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Abstract We study Merton’s portfolio optimization problem in a limit order market. An in-
vestor trading in a limit order market has the choice between market orders that allow immedi-
ate transactions and limit orders that trade at more favorable prices but are executed only when
another market participant places a corresponding market order. Assuming Poisson arrivals of
market orders from other traders we use a shadow price approach, similar to Kallsen and Muhle-
Karbe [9] for models with proportional transaction costs, to show that the optimal strategy con-
sists of using market orders to keep the proportion of wealth invested in the risky asset within
certain boundaries, similar to the result for proportional transaction costs, while within these
boundaries limit orders are used to profit from the bid-ask spread. Although the given best-bid
and best-ask price processes are geometric Brownian motions the resulting shadow price process
possesses jumps.
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1 Introduction

A portfolio problem in mathematical finance is the optimization problem of an investor possess-
ing a given initial endowment of assets who has to decide how many shares of each asset to hold
at each time instant in order to maximize his expected utility from consumption (see [11]). To
change the asset allocation of his portfolio or finance consumption, the investor can buy or sell
assets at the market. Merton [15,16] solved the portfolio problem for a continuous time friction-
less market consisting of one risky asset and one riskless asset. When the price process of the
risky asset is modeled as a geometric Brownian motion (GBM), Merton was able to show that
the investor’s optimal strategy consists of keeping the fraction of wealth invested in the risky
asset constant. Due to the fluctuations of the GBM this leads to incessant trading.

The assumption that investors can purchase and sell arbitrary amounts of the risky asset at
a fixed price per share is quite unrealistic in a less liquid market which possesses a significant
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bid-ask spread. In today’s electronic markets the predominant market structure is the limit order
market, where traders can continuously place market and limit orders, and change or delete them
as long as they are not executed. When a trader wants to buy shares for example, he has a basic
choice to make. He can either place a market buy order or he can submit a limit buy order, with
the limit specifying the maximum price he would be willing to pay per share. If he uses a market
order his order is executed immediately, but he is paying at least the best-ask price (the lowest
limit of all unexecuted limit sell orders), and an even higher average price if the order size is
large. By using a limit buy order with a limit lower than the current best-ask price he pays less,
but he cannot be sure if and when the order is executed by an incoming sell order matching his
limit.

We introduce a new model for continuous-time trading using both market and limit or-
ders. This allows us to analyze e.g. the trade-off between rebalancing the portfolio quickly and
trading at favorable prices. To obtain a mathematically tractable model we keep some ideal-
ized assumptions of the frictionless market model resp. the model with proportional transaction
costs. E.g. we assume that the investor under consideration is small, i.e. the size of his orders is
sufficiently small to be absorbed by the orders in the order book. The best-ask and the best-bid
price processes solely result from the behavior of the other market participants and can thus be
given exogenously. Furthermore, we assume that the investor’s limit orders are small enough to
be executed against any arising market order whose arrival times are also exogenously given
and modeled as Poisson times. We also assume that limit orders can be submitted and taken out
of the order book for free.

The model tries to close a gap between the market microstructure literature which lacks ana-
lytical tractability when it comes to dynamic trading and the literature on portfolio optimization
under idealized assumptions with powerful closed-form and duality results.

In the economic literature on limit order markets (see e.g. the survey by Parlour and Seppi
[17] for an overview) the incentive to trade quickly (and therefore submit market orders) is
usually modeled exogenously by a preference for immediacy. This is e.g. the case in the multi-
period equilibrium models of Foucault, Kadan, and Kandel [2] and Roşu [21], which model the
limit order market as a stochastic sequential game. Even in research concerning the optimal be-
havior of a single agent, this exogenous motivation to trade is common. Consider e.g. Harris [5],
which deals with optimal order submission strategies for certain stylized trading problems, e.g.
for a risk-neutral trader who has to sell one share before some deadline. By contrast, in our
model the trading decision is directly derived from the maximization of expected utility from
a consumption stream (thus from “first principles”), i.e. the incentive to trade quickly is ex-
plained. Furthermore, in Harris [5] the order size is discarded and the focus is on the selection
of the right limit price at each point in time. In our work the limit prices used by the small in-
vestor are effectively reduced to selling at the best-ask and buying at the best-bid, but in view of
the agent’s underlying portfolio problem, the size of these limit orders is a key question. There
is a trade-off between placing large limit orders to profit from the spread and taking too much
risk by the resulting large positions (usually called inventory risk in the literature on market
making).

In Section 2 we introduce the market model on a quite general level. In Section 3 we specify
stochastic processes for which we study the problem of maximizing expected logarithmic utility
from consumption over an infinite horizon. Namely, we let the best-bid and best-ask price pro-
cesses be geometric Brownian motions and the spread be proportional to them. Market orders
of the other traders arise according to two independent Poisson processes with constant rates.
In Section 3 we also provide some intuition on how we obtain a promising candidate for an
optimal strategy and connect it to the solution of a suitable free boundary problem. In Section 4
we prove the existence of a solution of this free boundary problem. The verification that the
constructed solution is indeed optimal is done in Section 5.

The optimal strategy consists in placing the minimal amount of market orders which is nec-
essary to keep the proportion of wealth invested in the risky asset within certain boundaries –
similar to the result of Davis and Norman [1] for transaction costs – while within these bound-
aries limit orders are used to hit one of the boundaries when at a Poisson time trading is possible
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at a favorable price (i.e. the investor adjusts the sizes of his limit orders continuously in such
a way that the proportion invested in the risky asset jumps to one of the boundaries whenever
a limit order is executed by an incoming exogenous market order). By the latter the investor
profits from the bid-ask spread. Thus, although the structure of the solution looks at first glance
quite similar to the case with proportional transaction costs, a key incentive of the investor is
now to capitalize on the spread by placing limit orders. Whereas the investor generally tries to
avoid using market orders, he is always willing to trade using limit orders. In a sense, trading
with limit orders corresponds to negative proportional transactions costs.

We derive the optimal trading strategy by showing the existence of a shadow price process
of the asset – similar to the work of Kallsen and Muhle-Karbe [9] with proportional transaction
costs. A shadow price process S̃ for the risky asset has to satisfy the following two properties.
Firstly, in a fictitious frictionless market without spread and with price process S̃ any transaction
feasible in the original market can be implemented at better or equal prices. Secondly, there is
an optimal trading strategy in the fictitious market which can also be realized in the original
market leading to the same trading gains.

The main difference of the shadow price process in our model compared to [9] is that it
possesses jumps – namely at the Poisson arrival times of the exogenous market orders.

2 The model

2.1 Trading of a small investor in a limit order market

Let (Ω ,F ,P,(Ft)t≥0) be a filtered probability space satisfying the usual conditions. Regarding
conventions and notation we mostly follow Jacod and Shiryaev [7]. For a process X with left and
right limits (also called làglàd) let ∆Xt := Xt −Xt− denote the jump at time t and let ∆+Xt :=
Xt+−Xt denote the jump immediately after time t. If we write X =Y for two stochastic processes
X and Y , we mean equality up to indistinguishability.

We model the best-bid price S and the best-ask price S as two continuous, adapted, exoge-
nously given stochastic processes such that S ≤ S. The continuity of S and S will play a key role
in the reduction of the dimension of the strategy space. The arrivals of market sell orders and
market buy orders by the other traders are modeled exogenously by counting processes N1 and
N2 (as defined e.g. in [19], Section 1.3).

In our model (formally introduced in Definition 1) the investor may submit market buy and
sell orders which are immediately executed at price S and S, resp. In addition, he may submit
limit buy and sell orders. The limit buy price is restricted to S and these orders are executed at
the jump times of N1 at price S. Accordingly, the limit sell price is restricted to S and the limit
sell orders are executed at the jump times of N2 at the price S.

This restriction is an immense reduction of the dimensionality of the problem, as we do
not consider limit orders at arbitrary limit prices. It can be justified by the following consid-
erations. A superior limit order strategy of the small investor is to place a limit buy order at a
“marginally” higher price than the current best-bid price S (of course this necessitates to up-
date the limit price according to the movements of the best-bid price, which could in practice be
approximately realized as long as the submission and deletion of orders is for free). Then, the
limit buy order is executed as soon as the next limit sell order by the other traders arrives (i.e.
at the next jump time of N1). As S is continuous there is no reason to submit a limit buy order
at a limit price strictly lower than the current best-bid price. Namely, such an order could not
be executed before S hits the lower limit buy price of the order. As this appears at a predictable
stopping time it is sufficient to place the order at this stopping time and take the current best-bid
price as the limit price. On the other hand, a limit buy order with limit price in (S,S) is executed
at the same time as a buy order with limit price S (resp. “marginally” higher than S), but at a
higher price than S (assuming that market sell orders of the other traders still arise according to
N1).
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Thus, in our model it is implicitly assumed that the small investor does not influence the
best-ask price or the best-bid price and his orders are small enough to be executed against
any market order arising at ∆N1 = 1 and ∆N2 = 1. Furthermore, the market orders arising at
∆N1 = 1, ∆N2 = 1 (although being large in comparison to the size of the orders of the small
investor) are sufficiently small to be absorbed by the orders in the book, i.e. a jump of N1 or N2

does not cause a movement of S and S.
With the considerations above we are in the quite fortunate situation that the quadru-

ple (S,S,N1,N2) is sufficient to model the trading opportunities of the small investor. Thus,
our mathematical model can be build on these processes alone (rather than on the dynamics of
the whole order book).

A possible economic interpretation is that S and S move as nonaggressive traders update
their limit prices with varying fundamentals whereas N1 and N2 model immediate supply and
demand for the asset.

Remark 1 Note that the investor in our model does not play the role of a market maker who,
however, also wants to profit from the spread. The market maker can influence the spread and
he is forced to trade with arising market orders.

Definition 1 Let MB, MS, LB and LS be predictable processes. Furthermore, let MB and MS be
non-decreasing with MB

0 = MS
0 = 0 and LB and LS non-negative. Let c be an optional process.

A quintuple S = (MB,MS,LB,LS,c) is called a strategy. For η0,η1 ∈R we define the portfolio
process (ϕ0,ϕ1)(S,η0,η1) associated with strategy S and initial portfolio (η0,η1) to be

ϕ
0
t := η

0−
∫ t

0
csds−

∫ t

0
Ss dMB

s +
∫ t

0
Ss dMS

s (2.1)

−
∫ t−

0
LB

s Ss dN1
s +

∫ t−

0
LS

s Ss dN2
s

ϕ
1
t := η

1 +MB
t −MS

t +
∫ t−

0
LB

s dN1
s −

∫ t−

0
LS

s dN2
s .

ϕ0 is the number of risk-free assets and ϕ1 the number of risky assets. For simplicity, we
assume there is a risk-free interest rate, which is equal to zero. The interpretation is that aggre-
gated market buy or sell orders up to time t are modeled with MB

t and MS
t , whereas LB

t (resp.
LS

t ) specifies the size of a limit buy order with limit price S (resp. the size of a limit sell order
with limit price S), i.e. the amount that is bought or sold favorably if an exogenous market sell
or buy order arrives at time t. LB and LS can be arbitrary predictable processes which is justified
under the condition that submission and deletion of orders which are not yet executed is for free.
Finally, ct is interpreted as the rate of consumption at time t.

Note that integrating w.r.t. the processes MB and MS which are of finite variation and there-
fore have left and right limits is a trivial case of integrating w.r.t. optional semimartingales (as
discussed e.g. in [3] and [12]). For a càdlàg process Y we define the integral

∫
(Y−,Y )dMB by∫ t

0
(Ys−,Ys)dMB

s :=
∫ t

0
Ys−d(MB

s )r + ∑
0≤s<t

Ys∆
+MB

s , t ≥ 0, (2.2)

where (MB)r
t := MB

t −∑0≤s<t ∆+MB
s . The first term on the right-hand side of (2.2) is just

a standard Lebesgue-Stieltjes integral. For a continuous integrand Y , as e.g. in (2.1), we set∫
Y dMB :=

∫
(Y,Y )dMB (which is consistent with the integral w.r.t. càdlàg integrators).

In (2.1) the integrals w.r.t. N1 and N2 are only up to time t−, a limit order triggered by
∆Ni

t = 1 is not yet included in ϕt . The integrals w.r.t. MB and MS are up to time t, but note that
by (2.2) just the orders ∆MB

t and ∆MS
t (corresponding to trades at time t−) are already included

in ϕt at time t, whereas the orders ∆+MB
t and ∆+MS

t (corresponding to trades at time t) are only
included in ϕt right after time t. Hence, (2.1) goes conform to the usual interpretation of ϕt as
the holdings at time t− (and the amount invested in the jump at time t) and for S = S it coincides
with the self-financing condition in frictionless markets (up to the restriction to finite variation
strategies).
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2.2 The Merton problem in a limit order market

Given initial endowment (η0,η1) a strategy S is called admissible if its associated portfolio
process (ϕ0,ϕ1)(S,η0,η1) satisfies

ϕ
0
t +1{ϕ1

t ≥0}Stϕ
1
t +1{ϕ1

t <0}Stϕ
1
t ≥ 0, ∀t ≥ 0. (2.3)

Thus, a strategy is considered admissible if at any time a market order can be used to liquidate
the position in the risky asset resulting in a non-negative amount held in the risk-free asset. Let
A (η0,η1) denote the set of admissible strategies for initial endowment (η0,η1).

Now the value function V for the optimization problem of an investor with initial holdings
η0 in the risk-free asset and η1 in the risky asset and logarithmic utility function who wants to
maximize expected utility from consumption can be written as

V (η0,η1) := sup
S∈A (η0,η1)

J (S) := sup
S∈A (η0,η1)

E
(∫

∞

0
e−δ t log(ct)dt

)
, (2.4)

where δ > 0 models the time preference. Note that due to the spread the optimization problem
is not myopic.

2.3 Fictitious markets and shadow prices

To solve (2.4) we consider – similar to [9] – a fictitious frictionless market comprising of the
same two assets as above. In this frictionless market the discounted price process of the risky
asset is modeled as a real-valued semimartingale S̃. Any amount of the risky asset can be bought
or sold instantly at price S̃.

Let (ψ0,ψ1) be a two-dimensional predictable process, integrable w.r.t. to the two-
dimensional semimartingale (1, S̃), i.e. (ψ0,ψ1) ∈ L((1, S̃)) in the notation of [7]. Suppose c
is an optional process. We call S̃ = (ψ0,ψ1,c) a self-financing strategy with initial endowment
(η0,η1) if it satisfies

ψ
0
t +ψ

1
t S̃t = η

0 +η
1S̃0 +

∫ t

0
ψ

1
s dS̃s−

∫ t

0
csds.

A self-financing strategy S̃ is called admissible if

ψ
0
t +ψ

1
t S̃t ≥ 0, ∀t ≥ 0.

Denote by Ã (η0,η1) the set of all admissible strategies given initial endowment (η0,η1).
Again, we introduce a value function Ṽ by

Ṽ (η0,η1) := sup
S̃∈Ã (η0,η1)

J̃ (S̃) := sup
S̃∈Ã (η0,η1)

E
(∫

∞

0
e−δ t log(ct)dt

)
.

Note that because the spread is zero, for another initial portfolio (ζ 0,ζ 1) we have V (η0,η1) =
V (ζ 0,ζ 1) if η0 +η1S̃0 = ζ 0 +ζ 1S̃0. Nonetheless, to keep the notation for the frictionless market
close to the notation for the limit order market we write Ṽ (η0,η1).

Definition 2 We call the real-valued semimartingale S̃ a shadow price process of the risky asset
if it satisfies for all t ≥ 0:

St ≤ S̃t ≤ St , S̃t =

{
St if ∆N1

t = 1
St if ∆N2

t = 1
(2.5)

and if there exists a strategy S = (MB,MS,LB,LS,c) ∈ A (η0,η1) in the limit order market
such that for the associated portfolio process (ϕ0,ϕ1) we have S̃ = (ϕ0,ϕ1,c) ∈ Ã (η0,η1)
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and J̃ (S̃) = Ṽ (η0,η1) in the frictionless market with S̃ as the discounted price process of the
risky asset, i.e. the associated portfolio process of S paired with the consumption rate c of S

has to be an optimal strategy in the frictionless market.

The concept of a shadow price process consists of two parts. Firstly, trading in the frictionless
market at prices given by the shadow price process should be at least as favorable as in the
market with frictions. The investor can use a market order at any time to buy the risky asset at
price S. Hence, we have to require S̃t ≤ St for all t ≥ 0 to make sure that he never has to pay more
than in the market with frictions. Analogously, to take care of the market sell orders, we demand
S ≤ S̃t for all t ≥ 0. In a market with proportional transaction costs this would be sufficient, but
in our limit order market the investor can also buy at S whenever an exogenous market sell
order arrives. Thus, we have to require S̃t ≤ St whenever ∆N1

t = 1. Accordingly, to cover the
opportunities to sell at S using limit sell orders, we need to demand S̃t ≥ St whenever ∆N2

t = 1.
Combining these four requirements, we arrive at condition (2.5). Secondly, the maximal utility
which can be achieved by trading at the shadow price must not be higher than by trading in
the market with frictions. This is ensured by the second part of the definition. Note that for a
shadow price to exist, N1 and N2 must not jump simultaneously at any time at which S < S
holds, otherwise (2.5) cannot be satisfied.

The following lemma is a reformulation of Lemma 2.2 in [9]. We quote it for convenience
of the reader.

Lemma 1 (Kallsen and Muhle-Karbe [9]) Let S be a real-valued semimartingale and let ϕ ∈
L(S) be a finite variation process (not necessarily right-continuous). Then their product ϕS can
be written as

ϕtSt = ϕ0S0 +
∫ t

0
ϕsdSs +

∫ t

0
(Ss−,Ss)dϕs

= ϕ0S0 +
∫ t

0
ϕsdSs +

∫ t

0
Ss−dϕ

r
s + ∑

0≤s<t
Ss∆

+
ϕs.

Proposition 1 If S̃ is a shadow price process and S is a strategy in the limit order market
corresponding to an optimal strategy S̃ in the frictionless market as in Definition 2, then S is
an optimal strategy in the limit order market, i.e. J (S) = V (η0,η1).

Proof Step 1. We begin by showing V (η0,η1) ≤ Ṽ (η0,η1). Let S ∈ A (η0,η1) with corre-
sponding portfolio process (ϕ0,ϕ1). Define

ψ
0
t := η

0−
∫ t

0
csds−

∫ t

0
(S̃s−, S̃s)dMB

s +
∫ t

0
(S̃s−, S̃s)dMS

s

−
∫ t−

0
LB

s S̃sdN1
s +

∫ t−

0
LS

s S̃sdN2
s

and ψ1 := ϕ1. Applying Lemma 1 we get

ψ
1
t S̃t = η

1S̃0 +
∫ t

0
ψ

1
s dS̃s +

∫ t

0
(S̃s−, S̃s)dψ

1
s .

This equation is equivalent to

ψ
0
t +ψ

1
t S̃t −η

0−η
1S̃0−

∫ t

0
ψ

1
s dS̃s +

∫ t

0
csds = ψ

0
t +

∫ t

0
(S̃s−, S̃s)dψ

1
s −η

0 +
∫ t

0
csds.(2.6)

By definition of ψ0 and ψ1 and associativity of the integral the term on the right side is equal
to 0. Hence (2.6) implies that (ψ0,ψ1,c) is a self-financing strategy in the frictionless market.
Furthermore, by (2.5) and (2.3) we get

ψ
0
t +ψ

1
t S̃t ≥ ϕ

0
t +ϕ

1
t S̃t ≥ ϕ

0
t +1{ϕ1

t ≥0}ϕ
1
t St +1{ϕ1

t <0}ϕ
1
t St ≥ 0.
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Thus for every S ∈ A (η0,η1) we have an admissible strategy S̃ = (ψ0,ψ1,c) ∈ Ã (η0,η1)
with the same consumption rate.

Step 2. By the definition of a shadow price there is a strategy S = (MB,MS,LB,LS,c) in
the limit order market with associated portfolio process (ϕ0,ϕ1) such that S̃ = (ϕ0,ϕ1,c) is an
optimal strategy in the frictionless market, i.e.

J (S) = J̃ (S̃) = Ṽ (η0,η1).

By Step 1 this implies J (S) = V (η0,η1), hence S is optimal.

3 Heuristic derivation of a candidate for a shadow price process

The model of a small investor trading in a limit order market makes sense in the generality
introduced above. Still, to get enough tractability to be able to construct a shadow price process
we reduce the complexity by restricting ourselves to a more concrete case. From now on we
model the spread as proportional to the best-bid price, which is modeled as a standard geometric
Brownian motion with starting value s, i.e.

dSt = St(µdt +σdWt), S0 = s, (3.1)

with µ,σ ∈ R+ \{0}. The size of the spread is modeled with a constant λ > 0. Similarly to [9]
define

C := log(1+λ ) and S := SeC = S(1+λ ).

Let α1,α2 ∈ R+. The arrival of exogenous market orders is modeled as two independent time-
homogenous Poisson processes N1 and N2 with rates α1 and α2. These memoryless and sta-
tionary arrival times, the time-independent coefficients in the dynamics of the best bid price,
the proportional spread, and the infinite horizon of the optimization problem (2.4) will lead to a
time-homogenous structure of the solution.

For α1 = α2 = 0 the model reduces to the model with proportional transaction costs as e.g.
in [1], [9] or [22]. For λ = 0 and by allowing to trade only at the jump times of the Poisson
process we would arrive at an illiquidity model introduced by Rogers and Zane [20] which is
widely investigated in the literature, see e.g. Matsumoto [13] who studies optimal portfolios
w.r.t. terminal wealth in this model. Pham and Tankov [18] recently introduced a related illiq-
uidity model under which the price of the risky asset cannot even be observed apart from the
Poisson times at which trading is possible.

We will show (under certain restrictions to the parameters µ,σ ,λ ,α1,α2, see Proposition 2)
that it is optimal to control the portfolio as follows. There exist πmin,πmax ∈R+ with 0 < πmin <
πmax such that the proportion of wealth invested in the risky asset (measured in terms of the best
bid price) is kept in the interval [πmin,πmax] by using market orders, i.e.

πmin ≤
ϕ1

t St

ϕ0
t +ϕ1

t St
≤ πmax, ∀t > 0 (3.2)

(Note that, as S and S only differ in a constant factor, the structure of the solution would remain
unaffected if wealth was measured in terms of the best-ask price instead of the best-bid price –
only the numbers πmin and πmax would change). To keep the proportion within this interval, as
is the case with proportional transaction costs, MB and MS will have local time at the boundary.
In the inner they are constant. Furthermore, at all times two limit orders are kept in the order
book such that

ϕ1
t St

ϕ0
t +ϕ1

t St
= πmax, after limit buy order is executed with limit St (3.3)

ϕ1
t St

ϕ0
t +ϕ1

t St
= πmin, after limit sell order is executed with limit St . (3.4)
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To follow this strategy both limit prices and limit order sizes have to be permanently adjusted.
The former to stay at S and S, resp. The latter as after a successful execution of a limit
order the proportion of wealth invested in the risky asset and not the number of risk assets is
time-homogenous. Finally, optimal consumption is proportional to wealth measured w.r.t. the
shadow price.

In this section we provide some intuition on how to use the guessed properties of the optimal
strategy described in (3.2), (3.3), and (3.4) to find a promising candidate for a shadow price
process by combining some properties a shadow price process should satisfy. Later, in Section
5, we construct a semimartingale that satisfies these properties by using solutions of a suitable
free boundary problem and a related Skorohod problem. This semimartingale is then verified to
be indeed a shadow price process of the risky asset.

The definition of a shadow price process suggests that if for example market order sales
become worthwhile, S̃ approaches S as in [9]. Moreover, by (2.5) if an exogenous market buy
order arises (i.e. the asset can be sold expensively), the shadow price has to jump to S. Consider
a [0,C]-valued Markov process which satisfies

dCt = µ̃(Ct−)dt + σ̃(Ct−)dWt −Ct−dN1
t +(C−Ct−)dN2

t ,

where the real functions µ̃ and σ̃ are not yet specified, but are assumed to be sufficiently nice for
a solution C of the stochastic differential equation to exist. As an ansatz for the shadow price S̃
we use S̃ := Sexp(C). C is similar to the process in [9] apart from its jumps. From Itô’s formula
we get

dS̃t = S̃t−

[(
µ +

σ̃(Ct−)2

2
+σσ̃(Ct−)+ µ̃(Ct−)

)
dt +(σ + σ̃(Ct−))dWt

+
(

e−Ct−∆N1
t +(C−Ct−)∆N2

t −1
)]

.

For S̃ to be a shadow price process, we have to be able to find a strategy which is optimal in
the frictionless market with price process S̃, but can also be carried out in the limit order market
at the same prices. Fortunately, optimal behavior in the frictionless market is well understood
for logarithmic utility. The plan is to choose the dynamics of S̃ in such a way, that the portfo-
lio process of the suspected optimal strategy described in (3.2), (3.3), and (3.4) is an optimal
strategy in the frictionless market. To do this, we can use a theorem by Goll and Kallsen [4]
(Theorem 3.1) which gives a sufficient condition for a strategy in a frictionless markets to be
optimal. It says that if the triple (b̃, c̃, F̃) is the differential semimartingale characteristics of the
special semimartingale S̃ (w.r.t. to the predictable increasing process I(ω, t) := t and “truncation
function” h(x) = x, see e.g. [7] (Proposition II.2.9)) and if the equation

b̃t − c̃tHt +
∫ ( x

1+Htx
− x
)

F̃t(dx) = 0

was fulfilled (P⊗ I)-a.e on Ω × [0,∞) by H := ϕ1/Ṽ−, then H would be optimal. Using that N1

and N2 are independent and thus

∆N1
∆N2 = 0 and e−C−∆N1+(C−C−)∆N2 −1 = e−C−∆N1 −1+ e(C−C−)∆N2 −1

up to evanescence, the characteristic triple of S̃ becomes

b̃t = S̃t−

(
µ +

σ̃(Ct−)2

2
+σσ̃(Ct−)+ µ̃(Ct−)

)
+
∫

xF̃t(dx)

c̃t =
(

S̃t−(σ + σ̃(Ct−))
)2

F̃t(ω,dx) = α1δx1(ω,t)(dx)+α2δx2(ω,t)(dx),
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with

x1(ω, t) := S̃t−(ω)(e−Ct−(ω)−1), x2(ω, t) := S̃t−(ω)(eC−Ct−(ω)−1).

Denote by π̃t := Ht S̃t− the optimal fraction invested in the risky asset, measured in terms of the
shadow price. Even though we cannot write down π̃t explicitly, we know that a π̃ is optimal, if
it satisfies

F(Ct−, π̃t) := µ +
σ̃(Ct−)2

2
+σσ̃(Ct−)+ µ̃(Ct−)− π̃t(σ + σ̃(Ct−))2 (3.5)

+ α1(e−Ct− −1)
(

1
1+ π̃t(e−Ct− −1)

)
+ α2(eC−Ct− −1)

(
1

1+ π̃t(eC−Ct− −1)

)
= 0.

Consider the stopping time

τ := inf
{

t > 0 : Ct ∈ {0,C}
}

.

As long as S < S̃ < S, it should be optimal in the frictionless market to keep the number of shares
in the risky asset constant, i.e. there is no trading. Thus, on ]]0,τ[[ we should have that

d log(ϕ0
t ) =

−ct

ϕ0
t

dt =
−δṼt

Ṽt − π̃tṼt
dt =

−δ

1− π̃t
dt,

where (ϕ0,ϕ1) are the optimal amounts of securities. The second equality holds as optimal
consumption is given by c = δṼ (again by Theorem 3.1 in [4]). Using the same approach to
simplify the calculations as in [9] we introduce

β := log
(

π̃

1− π̃

)
= log

(
ϕ1S̃
ϕ0

)
.

On ]]0,τ[[ we have C = C−, hence the dynamics of βt on ]]0,τ[[ can be written as

dβt = d log(ϕ1
t )+d log(S̃t)−d log(ϕ0

t )

=
(

µ − σ2

2
+ µ̃(Ct)+

δ

1− π̃(Ct)

)
dt +(σ + σ̃(Ct))dWt . (3.6)

Furthermore, π̃ is a function of C− implicitly given by optimality equation (3.5). On ]]0,τ[[ we
can even write β = f (C) for some function f which, however, depends on the functions µ̃ and
σ̃ that are not yet specified. Assume that f ∈C2. By Itô’s formula we get

dβt =
(

f ′(Ct)µ̃(Ct)+ f ′′(Ct)
σ̃(Ct)2

2

)
dt + f ′(Ct)σ̃(Ct)dWt . (3.7)

By comparing the factors of (3.6) and (3.7) we can write down µ̃ and σ̃ as functions of f ,µ and
σ :

σ̃ =
σ

f ′−1

µ̃ =
(

µ − σ2

2
+

δ (1+ e− f )
e− f − σ2

2
f ′′

( f ′−1)2

)
1

f ′−1
.

Note that to get rid of π̃t we have used that from f (C) = β = log
(

π̃

1−π̃

)
follows π̃ = 1

1+e− f (C) .
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Now that we have expressions for µ̃ and σ̃ we can insert them into the optimality equation
(3.5) to get an ODE similar to the one in [9]. The ODE in our case is

µ +
1
2

(
σ

f ′(x)−1

)2

+
σ2

f ′(x)−1
(3.8)

+

(
µ − σ2

2
+

δ (1+ e− f (x))
e− f (x) − σ2

2
f ′′(x)

( f ′(x)−1)2

)
1

f ′(x)−1

−
(σ + σ

f ′(x)−1 )2

1+ e− f (x) +α1(e−x−1)

(
1

1+ e−x−1
1+e− f (x)

)
+α2(eC−x−1)

 1

1+ eC−x−1
1+e− f (x)


= 0.

Remember that apart from a possible bulk trade at time 0 in our suspected optimal strategy
the aggregated market buy and sell orders are local times. This implies that the fraction invested
in the risky asset also has a local time component, and hence the same is true for β . Thus a
smooth function f with β = f (C) has to possess an exploding first derivative as in C no local
time appears (the ansatz that C resp. S̃ has no local time makes sense, as it is well known that a
local time component in the discounted price process would imply arbitrage, see e.g. Appendix
B in [10] or [8] for an introduction to the problematics). To avoid an explosion, we turn the
problem around by considering C as a function of β , i.e. C = g(β ) := f−1(β ). Defining

B(y,z) := α1(e−z−1)

(
1

1+ e−z−1
1+e−y

)
+α2(eC−z−1)

 1

1+ eC−z−1
1+e−y

 , (3.9)

we can invert ODE (3.8) and get

g′′(y) = − 2
σ2 B(y,g(y))− 2µ

σ2 +
2

1+ e−y (3.10)

+
(

6
σ2 B(y,g(y))+

4µ

σ2 −
2

1+ e−y −1− 2δ

σ2 (1+ ey)
)

g′(y)

+
(
− 6

σ2 B(y,g(y))− 2µ

σ2 +1+
4δ

σ2 (1+ ey)
)

(g′(y))2

+
(

2
σ2 B(y,g(y))− 2δ

σ2 (1+ ey)
)

(g′(y))3.

Note that this equation without the term B is the same ODE as in [9]. We need to take care that
the local time in β does not show up in C but since local time only occurs at β and β by choosing
the right boundary conditions for g′ this can be avoided easily. Namely, g′ has to vanish at the
boundaries. Similar to [9] we arrive at the boundary conditions

g(β ) = C, g(β ) = 0, g′(β ) = g′(β ) = 0, (3.11)

where β and β have to be chosen. Indeed, an application of Itô’s formula shows that these
boundary conditions for g′ imply that C does not have a local time component.

4 Existence of a solution to the free boundary problem

Proposition 2 Let α1 < µ
1+λ

λ
, α2 < (σ2−µ) 1+λ

λ
, and δ > α2λ . Then the free boundary prob-

lem (3.10)/(3.11) admits a solution (g,β ,β ) such that g : [β ,β ]→ [0,C] and g is strictly decreas-
ing.
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The first two parameter restrictions can be interpreted economically quite well, whereas the
last restriction is a technical condition, which is sufficient for the existence of a shadow price.

As α1,α2 ≥ 0 the first two parameter restrictions imply that

0 < µ < σ
2. (4.1)

In the case with proportional transaction costs, (4.1) guarantees that 0 < πmin < πmax < 1, i.e.
the optimal strategy entails neither leveraging nor shorting of the risky asset. This is not the case
when the opportunity to trade at more favorable prices using limit orders exists. Namely, short
selling the stock by a limit order and liquidating this position again after the successful execution
of a limit buy order leads to some additional expected return whose rate is for small λ roughly
α1λ (note that α1 is the rate of the arrival times which allow to buy the stock cheaply back,
the expected return is earned as long as the investor holds a short position). Thus α1 < µ

1+λ

λ

guarantees that short selling is not worthwhile. Analogously long positions that are build up with
limit buy orders yield an additional expected return with approximative rate α2λ . Thus α2 <
(σ2 − µ) 1+λ

λ
becomes necessary to exclude leveraging. Summing up, the first two conditions

are necessary to avoid leveraging and short selling.

Proof Define for y,z ∈ R

B̃(y,z) :=


B(y,z) if z ∈ [0,C],

α2

(
eC −1

)(
1+ eC−1

1+e−y

)−1
if z < 0,

α1

(
e−C −1

)(
1+ e−C−1

1+e−y

)−1
if z > C.

Note that B̃(y,z) is decreasing in y and z. Furthermore, for all y,z ∈ R we have

− α1λ

1+λ
< B̃(y,z) < α2λ .

Instead of dealing with the original free boundary problem (3.10)/(3.11), we now replace (3.10)
with

g′′(y) = − 2
σ2 B̃(y,g(y))− 2µ

σ2 +
2

1+ e−y (4.2)

+
(

6
σ2 B̃(y,g(y))+

4µ

σ2 −
2

1+ e−y −1− 2δ

σ2 (1+ ey)
)

g′(y)

+
(
− 6

σ2 B̃(y,g(y))− 2µ

σ2 +1+
4δ

σ2 (1+ ey)
)

(g′(y))2

+
(

2
σ2 B̃(y,g(y))− 2δ

σ2 (1+ ey)
)

(g′(y))3,

whereas the boundary condition (3.11) stays the same. We will see that the change from B to
B̃ guarantees that functions satisfying the ODE do not explode, because the impact of g(y) on
g′′(y) remains bounded, even when g(y) leaves [0,C]. Note that if we show the existence of
a solution g : [β ,β ] → [0,C] to this modified free boundary problem, we have also shown the
existence of a solution to the original free boundary problem, since B(y,z) = B̃(y,z) on R× [0,C].
Denote by y0 the unique root of the function

H(y) :=
−α1

σ2

(
e−C −1

)(
1+

e−C −1
1+ e−y

)−1

− µ

σ2 +
1

1+ e−y .

Such an y0 exists. Indeed, we have assumed α1 < µ
1+λ

λ
, which implies α1λ−µ−µλ

σ2+σ2λ
< 0. Thus, as

C = log(1+λ ), it follows limy→−∞ H(y) < 0. e−C −1 < 0 and µ < σ2 imply limy→∞ H(y) > 0.
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Since H is continuous, the intermediate value theorem implies the existence of a y0, which is
unique since H is strictly increasing.

For any ∆ > 0 let β
∆

:= y0 −∆ . For any choice of ∆ > 0 the initial value problem given
by (4.2) with initial conditions g(β

∆
) = C and g′(β

∆
) = 0 admits a unique local solution g∆ .

Because δ −α2λ > 0, we can define a real number M < 0 by

M := min

− 3

√
3(α2λ + µ)

δ −α2λ
,−

√
3(3α2λ +2µ)

δ −α2λ
,−3α2λ + µ

δ −α2λ

 .

For g′
∆
(y) < M we have g′′

∆
(y) > 0. Similarly, define a real number M > 0 by

M := max


3

√√√√3
(

α1λ

1+λ
+σ2

)
δ −α2λ

,

√
3(3α2λ +2µ)

δ −α2λ
,

3
(

6α1λ

1+λ
+σ2 +4δ

)
2(δ −α2λ )

 .

For g′
∆
(y) > M we have g′′

∆
(y) < 0. Hence, g′

∆
(y) ∈ [M,M] for all y ≥ β

∆
and the maximal

interval of existence for g∆ is R. Note that M,M do not depend on the choice of ∆ .
By α2 < (σ2−µ) 1+λ

λ
, there exist y? ∈ R and ε > 0 such that

− 2
σ2 B̃(y,z)− 2µ

σ2 +
2

1+ e−y > ε

for all y≥ y?,z ∈R (this can be proved analogously to the existence of y0). Combining this with
(4.2) shows that there even exists an y∆ such that g′′

∆
(y) > ε for g′

∆
(y)≤ 0 and y≥ y∆ . Thus, g′

∆

has at least another root larger than β
∆

, i.e.

β ∆ := min{y > β
∆

: g′∆ (y) = 0}< ∞.

Hence, by definition g∆ is decreasing on [β
∆
,β ∆ ]. The remainder of the proof consists in show-

ing that g∆ (β ∆ )→C for ∆ → 0, g∆ (β ∆ )→−∞ for ∆ →∞ and that ∆ 7→ g∆ (β ∆ ) is a continuous
mapping. Then, by the intermediate value theorem, there exists a ∆ such that g∆ is a solution to
the free boundary problem (4.2)/(3.11).

Step 1. We prove that g∆ (β ∆ )→C for ∆ → 0. The boundedness of (∆ ,y) 7→ g′
∆
(y) together

with (4.2) implies that |g′′
∆
(y)| is bounded by a constant M′′ on [y0 − 1,y0 + 1]. For ∆ < 1 and

y ∈ [y0−1,y0 +1] we get |g′
∆
(y)| ≤ (y−y0 +∆)M′′. Hence, by (4.2), g∆ (y)→C for ∆ → 0 and

y → y0, the continuity of B̃, and the definition of y0 we have that

sup
y∈[y0−∆ ,y0+∆̃ ]

|g′′∆ (y)| → 0 for ∆ , ∆̃ ↓ 0. (4.3)

Firstly, by (4.3) the last three summands in (4.2) are of order o(y− y0 + ∆) for (∆ ,y) →
(0,y0). Let us rewrite the first summand of (4.2) as

− 2
σ2 B̃(y,g∆ (y))− 2µ

σ2 +
2

1+ e−y

=
(
− 2

σ2 B̃(y,g∆ (y))+
2

σ2 B̃(y,C)
)

+
(
− 2

σ2 B̃(y,C)− 2µ

σ2 +
2

1+ e−y

)
. (4.4)

Secondly, because of g′
∆
(y0 −∆) = 0, a first order Taylor expansion of the first summand in

(4.4) at y0−∆ shows that

− 2
σ2 B̃(y,g∆ (y))+

2
σ2 B̃(y,C)

=
1
2

(
g′′∆ (ξ∆ )∂2B̃(y,g∆ (ξ∆ ))+(g′∆ (ξ∆ ))2

∂22B̃(y,g∆ (ξ∆ ))
)

(y− y0 +∆)2,
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for ξ∆ ∈ [y0 −∆ ,y], i.e. this term is also of order o(y− y0 + ∆) for (∆ ,y) → (0,y0). Thirdly, a
first order Taylor expansion of the second summand in (4.4) at y0 shows that the term can be
written as a(y− y0) + o(y− y0), where a := − 2

σ2 ∂1B̃(y0,C)) + 2e−y0

(1+e−y0 )2 > 0. Combining the
three points above it follows that

g′′∆ (y) = a(y− y0)+o(y− y0)+o(y− y0 +∆), for (∆ ,y)→ (0,y0).

Thus, for any constant K > 0 we can choose ∆ small enough that g′′
∆
(y) > a

2 ∆ on y ∈ [y0 +
∆ ,y0 +(K +1)∆ ]. Hence,

β ∆ −β
∆

< 2∆ +
4∆ supy∈[y0−∆ ,y0+∆ ] |g′′∆ (y)|

a∆
→ 0, for ∆ → 0.

Since (y,∆) 7→ g′
∆

is bounded it follows that g∆ (β ∆ )→C for ∆ → 0.
Step 2. We prove that g∆ (β ∆ ) →−∞ for ∆ → ∞. Remember that the definition of y0 and

the strict monotonicity of H imply H(y?) < 0 for any y? < y0. Let

M̃(y?) := max

{
1
3 H(y?)

6
σ2

α1λ

1+λ
+3+ 2δ

σ2 (1+ ey?)
,

−

√√√√ − 1
3 H(y?)

6
σ2

α1λ

1+λ
+1+ 4δ

σ2 (1+ ey?)
,− 3

√√√√ − 1
3 H(y?)

2
σ2

α1λ

1+λ
+ 2δ

σ2 (1+ ey?)

< 0.

For y ≤ y? and 0 ≥ g′
∆
(y) > M̃(y?) we have that g′′

∆
(y) < H(y?) < 0. By g′′

∆
(β

∆
) < 0, this

yields g′
∆
(y) < 0 for y ≤ y? and also g′

∆
(y) ≤ M̃(y?) for y ∈ [y0 −∆ + M̃(y?)

H(y?) ,y
?]. Therefore,

g∆ (β ∆ )→−∞ as ∆ → ∞.
Step 3. We prove that ∆ 7→ g∆ (β ∆ ) is continuous. By Theorem 2.1 in [6] and because for

every choice of ∆ ∈ (0,∞) the maximal interval of existence of g∆ is R, it follows that the
general solution (g,g′)(∆ ,y) :=

(
g∆ (y),g′

∆
(y)
)

: (0,∞)×R→R2 is continuous. Thus,
(
g∆ ,g′

∆

)
converges to

(
g∆0 ,g

′
∆0

)
uniformly on compacts as ∆ → ∆0.

Therefore, it is sufficient to show that ∆ → ∆0 implies β ∆ → β ∆0
. Fix ∆0 ∈ (0,∞). To verify

that liminf∆→∆0 β ∆ ≥ β ∆0
note that by Step 2 we have g′

∆
(y) < 0 for all ∆ > 0, y < y0 (as y? was

chosen arbitrary). In addition, given an ε > 0, g′
∆0

is strictly separated from [0,∞) on [y0,β ∆0
−

ε]. By the uniform convergence on compacts of g′
∆

to g′
∆0

, it follows that liminf∆→∆0 β ∆ ≥ β ∆0
.

By the continuity of g′′
∆0

we have g′′
∆0

(β ∆0
)≥ 0. In the case that g′′

∆0
(β ∆0

) > 0, a first order

Taylor expansion of g′
∆0

at β ∆0
shows that g′

∆0
(y) > 0 immediately after β ∆0

. Otherwise, i.e. if

g′′
∆0

(β ∆0
) = 0, the same fact follows from a second order Taylor expansion of g′

∆0
at β ∆0

, because

for g′
∆0

(β ∆0
) = g′′

∆0
(β ∆0

) = 0 we have g′′′
∆0

(β ∆0
) =− 2

σ2 ∂1B̃(β ∆0
,g∆0(β ∆0

))+
2exp(−β ∆0

)

(1+exp(−β ∆0
))2 >

0. Here the definition of B̃ requires us to assume g∆0(β ∆0
) 6= 0 to ensure the differentiability of

g′′
∆0

at β ∆0
, but this is not problematic, because otherwise (g∆0 ,β ∆0

,β ∆0
) would already be a

solution to the free boundary problem. Thus, there exists an ε0 > 0 such that g′
∆0

(β ∆0
+ ε) > 0

for any ε ∈ (0,ε0). This implies that limsup∆→∆0
β ∆ ≤ β ∆0

and altogether continuity.

5 Proof of the existence of a shadow price

Throughout the section we assume that the assumptions of Proposition 2 are satisfied so that the
free boundary problem specified in (3.10) and (3.11) has a solution (g,β ,β ) with g : [β ,β ] →
[0,C] strictly decreasing.
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Lemma 2 Let β0 ∈ [β ,β ] and

a(y) :=
(

µ − σ2

2
+δ (1+ ey)+

σ2g′′(y)
2(1−g′(y))2

)
1

1−g′(y)
, b(y) :=

σ

1−g′(y)

for y ∈ [β ,β ]. Then there exists a unique solution (β ,Ψ) to the following stochastic variational
inequality

(i) β is càdlàg and takes values in [β ,β ]. Ψ is continuous and of finite variation with starting
value Ψ0 = 0,

(ii)

βt = β0 +
∫ t

0
a(βs−)ds+

∫ t

0
b(βs−)dWs (5.1)

+∑
s≤t

(
(β −βs−)∆N1

s +(β −βs−)∆N2
s

)
+Ψt ,

(iii) for every progressively measurable process z which has càdlàg paths and takes values in
[β ,β ], we have ∫ t

0
(βs− zs)dΨs ≤ 0, ∀t ≤ 0. (5.2)

Proof We want to apply Theorem 1 in [14], which guarantees existence and uniqueness of
reflected diffusion processes with jumps in convex domains under certain conditions. Thus we
only need to verify that the conditions of the theorem are fulfilled in our setting.

Firstly, (β ,β ) is trivially bounded and convex. Secondly, the jump term in (5.1) ensures that
all jumps from [β ,β ] are inside [β ,β ]. All that is left is to check a Lipschitz-type condition.
Note that if g is a solution to ODE (3.10) on [β ,β ] the functions g, g′ and g′′ are continuous and
therefore bounded on the compact set [β ,β ]. Furthermore, as we know that g′ ≤ 0 on [β ,β ], the
derivative b′ of b is bounded on [β ,β ]. In addition, this also implies that B defined in (3.9) is
bounded on [β ,β ] as well, and the same is true for ∂1B and ∂2B. Thus also g′′′ is bounded on
[β ,β ] (using that the solution g of the free boundary problem (3.10)/(3.11) can be extended to
some neighborhood of β and β , resp.) This implies that even the derivative a′ of a is bounded
on [β ,β ].

Remark 2 Since Ψ is of finite variation there exist two non-decreasing processes Ψ and Ψ such
that Ψ = Ψ −Ψ and Var(Ψ) = Ψ +Ψ . Furthermore, (5.2) implies that Ψ increases only on
{β = β} (resp. on {β− = β})and Ψ increases only on {β = β} (resp. on {β− = β}).

Lemma 3 For β0 ∈ [β ,β ] let a(·),b(·) and the process β be from Lemma 2. Then C := g(β ) is
a [0,C]-valued semimartingale with

dCt =
(

g′(βt−)a(βt−)+
1
2

g′′(βt−)b(βt−)2
)

dt +g′(βt−)b(βt−)dWt

− g(βt−)dN1
t +(C−g(βt−))dN2

t

and S̃ := SeC satisfies

dS̃t = S̃t−

(
g′(βt−)a(βt−)+

1
2

g′′(βt−)b(βt−)2 +
1
2
(
g′(βt−)b(βt−)

)2 + µ +σg′(βt−)b(βt−)
)

dt

+ S̃t−
(
g′(βt−)b(βt−)+σ

)
dWt

+ S̃t−
(
exp{−g(βt−)∆N1

t +(C−g(βt−))∆N2
t }−1

)
.
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Proof Since g′(β ) = g′(β ) = 0 the result follows by Itô’s lemma, the integration by parts for-
mula and Remark 2.

Lemma 4 S̃ is a special semimartingale. The differential semimartingale characteristics of S̃
w.r.t I and “truncation function” h(x) = x are

b̃t = S̃t−

(
−B(βt−,g(βt−))+

1
1+ e−βt−

(
σ

1−g′(βt−)

)2
)

+
∫

x F̃t(dx)

c̃t = S̃2
t−

(
σ

1−g′(βt−)

)2

F̃t(ω,dx) = α1δx1(ω,t)(dx)+α2δx2(ω,t)(dx),

with

x1(ω, t) := S̃t−(ω)(e−Ct−(ω)−1), x2(ω, t) := S̃t−(ω)(eC−Ct−(ω)−1).

Proof With the definition of a(·) and b(·) in Lemma 2 and ODE (3.10) we get

g′(βt−)a(βt−) = − σ2

2
g′(βt−)

(1−g′(βt−))2 +g′(βt−)δ (1+ eβt−)−g′(βt−)B(βt−,g(βt−))

+
σ2

1+ e−βt−

g′(βt−)
(1−g′(βt−))2 ,

1
2

g′′(βt−)b(βt−)2 = − B(βt−,g(βt−))(1−g′(βt−))−µ +
σ2

1+ e−βt−

1
1−g′(βt−)

− σ2

2
g′(βt−)

1−g′(βt−)
−g′(βt−)δ (1+ eβt−),

1
2
(
g′(βt−)b(βt−)

)2 =
σ2

2

(
g′(βt−)

1−g′(βt−)

)2

,

σg′(βt−)b(βt−)) = σ
2 g′(βt−)

1−g′(βt−)
.

The result now follows from Lemma 3.

Proposition 3 Given initial endowment (η0,η1), let β0 be defined by

β0 :=

β if η1s
η0+η1s < 1

1+e−β
, (s := S0)

β if η1s
η0+η1s > 1

1+e−β
,

or else, let β0 be the solution of

η1eg(y)s
η0 +η1eg(y)s

=
1

1+ e−y .

Given the reflected jump-diffusion β starting in β0 as is Lemma 2 and the resulting S̃ of Lemma
3 let

Ṽt := (η0 +η
1S̃0)E

(∫ ·

0

1

(1+ e−βs−)S̃s−
dS̃s−

∫ ·

0
δds

)
t

, t ≥ 0,

ct := δṼt , t ≥ 0,

ϕ
1
t :=

1

(1+ e−βt−)S̃t−
Ṽt−, ϕ

0
t := Ṽt−−ϕ

1
t S̃t−, t > 0,

and let ϕ0
0 := η0 and ϕ1

0 := η1. Then Ṽt = η0 +η1S̃0 +
∫ t

0 ϕ1
s dS̃s−

∫ t
0 csds and (ϕ0,ϕ1,c) is an

optimal strategy for initial endowment (η0,η1) in the frictionless market with price process S̃.
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Proof Given the semimartingale characteristics in Lemma 4 we need to check that Ht :=
1

(1+e−βt− )S̃t−
solves the optimality equation of Goll and Kallsen ([4], Theorem 3.1), i.e. that

(P⊗ I)-a.e.

b̃t − c̃tHt +
∫ ( x

1+Htx
− x
)

F̃t(dx) = 0

holds. Of course the choice of H0 is irrelevant for optimality.
Moreover, note that for t > 0 the term −S̃t−B(βt−,g(βt−))+

∫
xF̃t(dx) in b̃t and the integral

term in the optimality equation cancel each other. The key to seeing this is

∫ ( x
1+Htx

)
F̃t(dx) =

∫ ( x
1+Htx

)
α1δx1(dx)+

∫ ( x
1+Htx

)
α2δx2(dx)

=
α1S̃t−

(
e−g(βt−)−1

)
1+

S̃t−(e−g(βt−)−1)
(1+e−βt−)S̃t−

+
α2S̃t−

(
eC−g(βt−)−1

)
1+

S̃t−
(

eC−g(βt−)−1
)

(1+e−βt−)S̃t−

= α1S̃t−
(

e−g(βt−)−1
) 1

1+ (e−g(βt−)−1)
1+e−βt−



+ α2S̃t−
(

eC−g(βt−)−1
) 1

1+

(
eC−g(βt−)−1

)
1+e−βt−


= S̃t−B(βt−,g(βt−)),

where the second equality follows from the definition of x1 and x2 (in Lemma 4) and the defini-
tion of H. Thus the specified strategy is optimal in the frictionless market.

Lemma 5 There exist two deterministic functions F1 : [β ,β ]→ [0,∞) and F2 : [β ,β ]→ (−∞,0]
such that for t > 0

ϕ
1
t −ϕ

1
0 =

∫ t

0

ϕ1
s e−βs−

1+ e−βs−
dΨs + ∑

0<s<t
ϕ

1
s (eF1(β−)−1)∆N1

s + ∑
0<s<t

ϕ
1
s (eF2(β−)−1)∆N2

s . (5.3)

Remark 3 As we will see in the proof of Theorem 1, Lemma 5 can be interpreted in the follow-
ing way. The first summand on the right-hand side of (5.3) tells us that market orders are only
used when the proportion invested in the risky asset is at the boundary. The last two summands
imply that the sizes of the limit orders divided by the current holdings in the stock are deter-
ministic functions of the current fraction of wealth invested in the stock (in terms of the shadow
price).

Proof By Proposition 3 ϕ1 is càglàd. Therefore, it is sufficient to show that (5.3) holds for the
right-continuous versions of the processes on both sides of the equation.

After taking the logarithm of ϕ1
+ we can write its dynamics as

d logϕ
1
t+ = d logṼt −d log S̃t −d log(1+ e−βt ).
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By Itô’s formula and Proposition 3 we have that

d logṼt =
1

(1+ e−βt−)S̃t−
dS̃t −δdt− 1

2

(
1

(1+ e−βt−)S̃t−

)2

d[S̃, S̃]ct

+ log

(
1+

1

(1+ e−βt−)S̃t−
∆ S̃t

)
− 1

(1+ e−βt−)S̃t−
∆ S̃t

=
[

1
1+ e−βt−

(
g′(βt−)a(βt−)+

1
2

g′′(βt−)b(βt−)2 +
1
2
(g′(βt−)b(βt−))2

+ µ +σg′(βt−)b(βt−)
)
−δ − 1

2
(g′(βt−)b(βt−)+σ)2

(1+ e−βt−)2

]
dt

+
g′(βt−)b(βt−)+σ

1+ e−βt−
dWt

+ log
(

1+
exp{−g(βt−)∆N1

t +(C−g(βt−))∆N2
t }−1

1+ e−βt−

)
. (5.4)

Because S̃ is defined as Sexp(C) we get

−d log S̃t =
(

σ2

2
−µ

)
dt−σdWt −dCt

=
(

σ2

2
−µ −g′(βt−)a(βt−)− 1

2
g′′(βt−)b(βt−)2

)
dt

−
(
g′(βt−)b(βt−)+σ

)
dWt

+ g(βt−)∆N1
t −
(
C−g(βt−)

)
∆N2

t .

Using the properties of β from Lemma 2, another application of Itô’s formula yields

−d log(1+ e−βt ) =
e−βt−

1+ e−βt−
dβt −

1
2

e−βt−

(1+ e−βt−)2 d[β ,β ]Ct

−
(

log(1+ e−βt )− log(1+ e−βt−)
)
− e−βt−

1+ e−βt−
∆βt

=
e−βt−

1+ e−βt−

(
a(βt−)− 1

2
e−βt−

(1+ e−βt−)2 b(βt−)2

)
dt

+
e−βt−

1+ e−βt−
b(βt−)dWt

+
e−βt−

1+ e−βt−

(
dΨ t −dΨ t

)
−
(

log(1+ e−β )− log(1+ e−βt−)
)

∆N1
t

−
(

log(1+ e−β )− log(1+ e−βt−)
)

∆N2
t .

Plugging in ODE (3.10) for g′′ and summing up we see that all dt-terms and all dW -terms
of the process logϕ1

+ cancel out. Define

F1(x) := log
(

1+
exp{−g(x)}−1

1+ e−x

)
+g(x)− log

(
1+ e−β

1+ e−x

)
,

F2(x) := log
(

1+
exp{(C−g(x))}−1

1+ e−x

)
−
(
C−g(x)

)
− log

(
1+ e−β

1+ e−x

)
. (5.5)
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Itô’s formula applied to the semimartingale log(ϕ1
+) and the C2-function x 7→ exp(x) shows that

(5.3) holds for the right-continuous versions. To finish the proof note that F1(x) ≥ 0 for all
x ∈ [β ,β ] follows from g≥ 0. F2(x)≤ 0 for all x ∈ [β ,β ] follows analogously, now making use
of C−g ≥ 0.

Theorem 1 S̃ is a shadow price process. An optimal strategy S in the limit order market is
given by

MB
t = 1{t>0}

 η0 +η1s(1+λ )(
1+ exp(−β )

)
s(1+λ )

−η
1

+

+
∫ t

0
1{β−=β}

ϕ1e−β

1+ e−β
dΨ ,

MS
t = 1{t>0}

 η0 +η1s(
1+ exp(−β )

)
s
−η

1

−

−
∫ t

0
1{β−=β}

ϕ1e−β

1+ e−β
dΨ ,

LB
t = ϕ

1
t (eF1(βt−)−1), LS

t =−ϕ
1
t (eF2(βt−)−1),

and ct = δṼt , where F1, F2 are defined in (5.5) and s = S0. The strategy yields finite expected
utility.

Remark 4 Theorem 1 can be interpreted as follows. MB is the minimal amount of risky assets
the investor has to buy by market orders to prevent that the fraction of wealth invested in the
risky asset leaves the acceptable interval at the lower boundary (the first summand of MB put
the fraction on the lower boundary if it starts below the interval at time zero). Analogously,
MS is the minimal amount of risky assets the investor has to sell by market orders to prevent
that the fraction of wealth invested in the risky asset leaves the interval at the upper boundary.
Mathematically these minimal trades correspond to the local time of the two dimensional wealth
process at the boundaries of the cone illustrated in Fig. 4.

The choice of LB (resp. LS) ensures that after a successful execution of the limit buy order
(resp. the limit sell order) the fraction of wealth invested in the risky asset jumps on the upper
boundary (resp. the lower boundary) of the interval. As LB > 0 and LS > 0 apart from the time
at which the wealth process is at the boundary (which has Lebesgue measure zero) the investor
is always willing to trade both with limit buy and with limit sell orders. However, the order sizes
depend on how far away the wealth process is from the boundaries and they have to be adjusted
continuously with the movements of the process (βt)t≥0.

Remark 5 An important detail in model (2.1) is that a limit order has to be in the book already
at ∆Ni = 1 to be executed against the arising market order. This market mechanism is reflected
in the condition that the limit order sizes LB and LS have to be predictable. By contrast, in the
frictionless market with price process S̃ the buying decision at a time τ at which S̃τ = Sτ , may
depend on all new information available at time τ (Note that by the standard convention in
frictionless market models a simple purchase at time τ only affects the simple trading strategy
on (τ,∞), i.e. the value of the strategy at τ itself is not affected. Thus the latter is no contradiction
to the fact that the strategy in the frictionless market with price process S̃ is predictable as well.
See also the discussion after Definition 1). However, as the jumps of S̃ always land on one of
the two continuous processes S or S, and limit orders are submitted contingent that they can be
executed, it turns out that this subtle distinction does not matter.

Proof of Theorem 1 By construction of S̃ (2.5) is clearly satisfied. All we have to do is to
construct an admissible strategy S = (MB,MS,LB,LS,c) in the limit order market such that
the associated portfolio process of S as defined in (2.1) is equal to the optimal strategy in the
frictionless market (ϕ0,ϕ1,c) from Proposition 3.

By Lemma 5 ϕ1 is of finite variation, hence we can write it as the difference of two in-
creasing càglàd processes Z1 and Z2, i.e. ϕ1 = η1 + Z1 −Z2. Since the sum ∑s<t ∆+Zi

s clearly
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converges, we can define the continuous component (Zi)c
t := Zi

t −∑s<t ∆+Zi
s of Zi for i∈ {1,2}.

Note that (Zi)c indeed has continuous paths since Zi has càglàd paths.
Now let MB

t := ∆+Z1
01{t>0} +(Z1)c

t and MS
t := ∆+Z2

01{t>0} +(Z2)c
t . Clearly, MB and MS

are non-decreasing predictable processes. Again by Lemma 5 and by Remark 2 we have∫ ·

0
1{S̃ 6=S}dMB =

∫ ·

0
1{S̃ 6=S}dMS = 0. (5.6)

Thus, we have
∫ ·

0 SdMB =
∫ ·

0 S̃dMB and
∫ ·

0 SdMS =
∫ ·

0 S̃dMS. Furthermore, let LB
t :=

ϕ1
t (eF1(βt−)− 1) and LS

t := −ϕ1
t (eF2(βt−)− 1). LB and LS are predictable and by Lemma 5 we

have ∆+Z1
t = LB

t ∆N1
t and ∆+Z2

t = LS
t ∆N2

t for t > 0. Therefore, this construction of S satisfies

ϕ
1
t = η

1 +MB
t −MS

t +
∫ t−

0
LBdN1−

∫ t−

0
LSdN2, ∀t ≥ 0.

Define

ψ
0
t := η

0−
∫ t

0
csds−

∫ t

0
SsdMB

s +
∫ t

0
SsdMS

s

−
∫ t−

0
LB

s SsdN1
s +

∫ t−

0
LS

s SsdN2
s ,

where c is from Proposition 3. By (5.6), S = S̃ on ∆N1 = 1 resp. S = S̃ on ∆N2 = 1 and Lemma 1,
we have that (ψ0,ϕ1,c) is self-financing in the frictionless market. Thus, ψ0 = ϕ0 implying that
(ϕ0,ϕ1) is indeed the associated portfolio process of S. From their definitions in Proposition 3
it can be seen that ϕ1 > 0 and ϕ0 > 0. Thus (ϕ0,ϕ1,c) is clearly admissible.

The last term in (5.4) consists of dt-, dWt -, dN1
t -, and dN2

t -integrals with bounded inte-
grands. Together with the Poisson-distribution of N1

t and N2
t , the fact that ct is proportional to

Ṽt , and δ > 0, this yields that the discounted logarithmic utility from consumption is integrable.

In Theorem 1 the optimal strategy in the limit order market is expressed in terms of the shadow
price process resp. the wealth process based on the shadow price. In the following proposition
we want to the characterize MB,MS,LB, and LS by the fraction of wealth invested in the risky
asset based on the best-bid price S. This verifies our guess (3.2)-(3.4). The optimal consumption
rate is still expressed in terms of the wealth process based on the shadow price. We consider a
reflected SDE – similar to that in Lemma 2.

Proposition 4 Let β ′ := log
(
(ϕ1

+S)/ϕ0
+
)
, where (ϕ0,ϕ1) is the optimal strategy from Proposi-

tion 3. Define β ′
min := β − log(1+λ ) and β ′

max := β . Assume that β ′
0 ∈ [β ′

min,β
′
max]. Let

c(y) := µ − σ2

2
+δ (1+ exp(h(y))), y ∈ [β ′

min,β
′
max], (5.7)

where h : [β ′
min,β

′
max] → [β ,β ] is the inverse of Id− g (the inverse exists as g′ ≤ 0). Let Ψ be

the local time from Lemma 2. Then, given β ′
0, (β ′,Ψ) is the unique solution to the following

stochastic variational inequality

(i) β ′ is càdlàg and takes values in [β ′
min,β

′
max]. Ψ is continuous and of finite variation with

starting value Ψ0 = 0,
(ii)

β
′
t = β

′
0 +

∫ t

0
c(β ′

s−)ds+σWt + ∑
s≤t

(
(β ′

max−β
′
s−)∆N1

s +(β ′
min−β

′
s−)∆N2

s
)
+Ψt ,

(iii) for every progressively measurable process z which has càdlàg paths and takes values in
[β ′

min,β
′
max], we have ∫ t

0

(
β
′
s − zs

)
dΨs ≤ 0, ∀t ≥ 0.
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Remark 6 The function h in (5.7) converts the process β ′ which is based on the valuation of
portfolio positions by (1,S) into the process β which is based on (1, S̃). This conversion is
needed as the optimal consumption rate is proportional to the wealth based on the shadow price.

Proof of Proposition 4 At first note that by construction of the shadow price process{
β− = β

}
=
{

β
′
− = β

′
min
}

and
{

β− = β

}
=
{

β
′
− = β

′
max
}

.

Thus, (P⊗ I)
(
β ′
− ∈ {β ′

min,β
′
max}

)
= 0 (i.e. dt-terms and dWt -terms acting solely on this set

vanish). In addition, (P⊗Ni)
(
β ′
− ∈ {β ′

min,β
′
max}

)
= (P⊗ I)

(
β ′
− ∈ {β ′

min,β
′
max}

)
= 0 for i =

1,2. By β ′ = log(ϕ1)+ log(S)− log(ϕ0), this implies that∫ t

0
1{β ′

−∈{β ′
min,β ′

max}} dβ
′ =

∫ t

0
1{β ′

−∈{β ′
min,β ′

max}} dβ =
∫ t

0
1{β ′

−∈{β ′
min,β ′

max}} dΨ ,

where the latter equation follows by Lemma 2. As we have β = β , S = S̃ on ∆N1 = 1 and β = β ,

S = S̃
1+λ

on ∆N2 = 1, it follows from the definition of β ′, β ′
min, and β ′

max that

β
′ = β

′
max on ∆N1 = 1 and β

′ = β
′
min on ∆N2 = 1. (5.8)

By (5.8) and Itô’s formula we obtain∫ t

0
1{β ′

min<β ′
−<β ′

max} dβ
′ =

∫ t

0
1{β ′

min<β ′
−<β ′

max}a(β ′
−)dI +σ

∫ t

0
1{β ′

min<β ′
−<β ′

max} dW

+∑
s≤t

(
(β ′

max−β
′
s−)∆N1

s +(β ′
min−β

′
s−)∆N2

s
)
.

As β ′ stays by construction in [β ′
min,β

′
max] we have that (β ′,Ψ) is the solution of (i)-(iii).

6 An illustration of the optimal strategy

Let us fix parameters for the model such that the assumptions of Proposition 2 are satisfied:

µ = 0.05, σ = 0.4, λ = 0.01, α1 = 1, α2 = 1, δ = 0.1.

With these parameters specified, the free boundary problem consisting of (4.2) and (3.11) can be
solved numerically. The approach used is based on the idea behind the proof of Proposition 2. It
can be roughly described as follows. First a value x for β is assumed, then a computer program
for numerical calculations is used to solve the initial value problem consisting of (4.2) and the
initial conditions g(x) = log(1 + λ ) and g′(x) = 0. Then the smallest y > x with g′(y) = 0 is
determined. Now if g(y) < 0 we choose a larger x in the next iteration, if g(y) > 0 we choose a
smaller x, and if g(x) = 0 the algorithm stops and we have found our boundary {β ,β}= {x,y}.

When the boundary {β ,β} is now known, we can calculate the boundary for the fraction of
wealth invested in the risky asset (here measured in the shadow price) by

πmin =
exp(β )

1+ exp(β )
, πmax =

exp(β )
1+ exp(β )

.

For our example this yields πmin = 0.206 and πmax = 0.412. In addition, in Table 1 we have
calculated πmin and πmax for various values of α to illustrate the effects of a change in the
arrival rate of exogenous market orders. We see that for small α πmin and πmax are close to the
boundaries in the proportional transaction costs model.
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Fig. 1 The function C = g(β ) and its derivative g′(β )

α πmin πmax
0 0.231 0.368

0.01 0.231 0.368
0.1 0.229 0.371
0.5 0.221 0.388
1 0.206 0.412
2 0.163 0.467
3 0.112 0.525
4 0.058 0.583

Table 1 Optimal boundaries for different α

The numerical solution to the free boundary problem can furthermore be used to simulate
paths of various quantities. Fig. 2, Fig. 3, and Fig. 4 are the result of this procedure for the
parameters given above and illustrate the structure of the solution.
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Fig. 2 Optimal fraction π̃ invested in stock (with local time at the boundaries)

Fig. 3 Shadow factor exp(C) (without local time)

Fig. 4 Wealth in bond ϕ0, liquidation wealth in stock ϕ1S
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7 Conclusion

We introduced a simple, analytically tractable model for continuous-time trading in limit order
markets. Although our mathematical results heavily rely on the quite idealized assumptions of
the model, especially on the assumption that the considered investor is “small”, i.e. his trades do
not affect the dynamics of the order book, we think that in more complex situations the structure
of the optimal strategy is still economically meaningful.

The investor tries to profit from the bid-ask spread by permanently holding both limit buy
and limit sell orders in the book. After a successful execution of the limit buy order at the lower
bid-price he holds a large stock position in his portfolio which is quite speculative. But, ideally
he is able to liquidate the position quite shortly afterwards by the execution of the limit sell
order at the higher ask-price. To limit the inventory risk he takes by this strategy the fraction of
wealth he invests in the risky stock is always kept in a bounded interval (using market orders
whenever the fraction is at the boundary of the interval). Thus the model carries the flavor of a
market model with negative transaction costs, but which is arbitrage-free as favorable trades can
only be realized at Poisson times.

Consider for example the case that the investor’s limit orders are not small compared to
the incoming market orders from other traders. Then, his wealth process does not always jump
on the boundary of the cone (cf. Fig. 4), as incoming market orders may not be large enough to
cover the full order size of his limit orders. But, still it seems to be worthwhile for the investor to
place, say, limit buy orders as long as the fraction of wealth invested in stocks does not surpass a
certain threshold. Under this scenario the threshold might be approached by several successive
partial executions of these limit buy orders.

Furthermore, if the investor’s market orders were not small enough to be filled by the orders
placed at the best-bid resp. the best-ask price, such a large market order will eat into the book
and is therefore executed against various limit orders with different limit prices at a single point
in time. Hence, a shadow price can obviously not exist.

In this spirit we see the paper also as an impetus to solve more complicated portfolio opti-
mization problems in continuous-time limit order markets (most probably in less explicit form).
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