrict to the case that ϕt = 1(t>0)g(St) for some increasing function g

with g′ ≥ g′min > 0 and St = g−1(a + µt + Bt), i.e., ϕt = 1(t>0)(a + µt + Bt), with some
a ∈ R+ \ {0}, µ ∈ R, and a standard Brownian motion B. To avoid irrelevant problems, we only
consider ε with ε = a/k0 for some k0 ∈ N, which implies that ϕε0+ = ϕ0+ = a P -a.s.

Theorem 5.1. Under the above conditions, one has

E

(
1{ϕεt≥0}

∫ ϕεt

0
F ε(t, x) dx

)
≤ E

(
1{ϕt≥0}

∫ ϕt

0
F (t, x) dx

)
+

3ε2

2g′min

, (5.1)

where F ε denotes the book profit function for strategy ϕε (F ε(t, ·) and F (t, ·) are declared on
{ϕεt ≥ 0} and {ϕt ≥ 0}, resp.).
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This means that for ε→ 0, the taming of the strategy can lead, if at all, only to a moderate
increase of deferred tax payments. The proof of Theorem 5.1 is based on the following lemma.

Lemma 5.2. Let X be a continuous supermartingale with X0 = 0 and [X,X]∞ = ∞, P -
a.s., ε > 0, σ1 := inf{s ≥ 0 | Xs = −ε}, σ2 := sup{s ≥ 0 | Xs = 0 and s < σ1}, and
H := inf0≤s≤σ2 Xs. Then, P (H ≤ −b) ≤ 1 − b/ε for all b ∈ (0, ε). In the case that X is a
martingale, the inequality holds with equality, i.e., H is uniformly distributed on (−ε, 0).

Proof of Lemma 5.2. The event {H ≤ −b}, b ∈ (0, ε), occurs if and only if after the first hitting
time of −b, X hits 0 before it hits −ε. By the supermartingale property, the probability p of
this event satisfies pb+ (b− ε)(1− p) ≤ 0. �

Proof of Theorem 5.1. One has the following decompositions of the book profits:∫ ϕεt∨0

0
F ε(t, x) dx = ε1{ϕt≥kε}

∞∑
k=1

F ε(t, (ϕεt − kε)+) + ε1{ϕεt>ϕt}F
ε(t, 0+), (5.2)

where F ε(t, (ϕεt − kε)+) = limx↓ϕεt−kε F
ε(t, x), and∫ ϕt∨0

0
F (t, x) dx ≥

∫ bϕt/εcε∨0

0
F (t, x) dx =

∞∑
k=1

1{ϕt≥kε}

∫ kε

(k−1)ε
F (t, ϕt − y) dy. (5.3)

Let us fix some k ∈ N and compare the book profit F ε(t, (ϕεt −kε)+) of the tamed strategy with

the average book profit
∫ kε

(k−1)ε F (t, ϕt − y) dy/ε of the original strategy. One has

F ε(t, (ϕεt − kε)+) = F ε(t, ϕεt − (k − 1)ε) = g−1(ϕt)− g−1

(
inf

τ̃≤u≤t
ϕu+

)
(5.4)

for inf0<u≤t ϕu ≤ kε ≤ ϕεt , where

τ̃ := inf{u > 0 | ϕu = kε and ϕs > (k − 1)ε ∀s ∈ (u, t]}

and

F (t, ϕt − y) = St − inf
τt,ϕt−y≤u≤t

Su = g−1(ϕt)− g−1(y) for inf
0<u≤t

ϕu ≤ y ≤ ϕt, (5.5)

see (7.1) of [14]. We firstly condition on the event {ϕt ≥ kε} ∩ {inf0<s≤t ϕs ≤ (k − 1)ε}. Then,
σ ≤ τ ≤ t for sure, where σ := inf{u > 0 | ϕu = (k − 1)ε} and τ := τt,ϕt−kε. Given σ and

τ , the time reversed process u 7→ ϕτ−u − kε is distributed like a Brownian bridge (B̃u)u∈[0,τ−σ]

with B̃0 = 0 and B̃τ−σ = −ε. Especially, the (conditional) law of the process (B̃u)u∈[0,τ−σ]

does not depend on µ, and under the filtration F̃u = σ(τ, σ, B̃s∧(τ−σ), s ∈ [0, u]), it possesses

the drift rate (−ε − B̃u∧(τ−σ))/(τ − σ − u). Thus, B̃ stopped at the first time it hits −ε is a
supermartingale. This allows us to apply Lemma 5.2 (where it is of course sufficient to assume
that the stopped process Xσ1 is a supermartingale), and we conclude that

P

(
inf

τ̃≤s≤t
ϕs ≤ kε− b | ϕt ≥ kε, inf

0<s≤t
ϕs ≤ (k − 1)ε

)
≤ 1− b/ε, b ∈ (0, ε).

Since g−1 is increasing, this yields

E

(
g−1

(
inf

τ̃≤u≤t
ϕu

)
| ϕt ≥ kε, inf

0<s≤t
ϕs ≤ (k − 1)ε

)
≥ 1

ε

∫ 0

−ε
g−1(kε+ b) db. (5.6)
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On the other hand, one has the pathwise identity

εF ε(t, (ϕεt − kε)+) = ε

(
St − inf

0≤u≤t
Su

)
=

∫ kε

(k−1)ε
F (t, ϕt − y) dy on

{
inf

0<s≤t
ϕs > kε

}
. (5.7)

Putting (5.6) and (5.7) together, one has, in view of (5.4) and (5.5), that

εE

(
F ε(t, (ϕεt − kε)+) | ϕt ≥ kε, inf

0<s≤t
ϕs 6∈ ((k − 1)ε, kε]

)
≤ E

(∫ kε

(k−1)ε
F (t, ϕt − y) dy | ϕt ≥ kε, inf

0<s≤t
ϕs 6∈ ((k − 1)ε, kε]

)
, k ∈ N. (5.8)

Book profits of shares in the layer ((k − 1)ε, kε] of the pathwise infimum have to be considered
separately, and we use the rough estimate

εE

(
F ε(t, (ϕεt − kε)+) | ϕt ≥ kε, (k − 1)ε < inf

0<s≤t
ϕs ≤ kε

)
−E

(∫ kε

(k−1)ε
F (t, ϕt − y) dy | ϕt ≥ kε, (k − 1)ε < inf

0<s≤t
ϕs ≤ kε

)

= E

(∫ kε

inf0<s≤t ϕs

(
g−1(y)− g−1

(
inf

0<s≤t
ϕs

))
dy | ϕt ≥ kε, (k − 1)ε < inf

0<s≤t
ϕs ≤ kε

)

≤
∫ kε

(k−1)ε

(
g−1(y)− g−1 ((k − 1)ε)

)
dy ≤ ε2

2g′min

. (5.9)

The difference to the argumentation in (5.6) is that for inf0<s≤t ϕs > (k − 1)ε, the original
strategy does not purchase the shares of the layer ((k − 1)ε, kε] earlier than the tamed one.
Thus, book profits triggered by wash sells of the tamed strategy cannot be compensated. In
addition, we cannot apply Lemma 5.2 as, without the condition inf0<s≤t ϕs ≤ (k − 1)ε, the
process u 7→ ϕτ−u− kε has in general no negative drift rate at u = 0. Thus, we have to compute
the worst case that inf τ̃≤s≤t ϕs ≈ (k − 1)ε.

For newly purchased shares of the tamed strategy, we also use a rough estimate, namely

1{ϕεt>ϕt}F
ε(t, 0+) ≤ 1{ϕεt>ϕt}

(
g−1(ϕt)− g−1(ϕεt − ε)

)
≤ ε

g′min

. (5.10)

Putting (5.2), (5.3), (5.8), (5.9), and (5.10) together yields (5.1). �

Remark 5.3. In view of Theorem 5.1, we conjecture that for the exact basis, a risky asset
price following geometric Brownian motion and preferences given by CRRA-utility from terminal
wealth, the optimal trading strategy is of infinite variation if the parameters are suitably chosen.

Let u(x) = x1−R, R ∈ (0,∞) \ {1}, be the utility function, V the liquidation value from
Definition 3.1, and πt = ϕtSt/Vt the fraction invested in the risky asset. By Itô’s formula, one
has

du(Vt) = u′(Vt)(1− α)πtVtµdt+ u′(Vt)(1− α)πtVtσ dBt + u′(Vt)(1− α)(1− πt)Vtr dt

+
1

2
u′′(Vt)(1− α)2π2

t V
2
t σ

2 dt+ u′(Vt)α

∫ ϕt

0
F (t, x) dxr dt. (5.11)

28



If trading gains were taxed immediately, the last summand would disappear. Then, there would
exist a value function v, depending on time t and liquidation value x only, with v(t, x) = f(t)u(x).
The optimal strategy would be given by

ϕt =
π?Vt
St

, where π? =
µ− r

(1− α)Rσ2
. (5.12)

This means that the optimal Merton fraction of a tax-exempt investor is just divided by 1 − α,
and if µ−r 6= (1−α)Rσ2, ϕ is of infinite variation as in frictionless markets. Furthermore, when
following a strategy which differs from the optimal one “on average” by ε, the utility-loss in (5.11)
without the last summand is at least of order ε2. On the other hand, by Theorem 5.1, interest
losses by frequent realizations of book profits are bounded in expectation by O(ε2). Provided that
this holds similarly for strategies of the form ϕt = g(St, At), where we have leverage in mind,
i.e., ∂1g > 0, one can choose α > 0 small enough such that at least for some (ω, t), the utility-
loss term which ignores interest on deferred tax payments α

∫ ϕt
0 F (t, x) dxr dt, dominates. This

indicated that the taming of a strategy reduces expected utility, and the optimal strategy is in
general not of finite variation (although one should of course expect that it differs from (5.12),
even for small α). It is evident that this is only a conjecture with outstanding points at many
places.

6 Conclusion

In this article, we investigate the fine structure of the payment stream of a linear tax on trading
gains when using the so-called exact tax basis. Roughly speaking, for an Itô asset price process,
we show that the tax payment process is of infinite variation if the quadratic covariation of
trading strategy and asset price is negative, while the tax process is of finite variation if there is
a positive dependency between strategy and price. A reason for this is that in the first case, there
is more profit-taking, which triggers positive tax payments, as the position is more frequently
reduced after the asset price goes up. On the other hand, losses are always realized immediately
by wash sells.

To prove that the tax payment stream is of infinite variation, we estimate book profits
of “recently” purchased shares from below. For the estimation, it is crucial that the pathwise
supremum of a standard Brownian motion killed when hitting −1 has infinite expectation.
For small time intervals, the order of the reduction of the asset position is square root of the
length of the interval, and it follows that the positive part of the increment of the tax payment
process is of the order of the length of the interval, but with a nonintegrable random prefactor.
Together with a strong mixing property, this yields infinite variation on almost all paths.

In addition, we provide a definition of Constant Proportion Portfolio Insurance (CPPI)
strategies that incorporates taxes. The deferment of tax payments by unrealized book profits
has a major impact on the portfolio value which controls the investment in the risky asset. CPPI
strategies are an important application of [14] where the tax payment stream is constructed for
all càglàd trading strategies – including strategies of infinite variation. We obtain the CPPI
portfolio value process as the unique solution of a SDE with a coefficient functional acting
on the whole past history of the process. The number of risky assets the investor holds is
increasing (decreasing) in the asset price if the tax-adjusted multiple of the cushion which is
invested in the risky asset is bigger (smaller) than one. In the first case, the strategy requires
less profit-taking which means that profits are better deferred.
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Finally, we show that the tax benefits of the taming of a strategy of infinite variation are
quite moderate which provides some intuition how an optimal continuous time strategy may
look like.
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