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Abstract

In this article, we show that the payment flow of a linear tax on trading gains from a
security with a semimartingale price process can be constructed for all càglàd and adapted
trading strategies. It is characterized as the unique continuous extension of the tax payments
for elementary strategies w.r.t. the convergence “uniformly in probability”. In this frame-
work, we prove that under quite mild assumptions dividend payoffs have almost surely a
negative effect on investor’s after-tax wealth if the riskless interest rate is always positive. In
addition, we give an example for tax-efficient strategies for which the tax payment flow can
be computed explicitly.

Keywords: capital gains taxes, semimartingales, local time, dividend policy
JEL classification: G10, H20,

Mathematics Subject Classification (2010): 91G10, 91B60, 60G48, 60J55

1 Introduction

In this article, we want to answer the following question. Can tax payments on capital gains be
modeled for continuous time trading strategies of the kind they generally appear in mathematical
finance ? Most of these strategies possess infinite variation, as, e.g., the optimal stock position
in the Merton problem or the replicating portfolio of an option in the Black Scholes model. A
straight forward construction of the tax payment flow, analogous to time-discrete models, would
be based both on accumulated purchases and accumulated sales of assets. But, of course, these
quantities explode if strategies are of infinite variation.

For simplicity, we consider a linear taxing rule with tax rate α ∈ (0, 1), i.e., if an asset
with stochastic price process S is purchased at time t1 and sold at time t2, the trading gains
St2 − St1 are taxed at α(St2 − St1). Negative tax payments for losses, so-called tax credits, can
be interpreted as a refund of former tax payments or a deduction against future tax payments.

An important feature of the tax code is the fact that trading gains are not taxed before
the asset is liquidated, i.e., the gain is realized. Thus, the investor can influence the timing
of the tax payments, namely she holds a deferral option. Possible dividend payments are taxed
immediately. A crucial observation is the following. If the investor buys, e.g., 100 General Motors
stocks at time t1, another 100 at time t2, and sells 100 at time t3, it matters which of the
stocks she sells, as in general α · 100(St3 − St2) 6= α · 100(St3 − St1). When the portfolio is
liquidated at some date t4 the difference of the accumulated tax payments disappears because
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α · 100(St3 − St2) + α · 100(St4 − St1) = α · 100(St3 − St1) + α · 100(St4 − St2). But, the order
of sales still matters for discounted payments if the riskless interest rate does not vanish. In
the case of a positive riskless interest rate, it is more favorable to realize smaller trading gains
first. Moreover, if the stock falls below its purchasing price, it is worthwhile to sell it in order
to realize the trading loss and rebuy it immediately, which is called a wash sale. These facts
were already observed in Dybvig and Koo [11], see Properties 1 and 2 on page 6. For a rigorous
proof of these seemingly obvious statements considering arbitrary dynamic trading strategies,
see Appendix A of the current paper. For investors, wash sales are a method to claim a capital
loss without actually changing their position. The regulation described above that leaves it up
to the taxpayer to choose which trading gain to realize first when a stock position is reduced is
called the exact tax basis. An example is the U.S. tax law that allows investors to use a separate
tax basis for each security. But, the U.S. tax law disallows loss deductions if the same stock is
repurchased within thirty days. However, this regulation can easily be bypassed by purchasing a
similar stock. There are also other tax codes, specifing the basis to which the price of a security
has to be compared in order to evaluate the capital gains (or losses). In some countries, the
basis is the average purchase price of all stocks of the same firm (e.g., in Canada) or the price
of the stock which was bought first (“first-in-first-out”, a procedure followed, e.g., in Germany).
Of course, the exact tax basis offers the investor the maximal possible flexibility to make use of
her tax-timing option. Economically, the exact tax basis seems to be the most reasonable one
because highly correlated stocks of different firms are anyhow considered separately.

Although in practice capital gains taxes may be the most relevant market friction, there
is only little literature on capital gains taxes in advanced continuous time models. Ben Tahar,
Soner, and Touzi [3, 4] solve the Merton problem with proportional transaction costs and a
tax based on the average of past purchasing prices. This approach has the advantage that
the optimization problem is Markov with the one-dimensional tax basis as additional state
variable. Cadenillas and Pliska [8] and Buescu, Cadenillas, and Pliska [7] maximize the long-run
growth rate of investor’s wealth in a model with taxes and transaction costs. Here, after each
portfolio regrouping, the investor has to pay capital gains taxes for her total portfolio. Jouini,
Koehl, and Touzi [15, 16] consider the first-in-first-out priority rule with one nondecreasing
asset price, but with a quite general tax code, and derive first-order conditions for the optimal
consumption problem. The problem consists of injecting cash from the income stream into the
single asset and withdrawing it for consumption. Consequently, all admissible strategies are of
finite variation. Dybvig and Koo [11] and DeMiguel and Uppal [10] model the exact tax basis,
as in the current article, but in discrete time and relate the portfolio optimization problem to
nonlinear programming.

Whereas in models with proportional transaction costs it is quite obvious that strategies
of exploding variation lead to exploding costs and thus to an immediate ruin for sure, capital
gains taxes do not explode. Namely, taxes are not triggered by portfolio regroupings alone if
there are no price changes. In addition, even if the investment strategy forces that gains from
upward movements of the stock are realized, there is to some extent an offset by losses due
to tax credits. On the other hand, a straightforward generalization of the model by [11, 10]
to continuous time is only available for finite variation strategies – as not only the number
of shares held in the portfolio enters in the self-financing condition, but it is based on both
purchases and sells. In this article, we show how tax payments can nevertheless be constructed
under the condition that stocks are semimartingales.

One application is to compare different dividend policies. As dividend payoffs, in contrast
to (unrealized) book profits, have to be taxed immediately, capital gains taxes are also relevant
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for dividend policies. Among economists, there have been extensive discussions about optimal
dividend policies. In the famous article by Miller and Modigliani [19], their effect on the current
stock price is considered, and their irrelevance for the firm valuation is shown in perfect markets
(i.e., without taxes). A question arising from [19] is: “Why do firms pay dividends?”. The so-
called dividend puzzle, at first appearing in Black [6], states that there are no rational reasons
for a firm to pay dividends. Bernheim [5] solves this puzzle considering a model (with taxes) in
which firms attempt to signal profitability by distributing cash to shareholders. For a survey on
these general, but mainly less formal, discussions on dividend policies we refer to the book of
Lease et al. [18].

The current article does not make any contribution to the solution of the dividend puzzle.
Instead, we establish precise conditions under which the widely held view that dividends have
a negative impact on investors’ after-tax wealths (cf., e.g., [6]) can be proven in a model that
allows for dynamic trading. If investment opportunities were restricted to a single asset with
increasing price process, this property would be quite obvious. Indeed, let rt > 0 be the growth
rate of the asset. By strict convexity of the exponential function, one has

1 + (1− α)

(
exp

(∫ t

0
rs ds

)
− 1

)
> exp

(
(1− α)

∫ t

0
rs ds

)
. (1.1)

The LHS of (1.1) can be interpreted as the value of a portfolio with initial capital 1 when capital
gains are taxed at time t with factor α. The RHS corresponds to the same situation, but capital
gains are already taxed at the time they occur. This tax regulation takes effect if the asset
always has price 1 but pays out the continuous dividend rt dt (the after-tax dividend (1−α)rt dt
is then reinvested in the asset). However, considering dynamic portfolio regroupings and asset
price processes that are not increasing with probability 1, a proof of the conjecture that the
effect of dividends is always negative, is, even in discrete time, much trickier than (1.1). We give
a proof of this assertion in the continuous time framework provided in this article.

Finally, to demonstrate the tractability of the model, we give an example for tax-efficient
dynamic trading strategies for which the tax payment flow can be computed explicitly and is
easy to interpret.

The article is organized as follows. In Section 2, we present the model and the first main result,
Theorem 2.11, showing how to construct tax payment processes for adapted, left-continuous
trading strategies. The construction is based on automatic wash sales and the rule to sell shares
with shorter residence time first. The optimality of this procedure is proven in Appendix A
for the discrete time model of Dybvig and Koo [11]. In Section 3, basic properties of the book
profits of a portfolio are discussed. They are used in the proof of Theorem 2.11 in Section 4.
In Section 5, the self-financing condition of the model is introduced. In Section 6, the second
main result, Theorem 6.3, showing that the investor is always better off in a model with a stock
which does not pay dividends is stated and proved. Section 7 is about tax-efficient strategies,
and Section 8 gives examples that show the necessity of some assumptions.

2 Construction of the tax payment process

Throughout the article, we fix a terminal time T ∈ R+ and a filtered probability
space (Ω,F , (Ft)t∈[0,T ], P ) satisfying the usual conditions. Denote by O (resp. by P) the optional
σ-algebra (resp. the predictable σ-algebra) on Ω× [0, T ]. For optional processes X,Xn, n ∈ N, we

write Xn up→ X iff Xn converges uniformly in probability to X, i.e., supt∈[0,T ] |Xn
t −Xt| converges

to 0 in probability. Equality of processes is understood up to evanescence. A process X is called
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làglàd iff all paths possess finite left and right limits (but they can have double jumps). We set
∆+X := X+ −X and ∆X := ∆−X := X −X−, where Xt+ := lims↓tXs and Xt− := lims↑tXs.
For a random variable Y , we set Y + := max(Y, 0) and Y − := max(−Y, 0).

For an investor trading in finitely many different stocks, the total tax payment is just the
sum of the tax payments considering only gains from one type of stock. Thus, it is sufficient
to consider only one risky asset (sometimes called stock). Its price process is given by the
semimartingale (St)t∈[0,T ] (thus the paths are càdlàg). The stock pays out nonnegative dividends.
Accumulated dividends per share are modeled by the nondecreasing adapted càdlàg process
(Dt)t∈[0,T ]. All capital gains (positive or negative) are taxed with the rate α ∈ (0, 1). But,
whereas dividends are taxed immediately, trading gains arising from stock price movements are
not taxed before they are realized. Denote by L the set of all left-continuous adapted processes
possessing finite right limits. The investor’s strategy is the number of identical stocks she holds,
and it is modeled by some ϕ ∈ L with ϕ0 = 0 and ϕ ≥ 0. Short-selling is forbidden as otherwise
the investor can hold one long and one short position of the same stock at the same time, and this
can lead to an arbitrage opportunity under a linear tax rule and a positive riskless interest rate
(losses are immediately realized, and the corresponding gains are deferred, cf. Constantinides [9]).
The assumption that ϕ0 = 0 is solely for notational convenience (cf. (2.4)). It does not rule out
that the investor starts with a bulk trade ϕ0+ > 0.

Remark 2.1. In general, the tax payment flow cannot be derived from the process ϕ alone as
payments depend on which shares the investor sells when ϕ is reduced and on the occurrence
of wash sales that do not enter in ϕ. Given some ϕ, we work with a special procedure that
dictates which of the shares to sell. In Appendix A, for a nonnegative interest rate, the pathwise
optimality of this procedure is proven in the discrete time model of Dybvig and Koo [11] where
arbitrary shares can be sold. We use that a payment obligation in the future is prefered to a
payment obligation today. With this intuition in mind, the constructions in the current section
are well-founded, but there are also good reasons to read Appendix A first.

Remark 2.2. It is important to note that the pathwise optimality of wash sales in the model
of Dybvig and Koo that motivates our model, see also Theorem A.1, is based on the absence
of transaction costs. With proportional transaction costs, there would be a trade-off between the
aim to realize losses immediately and the aim to avoid transaction costs. The (non-)optimality
of wash sales would depend on the size of book losses and transaction costs, but also on (the
probability law of) future asset price movements (e.g., if there is a reason to liquidate the asset
anyhow shortly afterwards, a wash sale is less profitable). Thus, in the presence of transaction
costs, one cannot reduce the strategy of [11] independently of investor’s beliefs and preferences
to a one-dimensional predictable process (ϕt)t∈[0,T ] that only specifies the total number of shares
in the portfolio. This means that the tractability of our model is essentially based on the absence
of transaction costs. Consequently, transaction costs cannot be used to rule out trading strategies
of infinite variation.

To construct the tax payment process, several mathematical objects have to be introduced.
For every t, we sort the ϕt stocks by the time spending in the portfolio and label them by x: the
larger x the longer the residence time in the portfolio. We follow the above-mentioned procedure:

“latest purchased stocks are sold first”. (2.1)

With this procedure, the purchasing time of the xth stock is defined by

τt,x :=

{
supMt,x if Mt,x 6= ∅

t otherwise
, t ∈ [0, T ], x ∈ R+, (2.2)
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where Mt,x := {u ∈ R+ | (u ≤ t and x − ϕt + ϕu ≤ 0) or (u < t and x − ϕt + ϕu+ ≤ 0)}. By
ϕ0 = 0 and ϕ ≥ 0, one has that

Mt,x = ∅ ⇔ x > ϕt (2.3)

and thus

τt,x = 1(x≤ϕt) supMt,x + 1(x>ϕt)t. (2.4)

The construction is illustrated in Figure 1. Next, an automatic loss realization is modeled. The

Figure 1: On the ordinate, the stocks that are in the portfolio at time t are sorted by descending
label x (see the green axis). τt,x, the purchasing time of stock x, is the last time u before t with
ϕu = ϕt − x (see the case x = 2). The pieces that are marked in red symbolize the stocks (and
their purchasing times) which are still in the portfolio at time t. If the position is reduced, stocks
with lower residence time in the portfolio are sold first.

trading gain of piece x is decomposed into

St − Sτt,x = inf
τt,x≤u≤t

Su − Sτt,x︸ ︷︷ ︸
realized losses by wash sales

+ St − inf
τt,x≤u≤t

Su︸ ︷︷ ︸
unrealized book profits

. (2.5)

This is motivated as follows: if a stock falls below its purchasing price, it is sold and rebought in
order to declare a loss. Then, in the continuous time limit, the realized loss is the first summand
on the RHS of (2.5). The residual second summand are the unrealized book profits.

Definition 2.3 (Book profits). Let ϕ ∈ L with ϕ0 = 0 and ϕ ≥ 0. The mapping F : Ω× [0, T ]×
R+ → R+ with

Fω(t, x) := St(ω)− inf
τt,x(ω)≤u≤t

Su(ω), (2.6)

where τt,x is defined in (2.2), is called the book profit function.

A book profit is a gain that is demonstrated on paper, but not actually real yet. By the wash
sales and the fact that a newly bought share starts with book profit zero, a share with a longer
stay in the portfolio possesses a higher (or equal) book profit, i.e., x 7→ Fω(t, x) is nondecreasing.
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Note that wash sales neither enter into the strategy ϕ (implying that these transactions have
no impact on the trading gains) nor in the purchasing times τt,x. The latter means that τt,x is
the time at which the share possessing at time t with label x is bought and kept in the portfolio
afterwards at least up to time t, apart from later rebuys caused by wash sales.

Remark 2.4. The book profit function (2.6) that depends on the paths of the stock price and
the total number of shares turns out to be the key object to construct tax payments for strategies
of infinite variation and to find out tax-efficient strategies.

Proposition 2.5. F (t, x) and τt,x fulfill the following properties:

(i) The mapping x 7→ τt,x is nonincreasing on [0, ϕt].

(ii) F (t, x) = 0 for x > ϕt.

(iii) x 7→ F (t, x) is nondecreasing on [0, ϕt].

(iv) x 7→ F (t, x) is left-continuous.

(v) If ϕ is an elementary strategy, then lims↓t F (s, x) exists for all t, x.

The proof can be found at the beginning of Section 3. Of course, F (t, x) is only used for
x ≤ ϕt. Possible states and developments of F over time can be seen in Fig. 2.

Remark 2.6. To ensure that the function x 7→ F (t, x) is left-continuous, besides ϕu, also ϕu+

has to be considered in the definition of Mt,x. It is convenient that x 7→ F (t, x) does not possess
double jumps, but for the following construction of the tax payment process the values of F at
the (countably many) points of discontinuity do not matter. Fω(t, ·) |(0,ϕt(ω)] can also be seen as
the left-continuous inverse of the distribution function of the book profits over all shares that are
in the portfolio at time t (here, “distribution function” means the number of shares with book
profits lower than or equal to a given bound).

Whereas the book profit function in (2.6) is directly defined for all ϕ ∈ L, it turns out
that a straight forward construction of the tax payment process, analogous to time-discrete
models, would be based on both the accumulated purchases and the accumulated sales (this
is as both effects are quite different). Thus, in a first step, the tax payments are only defined
for elementary strategies. Then, in Theorem 2.11 we show that it can be extended to all left-
continuous adapted processes. However, this extension is not obvious and relies, among other
things, on the assumption that S is a semimartingale (see Remark 8.1). With the help of (2.6),
a process Π can be defined which reflects the accumulated tax payments up to time t.

Definition 2.7 (Accumulated tax payments for elementary strategies). Let ϕ be a nonnegative
elementary strategy s.t. ϕ =

∑k
i=1Hi−11Kκi−1,κiK, where 0 = κ0 ≤ κ1 ≤ . . . ≤ κk = T are stopping

times and Hi−1 is Fκi−1−measurable. Let τ and F be as in Definition 2.3. Then,

Πt(ϕ) :=α

k∑
i=1

1(κi−1<t)

∫ (Hi−1−Hi−2)−

0
F (κi−1, x) dx

+ α
k∑
i=1

1(κi−1<t)

∫ ϕt

0

(
F (κi−1+, x) + inf

κi−1≤u≤t∧κi
(Su − Sκi−1)

)
∧ 0 dx+ α

∫ t

0
ϕudDu,

(2.7)

where H−1 := 0, is the tax payment process of the elementary strategy ϕ (The limit
F (κi−1+, x) := lims↓κi−1

F (s, x) exists by Proposition 2.5(v)).
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(a) S1 = 103, ϕ1 = 9, ϕ2 − ϕ1 = 1 (b) S2 = 104, ϕ2 = 10, ϕ3 − ϕ2 = 4

(c) S3 = 105, ϕ3 = 14, ϕ4 − ϕ3 = −4 (d) S4 = 102, ϕ4 = 10, ϕ5 − ϕ4 = 0

Figure 2: An example how x 7→ F (t, x) can evolve in a 4-period model, i.e., t ∈ {0, 1, 2, 3, 4}. The
stock price is given by S = (S0, . . . , S4) = (100, 103, 104, 105, 102), and the investor chooses the
strategy ϕ = (ϕ1, . . . , ϕ5) = (9, 10, 14, 10, 10), following the standard notation in discrete time,
i.e., ϕ1 shares are purchased at price S0 etc. On the abscissa there are the shares ordered by their
book profits and on the ordinate the book profits F (t+, x), i.e., after the portfolio regrouping
at time t. Observe that at time t = 4, i.e., in the fourth picture, one share (at the very left) is
sold and bought back to realize a loss of one monetary unit (wash sale).

Π is obviously well-defined, i.e., it does not depend on the representation of ϕ.

Remark 2.8. Let us explain the three components of Πt(ϕ).

α
∑k

i=1 1(κi−1<t)

∫ (Hi−1−Hi−2)−

0 F (κi−1, x) dx are the tax payments that are triggered by
selling stocks in order to follow the strategy ϕ. A downward jump of ϕ forces the investor to
realize book profits. She takes the shares with the smallest label x, which is in line with (2.1)
and (2.2). As x 7→ F (s, x) is nondecreasing, the sold shares possess the lowest book profits of all
shares in the portfolio. By F ≥ 0, this term is nonnegative.

α
∑k

i=1 1(κi−1<t)

∫ ϕt
0

(
F (κi−1+, x) + infκi−1≤u≤t∧κi(Su − Sκi−1)

)
∧0 dx is always less or equal

to zero. The ith summand models the tax credits due to realized losses by wash sales between
the trading times κi−1 and κi. This equals minus the local time of S at different levels (in
the sense of Asmussen [1], page 251). Namely, the book profit of piece x is the solution of a
Skorokhod problem started at F (κi−1+, x) in which the stock price movements are reflected at
0 (however, this interpretation is only valid in between portfolio regroupings). The local time
we consider has jumps iff downward price jumps dominate previous book profits. It is different
from the semimartingale local time, see (5.47) in Jacod [12] for a definition. But, for S being
a continuous local martingale, the semimartingale local time of the reflected stock price is twice
the local time in [1], see the appendix of Yor [22].
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α
∫ t

0 ϕudDu are taxes on dividends, which have to be paid immediately.

Remark 2.9. Given an elementary process ϕ modeling the total number of shares in the portfo-
lio, Πt(ϕ) are the minimal accumulated tax payments up to time t. This statement follows from
Theorem A.1 together with Subsection A.1.

(2.7) can generally not be formulated for strategies of infinite variation.

Remark 2.10. It is quite natural that the tax payment process has double jumps. Namely,
the stock price is right-continuous whereas the strategy is left-continuous, and the tax payments
are triggered both by downward jumps of the stock (through wash sales) and by sales of stocks
following the strategy ϕ.

Theorem 2.11. Let ϕ ∈ L and (ϕn)n∈N be a sequence of elementary strategies with ϕn0 =

0, ϕn ≥ 0, and ϕn
up→ ϕ. Then, the accumulated tax payments Πn for ϕn (as defined in Defini-

tion 2.7) are optional processes with làglàd paths. In addition, there exists an optional process Π

possessing almost surely làglàd paths such that Πn up→ Π. Different choices of up-approximating
sequences of ϕ lead to the same Π up to evanescence.

Consequently, the mapping ϕ 7→ Π(ϕ) from Definition 2.7 possesses an up to evanescence
unique extension

{ϕ ∈ L | ϕ0 = 0, ϕ ≥ 0} → {X : Ω× [0, T ]→ R | X is optional and làglàd}

which is continuous w.r.t. the convergence uniformly in probability. The extension, also called
Π, possesses the jumps

∆Πt = α

∫ ϕt

0

(
lim sup
s<t,s→t

F (s, x) + ∆St

)
∧ 0 dx+ αϕt∆Dt and (2.8)

∆+Πt = α

∫ (∆+ϕt)−

0
F (t, x)dx. (2.9)

Note that any ϕ ∈ L with ϕ ≥ 0 can be approximated uniformly in probability by a sequence
of nonnegative elementary strategies (see, e.g., Theorem II.10 in [20]).

Definition 2.12. For ϕ ∈ L with ϕ ≥ 0, the tax payment process Π(ϕ) is defined as the limit
process in Theorem 2.11.

Proposition 2.13. The accumulated tax payments are subadditive and positively homogeneous
in the trading strategy, i.e., Π(ϕ1+ϕ2) ≤ Π(ϕ1)+Π(ϕ2) and Π(λϕ1) = λΠ(ϕ1) up to evanescence
for all ϕ1, ϕ2 ∈ L with ϕ1, ϕ2 ≥ 0 and λ ∈ R+. Π is in general not additive.

The proposition is proven in Subsection A.2.

3 Properties of the book profit function

In this section, we state some properties of F (t, x). These are needed in the next section for
showing convergence of Πn.
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Proof of Proposition 2.5. (i): Let y ≤ x ≤ ϕt. By (2.3), we have Mt,x 6= ∅. By the left-continuity
of ϕ, supMt,x is attained, i.e., x − ϕt + ϕτt,x ≤ 0 or x − ϕt + ϕτt,x+ ≤ 0. We conclude that
y − ϕt + ϕτt,x ≤ 0 or y − ϕt + ϕτt,x+ ≤ 0. Thus τt,x ≤ τt,y.
(ii): Follows immediately from (2.4).

(iii): Due to τt,y ≥ τt,x for y ≤ x ≤ ϕt, one has that F (t, x) − F (t, y) = infτt,y≤u≤t Su −
infτt,x≤u≤t Su ≥ 0.

(iv): By (ii), it is enough to show left-continuity at x ∈ (0, ϕt]. One has x− ϕt + ϕu > 0 for all
u ∈ (τt,x, t] and x − ϕt + ϕu+ > 0 for all u ∈ (τt,x, t). Because the infimum of a càglàd process
on a compact interval is attained in a right or a left limit, one has that

inf {x− ϕt + ϕu | u ∈ [τt,x + ε, t]} > 0, ∀ε > 0.

Therefore, there exists δ0 > 0 s.t. for all δ ∈ (0, δ0]

x− δ − ϕt + ϕu > 0 ∀u ∈ [τt,x + ε, t] and x− δ − ϕt + ϕu+ > 0 ∀u ∈ [τt,x + ε, t).

Thus, either Mt,x−δ = ∅ or 0 ≤ supMt,x−δ ≤ τt,x+ε. If the first holds for some δ ∈ (0, δ0], it also
holds for all smaller positive numbers and zero. In this case, left-continuity is obvious because
τt,y = τt,x = t for all y in a left neighborhood of x. In the second case, one has τt,x−δ − τt,x ≤ ε
and, by (i), τt,x−δ ∈ [τt,x, τt,x + ε] for all δ ∈ (0, δ0]. By right-continuity of S we are done.

(v): Let ϕ be an elementary strategy with representation as in Definition 2.7. Let t ∈ [κi−1, κi)
and s1, s2 ∈ (t, κi], i.e., ϕs1 = ϕs2 . For x = 0, one has F (s1, 0) = F (s2, 0) = 0. For x ∈ (0, ϕs1 ],
one has Ms1,x,Ms2,x ⊂ [0, κi−1] which leads, again by ϕs1 = ϕs2 , to Ms1,x = Ms2,x. By x ≤ ϕs1
and (2.3), one has Ms1,x 6= ∅ and arrives at τs1,x = τs2,x ≤ κi−1 and thus F (s1, x) = F (s2, x). For
x > ϕs1 = ϕs2 one has that Ms1,x = Ms2,x = ∅ and thus F (s1, x) = F (s2, x) = 0. Consequently,
the limit lims↓t τs,x =: τt+,x exists for all x ∈ R+. �

In the next lemma, we examine the behavior of the book profit function for two strategies
whose paths are close together.

Lemma 3.1. Let ϕ, ϕ̃ ∈ L with ϕ0 = ϕ̃0 = 0 and ϕ, ϕ̃ ≥ 0. τ̃t,x, F̃ , and M̃t,x denote the
quantities from Definition 2.3 for ϕ̃ instead of ϕ. Fix some ω ∈ Ω and t ∈ [0, T ]. If

sup
0≤u≤t

|ϕu(ω)− ϕ̃u(ω)| ≤ ε, (3.1)

then

Fω(t, x) ≤ F̃ω(t, x+ 2ε) for all x ≤ ϕ̃t(ω)− 2ε and (3.2)

∣∣∣∣∣
∫ ϕt(ω)

0
Fω(t, x) dx−

∫ ϕ̃t(ω)

0
F̃ω(t, x) dx

∣∣∣∣∣ ≤ 3ε

(
sup

0≤u≤t
Su(ω)− inf

0≤u≤t
Su(ω)

)
. (3.3)

Proof. We fix some ω ∈ Ω satisfying (3.1) and omit it in the rest of the proof. Let x ≤ ϕ̃t − 2ε.

By (3.1), one has M̃t,x+2ε ⊂Mt,x. This gives sup M̃t,x+2ε ≤ supMt,x. Furthermore, by (2.3), one

has M̃t,x+2ε 6= ∅ and thus τ̃t,x+2ε = sup M̃t,x+2ε ≤ supMt,x ≤ τt,x, which implies

F (t, x)− F̃ (t, x+ 2ε) = inf
τ̃t,x+2ε≤u≤t

Su − inf
τt,x≤u≤t

Su ≤ 0.
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As obviously F (t, x) = St − infτt,x≤u≤t Su ≤ sup0≤u≤t Su − inf0≤u≤t Su for all x ∈ R+, (3.2)
implies∫ ϕt

0
F (t, x) dx ≤

∫ (ϕ̃t−2ε)∨0

0
F̃ (t, x+ 2ε) dx+ (ϕt − ϕ̃t + 2ε)

(
sup

0≤u≤t
Su − inf

0≤u≤t
Su

)
≤
∫ ϕ̃t

0
F̃ (t, x) dx+ 3ε

(
sup

0≤u≤t
Su − inf

0≤u≤t
Su

)
.

By symmetry, we obtain (3.3). �

In the next section, we prove that Π is an optional process. For this purpose, some measur-
ability of F has to be checked.

Proposition 3.2. F is O ⊗ B(R+)− B(R+)−measurable.

Proof. Because x 7→ Fω(t, x) is left-continuous and on [0, ϕt] also nondecreasing, one gets

Fω(t, x) = 1(x≤ϕt(ω)) sup
q∈Q+

{
Fω(t, q)− 1(x<q)∞

}
.

As {(ω, t, x) | x ≤ ϕt(ω)} ∈ P ⊗ B(R+), it remains to show that (ω, t) 7→ Fω(t, q) is
O − B(R+)−measurable for every fixed q.

Step 1: Let us show that (ω, t) 7→ τt,q(ω) is P − B(R+)−measurable. Define the (random)
sets

Mn
t,q := {u ∈ [0, t] | q − ϕt + ϕu ≤ 1/n, u ∈ Q}, n ∈ N.

By

supMn
·,q = sup

u∈Q+

u1{(ω,t) | q−ϕt(ω)+ϕu(ω)≤1/n and u<t}

and the predictability of ϕ, the mapping supMn
·,q : Ω × [0, T ] → R+, (ω, t) 7→ supMn

t,q(ω) is
written as a pointwise supremum over countably many predictable functions, and thus it is also
predictable. Now, it is shown that

supMn
t,q1(q≤ϕt) → τt,q1(q≤ϕt) pointwise for n→∞. (3.4)

Let n ∈ N, u ∈Mt,q. There exists v ∈ Q arbitrary close to u with v ∈Mn
t,q and thus

supMt,q ≤ supMn
t,q, ∀n ∈ N. (3.5)

Assume that q ≤ ϕt, i.e., τt,q = supMt,q by (2.4). First note that q − ϕt + ϕu > 0 for all
u ∈ (τt,q, t] and q − ϕt + ϕu+ for all u ∈ (τt,q, t). As the infimum of a càdlàg process is attained
in the right or the left limit on a compact interval, one has that

inf{q − ϕt + ϕu | u ∈ [τt,q + ε, t]} > 0, ∀ε > 0.

Therefore, there exists N ∈ N s.t.

q − 1

n
− ϕt + ϕu > 0 ∀u ∈ [τt,q + ε, t], n ≥ N.

10



This implies supMn
t,q ≤ τt,q + ε = supMt,q + ε for all n ≥ N . Together with (3.5) one obtains

(3.4). (3.4), the predictability of supMn
·,q, and (2.4) imply the predictability of (ω, t) 7→ τt,q(ω).

Step 2: One has

F (t, q) =St − inf
τt,q≤u≤t

Su = 0 ∨ sup
y∈Q

(St − Sy)1(τt,q<y<t)

and by Step 1 {(ω, t) | τt,q(ω) < y} ∈ P. Because S is optional, F (·, q) is also optional, which
completes the proof. �

4 Proof of Theorem 2.11

Proposition 4.1. For any elementary strategy ϕ, it holds that

α

∫ t

0
ϕudSu + α

∫ t

0
ϕudDu = α

∫ ∞
0

F (t, x)dx+ Πt, ∀t ∈ [0, T ]. (4.1)

This proposition is the key step to prove Theorem 2.11. Namely, by the semimartingale
property of S and D the integrals converge if ϕn → ϕ, and with Lemma 3.1 it can be shown
that also the corresponding book profits

∫∞
0 F (t, x)dx converge. For the latter one needs that ϕn

converges uniformly in probability and not only pointwise. To prove the proposition one needs
the following lemma.

Lemma 4.2. Let ϕ be an elementary strategy, s.t. ϕ =
∑k

i=1Hi−11Kκi−1,κiK, where 0 = κ0 ≤ κ1 ≤
. . . ≤ κk = T are stopping times and Hi−1 is Fκi−1−measurable. For all t ∈ (κi−1, κi], x ∈ (0, ϕt],
we have

St − Sκi−1 =

(
F (κi−1+, x) + inf

κi−1≤u≤t
(Su − Sκi−1)

)
∧ 0 + F (t, x)− F (κi−1+, x).

Proof. Let t1, t2 ∈ (κi−1, κi], i.e., ϕt1 = ϕt2 . As x > 0, one has Mt1,x,Mt2,x ⊂ [0, κi−1], which
leads, again by ϕt1 = ϕt2 , to Mt1,x = Mt2,x. By x ≤ ϕt1 , we have 0 ∈Mt1,x 6= ∅ and arrive at

τt1,x = τt2,x ≤ κi−1. (4.2)

By (4.2), the limit lims↓κi−1
τs,x =: τκi−1+,x exists and coincides with τt,x, t ∈ (κi−1, κi]. This

leads to(
− inf
τκi−1+,x≤u≤κi−1

Su + inf
κi−1≤u≤t

Su

)
∧ 0 =

(
− inf
τt,x≤u≤κi−1

Su + inf
κi−1≤u≤t

Su

)
∧ 0

= − inf
τt,x≤u≤κi−1

Su + inf
τt,x≤u≤t

Su

= − inf
τκi−1+,x≤u≤κi−1

Su + inf
τt,x≤u≤t

Su, (4.3)

where for the second equality we use that, by (4.2), [τt,x, t] = [τt,x, κi−1] ∪ [κi−1, t], and we
distinguish the cases infτt,x≤u≤κi−1 Su ≥ infκi−1≤u≤t Su and infτt,x≤u≤κi−1 Su < infκi−1≤u≤t Su.
Using (4.3), the right-continuity of S, and the definition of F , it can immediately be seen that
the LHS of (4.3) equals (

F (κi−1+, x) + inf
κi−1≤u≤t

(Su − Sκi−1)

)
∧ 0,
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and the RHS of (4.3) equals

F (κi−1, x)− F (t, x) + St − Sκi−1 .

So we are done. �

Proof of Proposition 4.1. Let ϕ be as in Lemma 4.2. First, we consider increments of (4.1) on
(κi−1, κi], i ∈ {1, . . . , k}. Let t1, t2 ∈ (κi−1, κi]. Because ϕt1 = ϕt2 on (κi−1, κi], one has by
definition of Π

Πt2 −Πt1 =α

∫ ϕt1

0

(
F (κi−1+, x) + inf

κi−1≤u≤t2∧κi
(Su − Sκi−1)

)
∧ 0dx

− α
∫ ϕt1

0

(
F (κi−1+, x) + inf

κi−1≤u≤t1∧κi
(Su − Sκi−1)

)
∧ 0dx+ αϕt1(Dt2 −Dt1).

By Lemma 4.2, one arrives at

Πt2 −Πt1 =α

∫ ϕt1

0

(
St2 − Sκi−1 − F (t2, x) + F (κi−1+, x)

)
dx

− α
∫ ϕt1

0

(
St1 − Sκi−1 − F (t1, x) + F (κi−1+, x)

)
dx+ αϕt1(Dt2 −Dt1)

=αϕt1 (St2 +Dt2 − St1 −Dt1)− α
∫ ∞

0
(F (t2, x)− F (t1, x))dx

=α

∫ t2

0
ϕsd(S +D)s − α

∫ t1

0
ϕsd(S +D)s − α

∫ ∞
0

F (t2, x)dx+ α

∫ ∞
0

F (t1, x)dx,

where in the last equality we use that ϕs = ϕt1 for all s ∈ (t1, t2]. This means that (4.1) holds
true for all increments on (κi−i, κi]. As it obviously holds for t = 0, it remains to show that the
right jumps of the processes t 7→

∫∞
0 F (t, x)dx and Π at κi−1 sum up to 0 as the LHS of (4.1)

is right-continuous. By similar arguments as in the proof of Proposition 2.5(v), one obtains

τκi−1+,x = τκi−1,x−(ϕκi−1+−ϕκi−1 ) ∀x ∈ R+ with the convention τκi−1,y := t ∀y < 0. (4.4)

With the convention F (κi−1, y) = 0 for y < 0, one obtains

lim
t↓κi−1

∫ ϕt

0
F (t, x)dx =

∫ ϕκi−1+

0

(
Sκi−1 − inf

τκi−1+,x≤u≤κi−1

Su

)
dx

(4.4)
=

∫ ϕκi−1+

0
F (κi−1, x−∆+ϕκi−1)dx

=

∫ ϕκi−1+−∆+ϕκi−1

−∆+ϕκi−1

F (κi−1, x)dx

=

∫ ϕκi−1

0
F (κi−1, x)dx−

∫ −∆+ϕκi−1

0
F (κi−1, x)dx

=

∫ ϕκi−1

0
F (κi−1, x)dx−

∫ (∆+ϕκi−1)
−

0
F (κi−1, x)dx, (4.5)
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where the first equality follows from the definition of F using that S is right-continuous and
τt,x = τκi−1+,x for all t ∈ (κi−1, κi] and x > 0. (4.5) means that

−∆+Πκi−1 = ∆+

(∫ ϕκi−1

0
F (κi−1, x)dx

)
= −

∫ (∆+ϕκi−1)
−

0
F (κi−1, x)dx, (4.6)

and we are done. �

Proof of Theorem 2.11. Step 1: Let (ϕn)n∈N be a sequence of nonnegative elementary strategies

with ϕn0 = 0 and ϕn
up→ ϕ. From Proposition 3.2 one knows that (ω, t, x) 7→ Fnω (t, x) is O ⊗

B(R+) − B(R+)-measurable. So, (ω, t) 7→
∫∞

0 Fnω (t, x)dx is O − B(R+)−measurable. Together
with Proposition 4.1 and the fact that ϕn • S and ϕn • D are optional, this implies that Πn is
also optional.

In the next step, it is shown that (Πn)n∈N is an up-Cauchy sequence. Again by Proposi-
tion 4.1, it is enough to show that (ϕn • S)n∈N, (ϕn • D)n∈N, and

(∫∞
0 Fn(·, x)dx

)
n∈N are

up-Cauchy sequences. Because ϕn
up→ ϕ and S, D are semimartingales, it is known, e.g., from

Theorem II.11 in [20], that (ϕn • S)n∈N, (ϕn • D)n∈N are up-Cauchy sequences. So, it remains
to consider

∫∞
0 Fn(t, x)dx.

Let ε > 0. As S possesses càdlàg paths, there exists K ∈ R+ s.t.

P

(
sup

0≤t≤T
St − inf

0≤t≤T
St ≥ K

)
≤ ε

2
.

As ϕn
up→ ϕ, there exists Nε ∈ N s.t.

P

(
sup

0<t≤T
|ϕnt − ϕmt | >

ε

3K

)
≤ ε

2
, ∀n,m ≥ Nε.

By Lemma 3.1, we have{
sup

0≤t≤T

∣∣∣∣∫ ∞
0

Fn(t, x)− Fm(t, x)dx

∣∣∣∣ > ε

K
( sup
0≤t≤T

St − inf
0≤t≤T

St)

}
⊂

{
sup

0<t≤T
|ϕnt − ϕmt | >

ε

3K

}
,

and one gets

P

(
sup

0≤t≤T

∣∣∣∣∫ ∞
0

Fm(t, x)− Fn(t, x)

∣∣∣∣ > ε

)

≤P

(
( sup
0≤t≤T

St − inf
0≤t≤T

St)
ε

K
> ε

)
+ P

(
sup

0<t≤T
|ϕnt − ϕmt | ≥

ε

3K

)
≤ ε

2
+
ε

2
= ε ∀n,m ≥ Nε.

So, (Πn)n∈N is an up-Cauchy sequence. Because the space of làglàd functions (also called
“regulated functions”) mapping from [0, T ] to R is complete w.r.t. the supremum norm, there

exists an optional làglàd process Π s.t. Πn up→ Π (optionality follows from pointwise convergence
up to evanescence of a suitable subsequence and the usual conditions).

Step 2: Let us now show (2.8). Let t ∈ (0, T ], x0 ∈ (0, ϕt) and assume that

x 7→ F̃ (t, x) := St− − inf
τt,x≤u<t

Su

13



is continuous at x0. F̃ (t, ·) is the time-t book profit function under the modified stock price
process S̃u := 1(u<t)Su + 1(u≥t)St− (this modification removes the impact of ∆St on the book
profits).

Let ε ∈ (0, ϕt − x0). By the left-continuity of ϕ and by τt,x0+ε ≤ τt,x0 < t, one has for s
smaller but close enough to t that

|ϕs − ϕt| ≤ ε and s > τt,x0+ε. (4.7)

For s satisfying (4.7), one has that Ms,x0 6= ∅, Mt,x0+ε ∩ [0, s] 6= ∅, and the two implications

u ∈Ms,x0 ⇒ u ∈Mt,x0−ε, u ∈Mt,x0+ε ∩ [0, s]⇒ u ∈Ms,x0

hold; see (2.2) for the definition of M . This implies

τt,x0−ε ≥ τs,x0 ≥ τt,x0+ε.

It follows that

inf
τt,x0+ε≤u<t

Su ≤ inf
τs,x0≤u<t

Su ≤ inf
τt,x0−ε≤u<t

Su.

By the continuity of F̃ (t, ·) in x0, the left and the right bound are close together for ε small. We
conclude that lims<t,s→t F (s, x0) =: F (t−, x0) exists and

F (t−, x0) = St− − inf
τt,x0≤u<t

Su (4.8)

(For elementary strategies, one has that τs,x = τt,x for s smaller but close to t, and therefore the
limit F (t−, x) exists for all x ∈ R+). By (4.8) and a distinction of the cases St < infτt,x0≤u<t Su
and St ≥ infτt,x0≤u<t Su, one obtains F (t, x0) = 0 ∨ (F (t−, x0) + ∆St) and thus

∆F (t, x0) = (−F (t−, x0)) ∨∆St = ∆St + (−F (t−, x0)−∆St) ∨ 0.

By monotonicity, the mapping x 7→ F̃ (t, x) has at most countably many discontinuities, so that
lims<t,s→t

∫∞
0 F (s, x) dx exists and

∆

∫ ∞
0

F (t, x) dx = ∆

∫ ϕt

0
F (t, x) dx = ϕt∆St +

∫ ϕt

0
(− lim sup

s<t,s→t
F (s, x)−∆St) ∨ 0 dx (4.9)

(interchanging integral and limit is possible as F and S are bounded for ω fixed). By construction
of Π, Proposition 4.1 holds for all ϕ ∈ L. Together with (4.9) and ∆(ϕ • (S+D)) = ϕ∆(S+D),
this implies (2.8).

Step 3: It remains to prove (2.9). For the approximating elementary trading strategies ϕn,
it follows immediately from Definition 2.7. As (∆+ϕn)− converges to (∆+ϕ)− uniformly in
probability, ∫ (∆+ϕnt )−

0
Fn(t, x)dx

up−→
∫ (∆+ϕt)−

0
F (t, x)dx (4.10)

follows by the same arguments as in the proof of Lemma 3.1. Putting everything together the
assertion follows. �
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5 Self-financing condition

To prepare Section 6, we introduce the self-financing condition of the model which is a natural
generalization of the standard continuous time self-financing condition without taxes.

Besides the risky stock with price process S and dividend process D, the market consists
of a so-called bank account. Formally, the bank account can be seen as a security with price
process 1 and dividend process

Bt =

∫ t

0
rs ds, t ∈ [0, T ], (5.1)

where the locally riskless interest rate r is a predictable, nonnegative, and integrable process.
This simplifies the analysis as increments of B are taxed immediately, and one needs not consider
unrealized book profits of the bank account (as for the risky stock).

Definition 5.1 (Wealth process and self-financing condition). Let X be an optional process
modeling the number of monetary units in the bank account, and ϕ ∈ L models the number of
stocks the investor holds in her portfolio. The wealth process V of the strategy (X,ϕ) is defined
as

V = V (X,ϕ) := X + ϕS. (5.2)

A strategy (X,ϕ) is called self-financing with initial wealth v0 iff

V = v0 + (1− α)X • B + ϕ • D + ϕ • S −Π (5.3)

with Π from Definition 2.12.

Remark 5.2. As B is continuous, it is sufficient to assume that X is optional instead of
predictable. Thus, the after-tax dividend (1−α)ϕt∆Dt of the stock can be included in the number
of monetary units Xt. Note that an immediate reinvestment of the payoff in the stock would only
affect ϕt+, but not ϕt.

Remark 5.3. For any ϕ ∈ L, v0 ∈ R, there exists a unique optional process X s.t. (X,ϕ) is
self-financing. Indeed, plugging (5.2) into (5.3) yields

X = v0 + (1− α)X • B + ϕ • D + ϕ • S −Π− ϕS. (5.4)

Now, an optional process X solves (5.4) iff X is làglàd, the càdlàg process X+ solves the SDE

Z = v0 + (1− α)Z− • B + ϕ • D + ϕ • S −Π+ − ϕ+S

(which has a unique solution Z, cf., e.g., Theorem V.7 in [20]), and X = Z − ∆+X = Z +
∆+Π + S∆+ϕ.

(5.3) means that increments of the wealth process solely result from trading gains and tax
payments. An alternative condition is to assume that portfolio regroupings do not involve costs.
The latter condition may be more intuitive, but it has the drawback that it can only be stated
for strategies that can be used as integrators (thus, trading strategies that are no semimartin-
gales would be excluded although they could economically make sense). Let ϕ and Π be as in
Definition 2.7. The alternative self-financing condition reads

Xt = v0 −
k∑
i=1

1(κi−1<t)Sκi−1(ϕκi−1+ − ϕκi−1) +

∫ t

0
(1− α)Xsrsds−Πt + ϕ • Dt. (5.5)

It is an easy exercise to prove equivalence of (5.5) and (5.3) for elementary strategies.
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6 Comparison of different dividend policies

In this section, we investigate the effect of different dividend policies on the investor’s after-tax
wealth. In particular, we show that under the mild condition that the dividend policy has no
effect on the stochastic return process, the effect of dividends is always negative. This assumption
is formalized by the following definition.

Definition 6.1. Let R be a semimartingale with ∆R ≥ −1 and s0 ∈ R+. Then, for any nonde-
creasing càdlàg process D, define SD as the unique solution of

SD = s0 + SD− • R−D. (6.1)

We call D admissible iff SD ≥ 0, i.e., we only consider dividend payoffs that do not exceed the
stock price. R is the return process modeling the stochastic profit per invested capital.

Observe that for any admissible D the stock price SD stays at zero once the process or its left
limit hit it. Note that by ∆R ≥ −1, D = 0, which corresponds to the model without dividends,
is admissible. Alternatively, one can start with an arbitrary nondecreasing process D̃ with

∆D̃ ≤ 1 + ∆R (6.2)

modeling accumulated dividends as multiples of the current stock price and consider the SDE

S = s0 + S− • (R− D̃). (6.3)

Then, SD = S for D := S− • D̃, and, by (6.2), the stock price is nonnegative. But, as for an
arbitrary admissible dividend process D the integral 1

SD−
1{SD−>0} • D may explode, Definition 6.1

is slightly more general.

Remark 6.2. (6.1) says that one has the same R for all processes D, i.e., there holds a scaling
invariance of the stochastic investment opportunities. The negative effect of dividends on the
after-tax wealth is essentially based on this property. It is, e.g., not satisfied in the Bachelier
model with dividends.

Note that we do not assume that dividend payoffs are accompanied by downward jumps of
the same size of the stock price. Such a behavior can be explained by no-arbitrage arguments
if dividends are predictable. However, the framework also allows for a spontaneous dividend
payment ∆Dt, e.g., if ∆Rt is large.

Recall that we consider a market model with two investment opportunities: a risky stock
with price process SD and dividend process D (interrelated by Condition (6.1)) and a locally
riskless bank account. The latter is an asset with price process 1 and the nondecreasing dividend
process B from (5.1). We denote the model by ((SD, D), (1, B)). Now, we compare the situation
of an arbitrary admissible dividend process D with the situation of no dividends. In the latter
model, we use the subscript 0, i.e., S0, Π0, V 0, etc. The following theorem is the main result of
this section.

Theorem 6.3. Let (XD, ϕD) be a self-financing strategy with initial wealth v0 in the model
with dividends ((SD, D), (1, B)), and let V D be the corresponding wealth process. Then, there
exists a self-financing strategy (X0, ϕ0) with initial wealth v0 in the model without dividends
((S0, 0), (1, B)), where V 0 is the corresponding wealth process, s.t. V D ≤ V 0.
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Lemma 6.4. The process

SD

S0
1{S0>0}

is nonincreasing.

Proof. The case s0 = 0 is obvious. Let s0 > 0 and define τ := inf{t ≥ 0 | ∆Rt = −1}. By the
formula of Yoeurp-Yor [21] (see also [14]), one has

SD = S0

1− 1

S0
−
• D +

∑
0<s≤·

1

S0
s−

∆Ds∆Rs
1 + ∆Rs

 (6.4)

on the stochastic interval [[0, τ [[. The second factor of the RHS of (6.4) is obviously a nonincreas-
ing process. As SD = S0 = 0 on [[τ,∞[[, we are done. �

The key step to prove Theorem 6.3 is the following lemma.

Lemma 6.5. Let ϕD ∈ L and ϕ0 := ϕD
SD−
S0
−

1{S0
−>0}. Then, ϕ0 ∈ L,

ϕ0 • S0 = ϕD • (SD +D), and Π0 ≤ ΠD. (6.5)

This means that for an arbitrary strategy in the model with dividends, there exists a strategy
in the model without dividends leading to the same trading gains in the risky stock but not
exceeding accumulated tax payments. The money invested in the stock is the same for both
strategies. If price processes do not vanish, one can recover ϕD from ϕ0 by investing the dividend
payoffs in new stocks. This is illustrated in Figure 3.

Proof. Step 1: As ϕ0 ≤ ϕD, one obviously has ϕ0 ∈ L. Because SD = SD− • R − D and
S0 = S0

− • R, one obtains

ϕ0 • S0 = ϕD
SD−
S0
−

1{S0
−>0} • (S0

− • R) = ϕDSD− 1{S0
−>0} • R = ϕD1{S0

−>0} • (SD− • R)

= ϕD • (SD +D), (6.6)

where for the last equality we use that {S0
− = 0} ⊂ {SD− = 0} and the process SD− 1{SD−=0} • R

vanishes.
By construction of Π, Proposition 4.1 holds for all strategies from L, i.e.,

α

∫ ∞
0

FD(t, x)dx+ ΠD
t = αϕD • (SD +D)

(and the same without dividends). Together with (6.6), one obtains

ΠD
t −Π0

t = α

∫ ∞
0

F 0(t, x)dx− α
∫ ∞

0
FD(t, x)dx. (6.7)

Step 2: Let us show that for ϕ0
t > 0 (implying that ϕDt > 0 and SDt− > 0)

τDt,x ≥ τ0

t,x
ϕ0
t

ϕDt

, ∀x ∈ R+. (6.8)
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(a) Book profit functions x 7→ FD(t1−, x) and x 7→ FD(t1, x) modeling book profits immediately before resp.
after the predictable dividend payoff ∆Dt1 = 1000 associated with ∆St1 = −1000. One has FD(t1−, x)+∆St1 <
0 iff x < 55. This means that 55 stocks are sold and immediately repurchased (wash sale).

(b) Book profit function x 7→ FD(t1+, x) after portfolio regrouping. According to ϕD, the dividend payoff is
invested in 20 new stocks which start with zero book profits, and the function is shifted about 20 units to the
right.

Figure 3: Reinvestment of dividends

First note that

M0

t,x
ϕ0
t

ϕDt

= ∅ ⇔MD
t,x = ∅ (6.9)

(cf. Definition 2.3). It is sufficient to consider x s.t. both sets are not empty. One has

x− ϕDt + ϕDu > 0 ∀u ∈ (τDt,x, t] and x− ϕDt + ϕDu+ > 0 ∀u ∈ (τDt,x, t).

We conclude

0 <
ϕ0
t

ϕDt

(
x− ϕDt + ϕDu

)
=
ϕ0
t

ϕDt

(
x− ϕ0

t

S0
t−
SDt−

+ ϕ0
u

S0
u−
SDu−

)
≤ ϕ0

t

ϕDt
x− ϕ0

t + ϕ0
u ∀u ∈ (τDt,x, t],

where for the last inequality we use that ϕD

ϕ0 =
S0
−

SD−
is nondecreasing by Lemma 6.4. By

ϕD+
ϕ0

+
= S0

SD
,

one obtains analogously for ϕ0
u+ that

0 <
ϕ0
t

ϕDt

(
x− ϕDt + ϕDu+

)
=
ϕ0
t

ϕDt

(
x− ϕ0

t

S0
t−
SDt−

+ ϕ0
u+

S0
u

SDu

)
≤ ϕ0

t

ϕDt
x− ϕ0

t + ϕ0
u+ ∀u ∈ (τDt,x, t).

As M0

t,x
ϕ0
t

ϕDt

6= ∅, it can be concluded that τ0

t,x
ϕ0
t

ϕDt

= supM0

t,x
ϕ0
t

ϕDt

≤ τDt,x.
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Step 3: For ϕ0
t > 0 (implying S0

t− > 0 and ϕDt > 0), we have that

FD(t, x) = SDt − inf
τDt,x≤u≤t

SDu

Lemma 6.4
≤

(
SDt−
S0
t−
S0
t − inf

τDt,x≤u<t

SDu
S0
u

S0
u

)
∨ 0

Lemma 6.4
≤

SDt−
S0
t−

(
S0
t − inf

τDt,x≤u<t
S0
u

)
∨ 0

(6.8)
≤

SDt−
S0
t−

(
S0
t − inf

τ
t,ϕ0

t /ϕ
D
t x
≤u<t

S0
u

)
∨ 0

=
ϕ0
t

ϕDt
F 0

(
t,
ϕ0
t

ϕDt
x

)
. (6.10)

Observe that for the second inequality, we use that SDt−/S
0
t− ≤ SDu /S0

u for u strictly smaller than
t (all considered prices are nonzero). For ϕ0

t > 0, it follows from (6.10) that

α

∫ ∞
0

F 0(t, x)dx− α
∫ ∞

0
FD(t, x)dx ≥ α

∫ ∞
0

F 0(t, x)dx− α
∫ ∞

0

ϕ0
t

ϕDt
F 0(t, x

ϕ0
t

ϕDt
)dx = 0.(6.11)

If ϕ0
t = 0, then either ϕDt = 0 or SDt− = 0. Both equalities imply that FD(t, ·) = 0, and,

consequently, the first difference in (6.11) is nonnegative. Putting (6.7) and (6.11) together
yields the assertion. �

Proof of Theorem 6.3. Let ϕD ∈ L. ϕ0 is defined as in Lemma 6.5 and XD, X0 are the unique
positions in the bank account to meet the self-financing condition (cf. Remark 5.3). Let us first
examine the right limits V 0

+ and V D
+ . By the self-financing condition, one has

V 0
+ =v0 + (1− α)X0 • B + ϕ0 • S0 −Π0

+

V D
+ =v0 + (1− α)XD • B + ϕD • SD + ϕD • D −ΠD

+ .

On the other hand,

V D
+ = XD

+ + ϕD+S
D = XD

+ + ϕ0
+S

0 = V 0
+ +XD

+ −X0
+

Together with ϕ0 • S = ϕD • (SDt +D), one arrives at

XD
+ −X0

+ = V D
+ − V 0

+ = (1− α)(XD
+ −X0

+) • B −ΠD
+ + Π0

+ ≤ (1− α)(XD −X0) • B

By Gronwall’s lemma in the form of Lemma 2.1 in [17] applied to the nonnegative càdlàg
process (XD

+ − X0
+) ∨ 0 and the nondecreasing process B (here, one needs that r ≥ 0), one

obtains XD
+ ≤ X0

+ and thus

V D
+ ≤ V 0

+. (6.12)

Note that the lemma cannot be applied directly to XD and X0 as these processes are not càdlàg.
Thus, the right jumps of V D − V 0 have to be analyzed. For ϕDt = 0, one also has ϕ0

t = 0, and
the jump at time t vanishes. Otherwise, one argues that

∆+(V D − V 0)t = ∆+(Π0 −ΠD)t
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(2.9)
= α

∫ (∆+ϕ0
t )
−

0
F 0(t, x)dx− α

∫ (∆+ϕDt )
−

0
FD(t, x)dx

(6.10)

≥ α

∫ (∆+ϕ0
t )
−

0
F 0(t, x)dx− α

∫ (∆+ϕDt )
−

0

ϕ0
t

ϕDt
F 0

(
t,
ϕ0
t

ϕDt
x

)
dx

= α

∫ (∆+ϕ0
t )
−

0
F 0(t, x)dx− α

∫ (
ϕ0
t

ϕDt
∆+ϕDt

)−
0

F 0 (t, x) dx

= α

∫ (∆+ϕ0
t )
−

0
F 0(t, x)dx− α

∫ (
SDt−
S0
t−

(
ϕ0
t+

S0
t

SDt
−ϕ0

t

S0
t−
SDt−

))−
0

F 0 (t, x) dx

≥ α

∫ (∆+ϕ0
t )
−

0
F 0(t, x)dx− α

∫ (
SDt−
S0
t−

(
ϕ0
t+

S0
t−
SDt−
−ϕ0

t

S0
t−
SDt−

))−
0

F 0 (t, x) dx

= 0 (6.13)

The last inequality uses that S0
t /S

D
t ≥ S0

t−/S
D
t− by Lemma 6.4. Putting (6.12) and (6.13)

together, one obtains

V D
t = V D

t+ −∆+V D
t ≤ V 0

t+ −∆+V D
t ≤ V 0

t+ −∆+V 0
t = V 0

t .

�

7 Tax-efficient strategies

Let S ≥ 0 be a continuous semimartingale and ϕt = g(St) for all t > 0, where g : R+ → R+

is a nondecreasing and twice continuously differentiable function. This means that the “initial”
position is ϕ0+ = g(S0), and the investor increases (reduces) her position after an increase
(decrease) of the stock price. Denote by g−1 the right-continuous inverse of g, i.e.,

g−1(y) := sup{s | g(s) ≤ y}.

Let us show that the book profit function reads

F (t, x) := St − inf
τt,x≤u≤t

Su =

{
St − g−1(ϕt − x), x ≤ ϕt − inf0<u≤t ϕu
St − inf0≤u≤t Su, x > ϕt − inf0<u≤t ϕu

for all t > 0, (7.1)

which means that the infinite-dimensional stochastic process F is a direct function of the two-
dimensional stochastic process (St, inf0≤u≤t Su)t≥0. Note that inf0<u≤t ϕu = g(inf0≤u≤t Su).

To prove (7.1), first consider the case that x ≤ ϕt− inf0<u≤t ϕu. By definition of τt,x, one has
that g(Su) = ϕu > ϕt−x for all u ∈ (τt,x, t]. Together with the monotonicity and the continuity
of g, this implies that Su > g−1(ϕt − x). On the other hand, we have that ϕτt,x+ = ϕt − x and
thus, by g(Sτt,x) = ϕτt,x+, Sτt,x ≤ sup{s | g(s) ≤ ϕτt,x+} = g−1(ϕt − x) (the right limit is only
needed for the case that τt,x = 0, which is possible if x = ϕt− inf0<u≤t ϕu). By continuity of the
paths of S, we conclude that infτt,x≤u≤t Su = g−1(ϕt − x).

This means, the purchasing price of the stock with label x is Sτt,x = g−1(ϕt − x), and up to
time t, the price does not fall below it. Now, let x > ϕt − inf0<u≤t ϕu. One has τt,x = 0 which
yields the assertion.

If g′ < 0, one still has that Sτt,x = g−1(ϕt−x) (of course, with g−1 defined appropriately), but
now, infτt,x≤u≤t Su = g−1(supτt,x<u≤t ϕu), and the infimum can be attained anywhere between
τt,x and t, which implies that F (t, ·) cannot be a direct function of (St, inf0≤u≤t Su).
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From (7.1), it follows that∫ ϕt

0
F (t, x) dx = (ϕt − inf

0<u≤t
ϕu)St −

∫ ϕt−inf0<u≤t ϕu

0
g−1(ϕt − x) dx+ inf

0<u≤t
ϕu(St − inf

0≤u≤t
Su)

= ϕtSt − inf
0<u≤t

ϕu inf
0≤u≤t

Su −
∫ ϕt

inf0<u≤t ϕu

g−1(x) dx. (7.2)

Using that g′ = 0 on (Su, g
−1(ϕu)), integration by parts yields∫ ϕt

inf0<u≤t ϕu

g−1(x) dx =

∫ g−1(ϕt)

g−1(inf0<u≤t ϕu)
yg′(y) dy

=

∫ St

inf0≤u≤t Su

yg′(y) dy

= yg(y)
∣∣∣St
inf0≤u≤t Su

−
∫ St

inf0≤u≤t Su

g(y) dy. (7.3)

Let G be an antiderivative of g, i.e., G′ = g. Putting (7.2) and (7.3) together, we arrive at∫ ϕt

0
F (t, x) dx = G(St)−G

(
inf

0≤u≤t
Su

)
.

For the trading gains, one has by Itô’s formula

g(S) • St = G(St)−G(S0)− 1

2
g′(S) • [S, S]t = G(St)−G(S0)− 1

2
[g(S), S]t, (7.4)

which yields

Πt = α

∫ t

0
ϕdS − α

∫ ϕt

0
F (t, x) dx = α

 G

(
inf

0≤u≤t
Su

)
︸ ︷︷ ︸

nonincreasing in t

−G(S0)− 1

2
[ϕ, S]t︸ ︷︷ ︸

nondecreasing in t

 .

Remark 7.1. First note that all tax payments are nonpositive (of course, only up to the liq-
uidation of the portfolio). This is because trading gains are never realized if g′ ≥ 0. There are
two components: payments triggered by wash sales when the stock price reaches its running infi-
mum inf0≤u≤t St, and there are all the time the taxes −0.5α[ϕ, S] = −0.5αg′(S) • [S, S] triggered
by loss realizations from “recently” purchased stocks.

To explain this phenomenon, consider an approximating sequence of Cox-Ross-Rubinstein
type models with finite price grids {0, σ/

√
n, 2σ/

√
n, . . .}, n ∈ N, and Sn(k+1)/n− S

n
k/n = ±σ/

√
n

each with probability 1/2. First, we look at the case that at time k/n the stock price lies strictly
above its minimum up to this time. Then, the investor holds exactly g(Snk/n)− g(Snk/n − σ/

√
n)

shares with book profit zero. Namely, these shares were purchased after the last time ≤ k/n at
which Sn jumps from Snk/n − σ/

√
n to Snk/n. All other shares which are in the portfolio at time

k/n were purchased earlier and have a higher book profit that cannot fall strictly below zero in
the next period. Therefore, the tax payment at time (k + 1)/n is given by

−α
(
g(Snk/n)− g

(
Snk/n −

σ√
n

))
(S(k+1)/n − Sk/n)− ≈ −α

g′(Snk/n)σ2

n
1{S(k+1)/n−Sk/n<0},
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i.e., if the price goes up, there are no tax payments, and if it goes down the shares that have
zero book profit before are sold. For n→∞, by the law of large numbers, half of the price move-
ments go down, and one arrives at the accumulated tax payments −0.5α

∫
g′(St)σ

2 dt (note
that in the limit the fraction of periods at which the stock price attains its running mini-
mum vanishes). Then, the general case with nonconstant d[S, S]t/dt follows by stochastic time
changes applied to the approximating price processes. If Snk/n = minl≤k S

n
l/n, all shares have

book profit zero and after a further decrease they are wash-sold, which leads to the tax payment
αg(minl≤k S

n
l/n)(minl≤k+1 S

n
l/n −minl≤k S

n
l/n). In the limit, the accumulated tax payments when

the stock price coincides with its running minimum become α (G(inf0≤u≤· Su)−G(S0)), where
G′ = g.

In general, when building up a portfolio, an investor can generate negative tax payments,
or at least off-set positive tax payments on dividends, by purchasing many new stocks and sell
whose stocks which go down. This is accompanied with higher book profits of the shares that
go up. Thus, as time goes by, it gets increasingly more difficult to avoid tax payments.

8 Counterexamples

In this section, we give examples that illustrate the problems with the construction of the tax
payment process and show the necessity of some assumptions.

Remark 8.1. If the stock price process is not a semimartingale, different sequences of up-
approximating elementary strategies of a left-continuous strategy ϕ can lead to different limits
of the actual tax payments Πn. Namely, if S is not a semimartingale, there exists a sequence of
nonnegative elementary strategies (ϕn)n∈N s.t.

||ϕn||∞ → 0, E(1 ∧ sup
t∈[0,T ]

(ϕn • St)
−)→ 0, n→∞,

but

E(1 ∧ sup
t∈[0,T ]

(ϕn • St)
+) 6→ 0, n→∞,

see Theorem 1.7 of [2] (shifting the strategies by the constants ||ϕn||∞ shows that they can be
chosen nonnegative). By ||ϕn||∞ → 0, the book profits vanish, i.e.,

∫∞
0 Fn(·, x) dx→ 0 uniformly

in probability, but the trading gains do not tend to zero. Thus, by Proposition 4.1, (Πn)n∈N does
not tend to zero. On the other hand, the elementary strategy ϕ = 0, the uniform limit of (ϕn)n∈N,
leads to zero tax payments.

Remark 8.2. Tax payments are not continuous w.r.t. pointwise convergence of elementary
strategies. Indeed, let ϕn = 1(0,1/2]∪(1/2+1/n,1]. ϕ

n converges pointwise to ϕ = 1(0,1] and ϕn •

S → ϕ • S uniformly in probability. But, in contrast to ϕ, the strategy ϕn realizes current book
profits at time 1/2. Thus, it is not possible to define the tax payment process as unique continuous
extension w.r.t. pointwise convergence to the space of all predictable locally bounded strategies as
it is done for the stochastic integral, cf. Theorem I.4.31 in [13]. It seems that the convergence
“uniformly in probability” for trading strategies is taylor-made for modeling capital gains taxes.
The strategy set L is still rich enough to cover almost all relevant strategies in applications.
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9 Conclusion

The first purpose of this paper is to find a suitable set of continuous time trading strategies
(specifying the number of identical shares that an investor holds in her portfolio) for which
the payment flow of a linear tax on realized trading gains can be constructed. It turns out
that this is the set of all adapted processes with left-continuous paths possessing finite right
limits, i.e., the closure of elementary predictable processes w.r.t. the convergence “uniformly in
probability”. Then, the extension to trading strategies in different stocks is straightforward. From
a theoretical point of view, it is appealing that tax payments can also be defined for strategies
of infinite variation. This is not obvious at all because a reduction of the stock position leads to
tax payments whereas an increase has no immediate effect. This property may suggest that a
construction of the tax payment flow must be based on a decomposition into an increasing and
a decreasing part of the investment strategy.

In the discrete time model of Dybvig and Koo [11], we prove that it is optimal to realize
trading losses immediately and, when the total number of stocks has to be reduced, to sell
shares with lower book profits / later purchasing times first. Based on this result, for elementary
strategies in a continuous time model, we introduce an automatic loss realization when shares
fall below their (individual) purchasing prices as well as a rule that dictates to sell shares with
later purchasing time first when the stock position has to be reduced. Following this procedure,
the tax payment flow is already determined by the stochastic process modeling the total number
of shares in the portfolio. For the extension to nonelementary strategies, the representation of
the book profits of the shares in the portfolio plays a key role (although all shares have the same
price, their book profits differ because of different purchasing times).

Secondly, we prove that under the condition that the dividend policy has a neutral effect
on the stochastic return process, for every investment strategy in a firm with dividends, there
exists a strategy investing in an “identical” firm without dividends that leads to an almost surely
higher or equal after-tax wealth.

Finally, we find out tax-efficient dynamic strategies. These try to defer tax payments as long
as possible. Because profit-taking leads to early tax payments, a tax-efficient strategy reduces
the position only after losses, i.e., there should be a positive dependence between the number of
stocks in the portfolio and the stock price. If the position is a direct nondecreasing function of
the stock price, the tax payment flow can be determined explicitly and is given, besides a local
time component, by the tax rate times half the quadratic covariation of the strategy and the
price process.

In the paper, we consider the so-called exact tax basis which is economically the most reason-
able one. For other tax bases, as the FIFO (“first-in-first-out”) or the average of the purchasing
prices, the main phenomena are similar, as, e.g., the suboptimality of dividends. But, the mod-
eling is quite different. Especially, it is an open problem how to construct tax payment flows
beyond strategies of finite variation.

A Appendix: The discrete time model of Dybvig/Koo

In this section, we motivate the automatic loss realization as well as the rule to sell shares with
lower book profits / shorter residence times first (based on this procedure, the tax payment
flow was introduced for continuous time portfolio rebalancings in Section 2). For this, we prove
that in the discrete time model of Dybvig and Koo [11], this procedure leads for all paths to a
higher or equal after-tax wealth than any other strategy (with the same total number of shares
in the portfolio) if the riskless interest rate is nonnegative. Namely, the procedure minimizes the
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accumulated tax payments up to any time t (see Theorem A.1). A similar assertion is already
stated in [11] (see Properties 1 and 2 on page 6), but in less formal terms and, so far, a proof is
only available for Property 1 in special cases (see Subsection 3.1 of Constantinides [9]). The idea
is that investors always prefer tax payment obligations in the future to tax payments today.

Following the notation in [11], Ns,t denotes the number of stocks that are bought at time
s ∈ {0, . . . , T}, T ∈ N, and kept in the portfolio at least after trading at time t ∈ {s, . . . , T}.
Especially, Nt,t is the number of shares purchased at time t, i.e., a position cannot be purchased
and resold at the same time (on the other hand, a position can be sold and rebought at the
same time). One has the constraint

Nt,t ≥ Nt,t+1 ≥ . . . ≥ Nt,T ≥ 0, for all t ∈ {0, . . . , T}, (A.1)

which contains a short-selling restriction. Following the standard notation in discrete time, we
denote by

ϕt+1 =
t∑

s=0

Ns,t, t = 0, . . . , T (A.2)

the number of stocks in the portfolio after trading at time t. Accumulated tax payments up to
time u are given by

Πu := α

u∑
t=1

t−1∑
s=0

(Ns,t−1 −Ns,t) (St − Ss) , (A.3)

where
∑u

t=u+1 . . . = 0 throughout the section. With Π from (A.3), the self-financing condition
is defined as in (5.3).

Of course, there are different strategies N = (Ns,t)s=0,1,...,T, t=s,s+1,...,T that lead to the same
number ϕ of risky assets. Given some nonnegative process ϕ, the rule of selling shares on which
our model in Section 2 is based corresponds to the following strategy Ñ , constructed by (forward)
induction in t: Ñ0,0 = ϕ1 and, given Ñs,t−1, s = 0, 1, . . . , t− 1, Ñs,t is defined as

Ñs,t =1{St≥Ss}

Ñs,t−1 −

(∆ϕt+1)− −
t−1∑

j=s+1

Ñj,t−1

++

, s ∈ {0, . . . , t− 1}, (A.4)

Ñt,t =∆ϕt+1 +

t−1∑
s=0

(Ñs,t−1 − Ñs,t), (A.5)

where ϕt+1 = ∆ϕt+1 − ϕt. Following (A.4), the investor first reduces her total position by
(∆ϕt+1)−, thereby selling the shares with the smallest residence time t − s. Then, remaining
shares with negative book profits are sold. By (A.5), condition (A.2) is satisfied, and, by omitting
the indicator functions in (A.4), one sees that Ñt,t ≥ 0. Now, we can already formulate the main
assertion of this section. In Subsection A.1, the precise relation to the model introduced in
Section 2 is established.

Theorem A.1. Let (ϕt)t∈{1,...,T+1} ≥ 0 be a given position in the risky asset. Let Ñ be the
strategy defined in (A.4)/(A.5) and N be an arbitrary strategy satisfying (A.1)/(A.2). Then, for
the corresponding accumutated tax payments, one has that

Π̃t ≤ Πt for all t ∈ {0, . . . , T}. (A.6)
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From Theorem A.1, it follows, as in Section 6, that the wealth process of Ñ dominates the
wealth process of N if the riskless interest rate is nonnegative. Namely, for both strategies,
trading gains before taxes are given by ϕ • ST :=

∑T
u=1 ϕu(Su − Su−1), but Ñ defers tax

payments to a larger extent.

Throughout the section, for t and ω fixed, (k0, k1, . . . , kt) is a permutation of (0, 1, . . . , t) s.t.

Sk0 ≥ Sk1 ≥ . . . ≥ Skt and Ski > St ∀i < j, where kj = t. (A.7)

Then, for an arbitrary strategy N , the book profit function is defined as

F (t, x) :=
t∑
i=0

(St − Ski)1(
∑i−1
l=0 Nkl,t,

∑i
l=0Nkl,t]

(x). (A.8)

On (0, ϕt+1], F (t, ·) is obviously nondecreasing. Note that F (t, ·) from (A.8) already contains the
portfolio regroupings that take place at price St, i.e., it consists of ϕt+1 shares (see Subsection A.1
for the relation to the book profit function from Section 2). To prove Theorem A.1, we need the
following lemmas.

Lemma A.2. For every strategy N with corresponding number of stocks ϕ and book profit
function F , one has

Πt = αϕ • St − α
∫ ϕt+1

0
F (t, x)dx, t = 0, . . . , T

(cf. Proposition 4.1).

Proof. We have

αϕt(St − St−1)− α
(∫ ϕt+1

0
F (t, x)dx−

∫ ϕt

0
F (t− 1, x)dx

)
=α

(
t−1∑
i=0

Ni,t−1(St − St−1)−
t−1∑
i=0

(Ni,t(St − Si)−Ni,t−1(St−1 − Si))

)

=α

t−1∑
i=0

(Ni,t−1 −Ni,t) (St − Si)

=Πt −Πt−1.

�

Lemma A.3. Let F̃ be the book profit function of the strategy Ñ from (A.4). Then, one has

F̃ (t, x) = 1((∆ϕt+1)+,ϕt+1](x)
(
F̃ (t− 1, x−∆ϕt+1) + St − St−1

)
∨ 0. (A.9)

Proof. If the stock price falls below the purchasing price of a particular share, then, following
(A.4), this share is definitely sold. Consequently, one has that

Ss1 ≤ Ss2 for all s1 < s2 ≤ t− 1 with Ñs1,t−1 > 0, (A.10)

i.e., book profits are nondecreasing in the residence time t − s. Put differently, if one only
considers points s ∈ {0, . . . , t − 1} with Ñs,t−1 > 0, the stock price is nondecreasing. Thus, in
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(A.4), the investor sells the shares with the lowest book profits (because they have the shortest
residence times), and the strategy Ñ given by (A.4)/(A.5) reads: Ñ0,0 = ϕ1 and

Ñki,t =0, for i ∈ {0, . . . , j − 1},

Ñki,t =

Ñki,t−1 −

(∆ϕt+1)− −
i−1∑
l=0
l 6=j

Ñkl,t−1


+

+

, i ∈ {j + 1, . . . , t},

Ñkj ,t = Ñt,t =∆ϕt+1 +

t−1∑
l=0
l 6=j

(Ñkl,t−1 − Ñkl,t),

for t ∈ {1, . . . , T}, where j and the permutation (k0, . . . , kt) are given in (A.7).

Case 1: (∆ϕt+1)− ≤
∑j−1

l=0 Ñkl,t−1 (note that this includes the case ∆ϕt+1 > 0).

One has Ñkl,t = Ñkl,t−1 for l ≥ j + 1 and arrives at

i∑
l=0

Ñkl,t =

{
0, i ∈ {−1, 0, . . . , j − 1}∑i

l=0
l 6=j

Ñkl,t−1 + ∆ϕt+1, i ∈ {j, . . . , t} . (A.11)

For x ∈ (0, ϕt+1], one obtains

F̃ (t, x) =
t∑
i=0

(St − Ski)1(
∑i−1
l=0 Ñkl,t,

∑i
l=0 Ñkl,t]

(x)

(A.11)
=

t∑
i=j+1

(St−1 − Ski + St − St−1)1(∑i−1
l=0
l 6=j

Ñkl,t−1+∆ϕt+1,
∑i−1
l=0
l 6=j

Ñkl,t−1+∆ϕt+1

](x)

= 1((∆ϕt+1)+,ϕt+1](x)
(
F̃ (t− 1, x−∆ϕt+1) + (St − St−1)

)
∨ 0,

where the last equality holds by (∆ϕt+1)+ ≤
∑j−1

l=0 Ñkl,t−1 + ∆ϕt+1, St − Ski ≤ 0 for i ≤ j, and
St − Ski ≥ 0 for i ≥ j + 1.

Case 2: (∆ϕt+1)− >
∑j−1

l=0 Ñkl,t−1 (i.e., after the reduction of the position by (∆ϕt+1)−,
there are no shares with negative book profits). Define

m̂ := min

i | (∆ϕt+1)− ≤
i∑
l=0
l 6=j

Ñkl,t−1

 .

We have m̂ ≥ j + 1 and arrive at

i∑
l=0

Ñkl,t =

{
0, i ∈ {−1, 0, . . . , m̂− 1}∑i

l=0
l 6=j

Ñkl,t−1 + ∆ϕt+1, i ∈ {m̂, . . . , t} . (A.12)
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For x ∈ (0, ϕt+1], one obtains

F̃ (t, x) =

t∑
i=0

(St − Ski)1(
∑i−1
l=0 Ñkl,t,

∑i
l=0 Ñkl,t]

(x)

(A.12)
=

t∑
i=m̂

(St−1 − Ski + St − St−1)1(∑i−1
l=0
l 6=j

Ñkl,t−1+∆ϕt+1,
∑i
l=0
l 6=j

Ñkl,t−1+∆ϕt+1

](x)

= F̃ (t− 1, x−∆ϕt+1)− (St − St−1),

where the last equality holds by x−∆ϕt+1 = x+ (∆ϕt+1)− >
∑m̂−1

l=0
l 6=j

Ñkl,t−1 for x > 0.

�

Proof of Theorem A.1. Let N and Ñ be as in the theorem with corresponding book profit func-
tions F resp. F̃ as defined in (A.8). Let us first show that

F (t, x) ≤ 1((∆ϕt+1)+,ϕt+1](x) (F (t− 1, x−∆ϕt+1) + St − St−1) ∨ 0, x ∈ (0, ϕt+1]. (A.13)

For x ∈ (0, ϕt+1], let i ∈ {0, . . . , t} s.t. x ∈
(∑i−1

l=0 Nkl,t,
∑i

l=0Nkl,t

]
. If i ≤ j (cf. (A.7)), one has

F (t, x) = St − Ski ≤ 0, and (A.13) holds. Thus, it remains to consider the case i ≥ j + 1. For
this, we have

x >

i−1∑
l=0

Nkl,t = Nt,t +

i−1∑
l=0
l 6=j

Nkl,t =

i−1∑
l=0
l 6=j

Nkl,t−1 +Nt,t +

i−1∑
l=0
l 6=j

(Nkl,t −Nkl,t−1)

(A.1)

≥
i−1∑
l=0
l 6=j

Nkl,t−1 +Nt,t +
t∑
l=0
l 6=j

(Nkl,t −Nkl,t−1)

(A.2)
=

i−1∑
l=0
l 6=j

Nkl,t−1 + ∆ϕt+1.

By monotonicity of F , this implies F (t− 1, x−∆ϕt+1) ≥ St−1−Ski = F (t, x)− (St−St−1) and
together with x > Nt,t ≥ (∆ϕt+1)+, we arrive at (A.13).

With Lemma A.3 and (A.13), it follows by induction in t that F (t, x) ≤ F̃ (t, x) , for all
t = 1, . . . , T and x ∈ (0, ϕt+1] (note that F (0, x) = F̃ (0, x) = 0). By Lemma A.2, the assertion
follows. �

A.1 Relation to the model from Section 2

It remains to prove that the discrete time version of our model introducted in Section 2 does
indeed coincide with the model of Dybvig/Koo with N = Ñ . Let (ϕt)t=1,...,T+1 be a discrete time

predictable process, i.e., ϕt is Ft−1-measurable. By F̃ , we denote the corresponding discrete time
book profit function in the sense of (A.8) for N = Ñ . By F , we denote the continuous time book
profit function in the sense of (2.6) for the piecewise constant strategy

∑T
n=1 ϕn1(n−1,n] ∈ L and

the stock price process S =
∑T

n=0 Sn1[n,n+1). This is the standard embedding of a discrete time
market model into a continuous time framework. Let us show that

F̃ (t, x) = F (t+, x), t = 0, 1, . . . , T − 1.
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This means that F̃ (t, ·) already contains the portfolio regroupings that take place at price St
(note that in a discrete time model, there can only be one change at time t, whereas in continuous
time, there can be a change between t− and t and between t and t+).

For the piecewise constant process
∑T

n=1 ϕn1(n−1,n], the right limit of the purchasing
time (2.2) reads

τt+,x = lim
s>t, s→t

τs,x = max{u ∈ {0, 1, . . . , t} | ϕu ≤ ϕt+1 − x}, x ∈ [0, ϕt+1],

with the convention from Section 2 that ϕ0 = 0 (note that the increment ϕu+1−ϕu is purchased
at price Su). One has the implications τt+,x < t ⇒ τ(t−1)+,x−∆ϕt+1

= τt+,x and τt+,x =
t ⇔ x ≤ (∆ϕt+1)+. This implies

St − min
τt+,x≤u≤t

Su =

(
St − St−1 + St−1 − min

τt+,x≤u≤t−1
Su

)
∨ 0

= 1((∆ϕt+1)+,ϕt+1](x)

(
St − St−1 + St−1 − min

τ(t−1)+,x−∆ϕt+1
≤u≤t−1

Su

)
∨ 0

(with min ∅ :=∞), i.e., F (t+, x) = St −minτt+,x≤u≤t Su satisfies the recursion (A.9), and thus,

it coincides with F̃ (t, x). By Lemma A.2 and Proposition 4.1, this implies that the tax payment
process defined in (A.3), with N = Ñ , coincides with the right limit of the tax payment process
from Definition 2.7.

A.2 Proof of Proposition 2.13

Step 1: Let us first prove the assertion for the model of Dybvig/Koo with N = Ñ for any given
nonnegative ϕ. By Theorem A.1, we have that

Π(Ñ) = inf
N

Π(N), (A.14)

where Π is defined in (A.3), and the infimum is taken over all nonnegative N that lead to the
total number ϕ of shares. Π is obviously linear in N which already implies positive homogeneity
of (A.14) in ϕ. In addition, for any nonnegative N1 leading to total number ϕ1 and any
nonnegative N2 leading to total number ϕ2, the sum N1 + N2 ≥ 0 leads to the total position
ϕ1 + ϕ2. Thus, (A.14) is subadditive in ϕ.

To see that (A.14) is in general not additive in ϕ, consider ϕ1 = 1(0,1] and ϕ2 = 1(1,2],
i.e., ϕ1 + ϕ2 = 1(0,2]. For ϕ1 + ϕ2, the tax payments at time 1 are α (S1 −max(S0, S1)), but

α (S1 − S0) for ϕ1 and zero for ϕ2. This already shows the non-additivity. Also note that for Ñ
associated to ϕ1 + ϕ2, we have that Ñ0,1 = 1 if S1 > S0. I.e., there is one share that is bought
at time 0 and kept in the portfolio beyond time 1. On the other hand, one has N0,1 = 0 for all
N that lead to the total position ϕ1 or ϕ2.

Step 2: By Subsection A.1, the properties carry over to the continuous time tax processes
from Section 2. Namely, in the continuous time setting, we first fix finitely many stopping times
at which ϕ can change its value and replace the infima in (2.7) by corresponding infima along a
finite grid. Then, the modified tax processes coincide with the tax processes from Step 1 for an
appropriate chosen discrete time market model. As the stock price is càdlàg, the infima along
the grid points converge pathwise to their continuous time counterparts when the mesh of the
grid tends to zero. Thus, subadditivity and positive homogeneity is proven for the tax processes
from (2.7) for elementary strategies, and by Theorem 2.11, they carry over to all strategies.
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