

The fundamental theorem of asset pricing with and without transaction costs

(preprint available at arXiv or on my website)

Christoph Kühn Institute of Mathematics, Goethe University Frankfurt http://www.math.uni-frankfurt.de/~ismi/kuehn/privat.shtml

Risk & Stochastics and Financial Mathematics Seminar London School of Economics and Political Science February 22nd, 2024

Literature review: FTAP under proportional transaction costs

 Kabanov, Stricker (2001), Finite discrete time and |Ω| < ∞: No arbitrage in a general "currency model" (Π^{ij})_{1≤i,j≤d} (i.e., Π^{ij}_t(ω) is price of asset j when you pay with asset i)
 ⇔ ∃ consistent price system (CPS), i.e., a P-martingale (Z¹,...,Z^d) > 0 with 1/Π^{ji}_t ≤ Z^j_t/Zⁱ_t ≤ Π^{ij}_t.

Literature review: FTAP under proportional transaction costs

- Kabanov, Stricker (2001), Finite discrete time and |Ω| < ∞: No arbitrage in a general "currency model" (Π^{ij})_{1≤i,j≤d} (i.e., Π^{ij}_t(ω) is price of asset j when you pay with asset i)
 ⇔ ∃ consistent price system (CPS), i.e., a P-martingale (Z¹,...,Z^d) > 0 with 1/Π^{jj}_t ≤ Z^j_t/Zⁱ_t ≤ Π^{ij}_t.
- Grigoriev (2005), "⇔" holds for general Ω if there is only one risky asset (besides a "bank account", i.e., d = 2)
- Counterexample by Schachermayer (2004) for " \Rightarrow " if $|\Omega| = \infty$ (with more than two assets).

Literature review: FTAP under proportional transaction costs

- Kabanov, Stricker (2001), Finite discrete time and |Ω| < ∞: No arbitrage in a general "currency model" (Π^{ij})_{1≤i,j≤d} (i.e., Π^{ij}_t(ω) is price of asset j when you pay with asset i)
 ⇔ ∃ consistent price system (CPS), i.e., a P-martingale (Z¹,...,Z^d) > 0 with 1/Π^{ji}_t ≤ Z^j_t/Zⁱ_t ≤ Π^{ij}_t.
- Grigoriev (2005), "⇔" holds for general Ω if there is only one risky asset (besides a "bank account", i.e., d = 2)
- Counterexample by Schachermayer (2004) for " \Rightarrow " if $|\Omega| = \infty$ (with more than two assets).
- Schachermayer (2004),

Robust no-arbitrage in a discrete time model $(\Pi^{ij})_{1 \le i,j \le d}$ $\Leftrightarrow \exists$ strictly consistent price system (SCPS), i.e., a *P*-martingale $(Z^1, \ldots, Z^d) > 0$ satisfying $1/\Pi^{ji}_t \le Z^j_t/Z^i_t \le \Pi^{ij}_t$ with "<" if $1/\Pi^{ji}_t < \Pi^{ij}_t$.

Example

Let T = 1, $\Omega = \{1, 2, 3, ...\}$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_1 = 2^{\Omega}$, i.e., $\omega \in \Omega$ is revealed at time 1. Non-random bid-ask prices of asset are given by

Price = 2		•
Price = 1 Price = 1/2	•	•
	<i>t</i> = 0	t = 1

Example

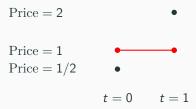
Let T = 1, $\Omega = \{1, 2, 3, ...\}$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_1 = 2^{\Omega}$, i.e., $\omega \in \Omega$ is revealed at time 1. Non-random bid-ask prices of asset are given by

Price = 2		•
Price = 1 Price = 1/2	•	•
	t = 0	t = 1

- Aim: investor wants to have ω assets and $-\omega$ monetary units.
- Problem: at price 1 asset can only be purchased in t = 0, but ω is not yet known.

Example

Let T = 1, $\Omega = \{1, 2, 3, ...\}$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_1 = 2^{\Omega}$, i.e., $\omega \in \Omega$ is revealed at time 1. Non-random bid-ask prices of asset are given by

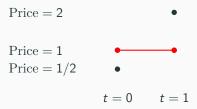


- Aim: investor wants to have ω assets and $-\omega$ monetary units.
- Problem: at price 1 asset can only be purchased in t = 0, but ω is not yet known.
- Solution: Buy in advance n ∈ N assets in 0, sell (n − ω)⁺ at the same price in 1 → ω ∧ n assets, −(ω ∧ n) monetary units.

2

Example

Let T = 1, $\Omega = \{1, 2, 3, ...\}$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_1 = 2^{\Omega}$, i.e., $\omega \in \Omega$ is revealed at time 1. Non-random bid-ask prices of asset are given by



- Aim: investor wants to have ω assets and $-\omega$ monetary units.
- Solution: Buy in advance n ∈ N assets in 0, sell (n − ω)⁺ at the same price in 1 → ω ∧ n assets, −(ω ∧ n) monetary units.
- Aim can only be achieved approximately for n → ∞. Set of attainable portfolio positions is not closed in probability.

3

Way out: prospective strict no-arbitrage NA^{ps} (discrete time)

- Let A^t_s be the set of portfolio positions that are attainable from zero endowment by trading between s and t
- Prospective strict no-arbitrage NA^{ps}:

$$\mathcal{A}_0^t \cap (-\mathcal{A}_t^T) \subseteq \mathcal{A}_t^T \quad \forall t = 0, 1, \dots, T.$$

Way out: prospective strict no-arbitrage NA^{ps} (discrete time)

- Let A^t_s be the set of portfolio positions that are attainable from zero endowment by trading between s and t
- Prospective strict no-arbitrage NA^{ps}:

$$\mathcal{A}_0^t \cap (-\mathcal{A}_t^T) \subseteq \mathcal{A}_t^T \quad \forall t = 0, 1, \dots, T.$$

• The difference to strict no-arbitrage NA^s of Kabanov, Rásonyi, Stricker (2002), which says $\mathcal{A}_0^t \cap (-\mathcal{A}_t^t) \subseteq \mathcal{A}_t^t$, is: we do not distinguish between a trade at time t and a trade from which we know for sure at time t that it can be realized in the future.

Way out: prospective strict no-arbitrage NA^{ps} (discrete time)

- Let A^t_s be the set of portfolio positions that are attainable from zero endowment by trading between s and t
- Prospective strict no-arbitrage NA^{ps}:

$$\mathcal{A}_0^t \cap (-\mathcal{A}_t^T) \subseteq \mathcal{A}_t^T \quad \forall t = 0, 1, \dots, T.$$

- The difference to **strict no-arbitrage** NA^s of Kabanov, Rásonyi, Stricker (2002), which says $\mathcal{A}_0^t \cap (-\mathcal{A}_t^t) \subseteq \mathcal{A}_t^t$, is: we do not distinguish between a trade at time t and a trade from which we know for sure at time t that it can be realized in the future.
- K. and Molitor (2019): NA^{ps} ⇒ A₀^T is closed in probability.
 (⇒ ∃ consistent price system)
- Aim of the present talk: extend this to continuous time

Literature review: FTAP under proportional transaction costs in continuous time

- Guasoni/Lépinette/Rásonyi (2012)
 Robust no free lunch with vanishing risk (RNFLVR)
 ⇔ ∃ strictly consistent price system
- Guasoni, Rásonyi, and Schachermayer (2010): FTAP for a continuous mid-price process and deterministic transaction costs:

no-arbitrage for all transaction costs > 0

 \Leftrightarrow for all transaction costs > 0, \exists consistent price system

Extension of prospective strict no-arbitrage to continuous time

We consider a market that consists of a bank account and one risky asset with **bid price** \underline{S} and **ask price** \overline{S} .

Assumption

 $(\underline{S}_t)_{t\in[0,T]}$ and $(\overline{S}_t)_{t\in[0,T]}$ are adapted càdlàg processes (not necessarily semimartingales) with $0 \le \underline{S} \le \overline{S}$ and $\overline{S}_T > 0$.

We do not assume efficient friction, i.e., $\underline{S}_t(\omega) = \overline{S}_t(\omega)$ is possible.

We consider a market that consists of a bank account and one risky asset with **bid price** \underline{S} and **ask price** \overline{S} .

Assumption

 $(\underline{S}_t)_{t\in[0,T]}$ and $(\overline{S}_t)_{t\in[0,T]}$ are adapted càdlàg processes (not necessarily semimartingales) with $0 \le \underline{S} \le \overline{S}$ and $\overline{S}_T > 0$.

We do not assume efficient friction, i.e., $\underline{S}_t(\omega) = \overline{S}_t(\omega)$ is possible.

But, **continuous transitions** between zero and positive bid-ask spreads require an additional condition:

Assumption

[K. and Molitor (2022)] For every $(\omega, t) \in \Omega \times [0, T)$ with $\overline{S}_t(\omega) = \underline{S}_t(\omega)$ there exists $\varepsilon > 0$ s.t. $\overline{S}_s(\omega) = \underline{S}_s(\omega)$ for all $s \in (t, t + \varepsilon)$ or $\overline{S}_s(\omega) > \underline{S}_s(\omega)$ and $\overline{S}_{s-}(\omega) > \underline{S}_{s-}(\omega)$ for all $s \in (t, t + \varepsilon)$.

- For a FTAP, general strategies are needed.
- "No unbounded profit with bounded risk" in bid-ask model with simple strategies $\implies \exists$ semimartingale *S* with $\underline{S} \leq S \leq \overline{S}$

- For a FTAP, general strategies are needed.
- "No unbounded profit with bounded risk" in bid-ask model with simple strategies ⇒ ∃ semimartingale S with S ≤ S ≤ S
- Let φ^0 position in bank account, φ position in risky asset.

$$\varphi_t^0 := \int_0^t \varphi \, dS - \varphi_t S_t - Cost_t^S(\varphi) \text{ (self-financing condition for bounded predictable } \varphi)}$$

- For a FTAP, general strategies are needed.
- "No unbounded profit with bounded risk" in bid-ask model with simple strategies ⇒ ∃ semimartingale S with S ≤ S ≤ S
- Let φ^0 position in bank account, φ position in risky asset.

$$\varphi_t^0 := \int_0^t \varphi \, dS - \varphi_t S_t - Cost_t^S(\varphi) \text{ (self-financing condition for bounded predictable } \varphi)}$$

• φ^0 does not depend on the choice of the semimartingale S.

- For a FTAP, general strategies are needed.
- "No unbounded profit with bounded risk" in bid-ask model with simple strategies ⇒ ∃ semimartingale S with <u>S</u> ≤ S ≤ <u>S</u>
- Let φ^0 position in bank account, φ position in risky asset.

$$\varphi_t^0 := \int_0^t \varphi \, dS - \varphi_t S_t - Cost_t^S(\varphi) \text{ (self-financing condition for bounded predictable } \varphi)}$$

- φ^0 does not depend on the choice of the semimartingale S.
- A general strategy (φ⁰, φ) need not be of finite variation. But, for special case φ = φ[↑] - φ[↓]: Cost^S_t(φ) = ∫^t₀(S - S) dφ[↑] + ∫^t₀(S - S) dφ[↓] (integrals are increasing: more trades lead to higher "costs", gains ∫^t₀ φ dS of a bounded φ are finite, this allows to exhaust all costs in a monotone manner)

- For a FTAP, general strategies are needed.
- "No unbounded profit with bounded risk" in bid-ask model with simple strategies ⇒ ∃ semimartingale S with S ≤ S ≤ S
- Let φ^0 position in bank account, φ position in risky asset.

$$\varphi_t^0 := \int_0^t \varphi \, dS - \varphi_t S_t - Cost_t^S(\varphi) \text{ (self-financing condition for bounded predictable } \varphi)}$$

- φ^0 does not depend on the choice of the semimartingale S.
- A general strategy (φ⁰, φ) need not be of finite variation. But, for special case φ = φ[↑] - φ[↓]: Cost^S_t(φ) = ∫^t₀(S - S) dφ[↑] + ∫^t₀(S - S) dφ[↓] (integrals are increasing: more trades lead to higher "costs", gains ∫^t₀ φ dS of a bounded φ are finite, this allows to exhaust all costs in a monotone manner)
- Extension to unbounded φ .

In continuous time, strategies like "favorable" doubling strategies have to be ruled out.

Useful mathematical objects are actual bid/ask prices:

$$\underline{X}_t = \operatorname{essinf}_{\mathcal{F}_t} \sup_{u \in [t, T]} \underline{S}_u$$
$$\overline{X}_t = \operatorname{esssup}_{\mathcal{F}_t} \inf_{u \in [t, T]} \overline{S}_u$$

Of course, $\underline{X} \geq \underline{S}$ and $\overline{X} \leq \overline{S}$

Admissibility (numéraire-free)

- Let M ∈ ℝ₊. A self-financing strategy (φ⁰, φ) is called
 M-admissible iff φ⁰ + M + (φ + M)⁺X − (φ + M)⁻X ≥ 0.
- Stating the admissibility condition in terms of the actual bid/ask prices X and X is equivalent to freezing a portfolio position as in Guasoni, Lépinette, Rásonyi (2012), but our condition is "numéraire-free".

Admissibility (numéraire-free)

- Let M ∈ ℝ₊. A self-financing strategy (φ⁰, φ) is called
 M-admissible iff φ⁰ + M + (φ + M)⁺X − (φ + M)⁻X ≥ 0.
- Stating the admissibility condition in terms of the actual bid/ask prices X and X is equivalent to freezing a portfolio position as in Guasoni, Lépinette, Rásonyi (2012), but our condition is "numéraire-free".
- The market model satisfies the numéraire-free no-arbitrage condition (NA^{nf}) :⇔ ∀M ∈ ℝ₊, ∄ M-admissible strategy (φ⁰, φ) with φ⁰₀ = φ₀ = 0, P(φ⁰_T ≥ 0, φ_T ≥ 0) = 1, and P({φ⁰_T > 0} ∪ {φ_T > 0}) > 0.

Lemma (Guasoni/ Léppinette/ Rásonyi (2012) and K. (2023++) for the current setting) Assume that the model satisfies NA^{nf} . Let $M, M' \in \mathbb{R}_+$ and let (φ^0, φ) be a *M*-admissible strategy with $P(\varphi^0_T \ge -M', \varphi_T \ge -M') = 1$. Then, (φ^0, φ) is *M'*-admissible.

Analogue to the frictionless case, the lemma plays an important role in the proof of a FTAP: uniformly small losses at *T* are only possible if losses are uniformly small for all t ∈ [0, *T*].

Lemma (Guasoni/ Léppinette/ Rásonyi (2012) and K. (2023++) for the current setting) Assume that the model satisfies NA^{nf} . Let $M, M' \in \mathbb{R}_+$ and let (φ^0, φ) be a *M*-admissible strategy with $P(\varphi^0_T \ge -M', \varphi_T \ge -M') = 1$. Then, (φ^0, φ) is *M'*-admissible.

- Analogue to the frictionless case, the lemma plays an important role in the proof of a FTAP: uniformly small losses at *T* are only possible if losses are uniformly small for all t ∈ [0, *T*].
- Interpretation: Assume you own 1 stock at some $t_0 \in [0, T]$ and want to maximize the worst-case reward. Just freeze the stock and sell it at price \underline{X}_{t_0} , dynamic strategies cannot do better.

Lemma (Guasoni/ Léppinette/ Rásonyi (2012) and K. (2023++) for the current setting) Assume that the model satisfies NA^{nf} . Let $M, M' \in \mathbb{R}_+$ and let (φ^0, φ) be a *M*-admissible strategy with $P(\varphi^0_T \ge -M', \varphi_T \ge -M') = 1$. Then, (φ^0, φ) is *M'*-admissible. Idea of proof: To show: $\forall t_0 \in (0, T) \forall$ admissible (φ^0, φ) with

 $\varphi_{t_0}^0 = 0, \ \varphi_{t_0} = 1, \ \text{and} \ \varphi_T = 0, \ \text{we have } \operatorname{essinf}_{\mathcal{F}_{t_0}} \varphi_T^0 \leq \underline{X}_{t_0}.$

Lemma (Guasoni/ Léppinette/ Rásonyi (2012) and K. (2023++) for the current setting) Assume that the model satisfies NA^{nf} . Let $M, M' \in \mathbb{R}_+$ and let (φ^0, φ) be a M-admissible strategy with $P(\varphi_T^0 \ge -M', \varphi_T \ge -M') = 1$. Then, (φ^0, φ) is M'-admissible. **Idea of proof:** To show: $\forall t_0 \in (0, T) \forall$ admissible (φ^0, φ) with $\varphi_{t_0}^0 = 0$, $\varphi_{t_0} = 1$, and $\varphi_T = 0$, we have $\operatorname{essinf}_{\mathcal{F}_{t_0}} \varphi_T^0 \leq \underline{X}_{t_0}$. W.l.o.g. let \mathcal{F}_{t_0} be *P*-trivial. Assume by contradiction that $\exists \varepsilon > 0 \text{ s.t. } P(\varphi_T^0 \geq \underline{X}_{t_0} + \varepsilon) = 1.$ $\tau := \inf\{t \ge t_0 : (\overline{S}_t \le \underline{X}_{t_0} + 2\varepsilon/3 \text{ or } \varphi_t \le 0)$ and $\underline{S}_{u} \leq \underline{X}_{t_{0}} + \varepsilon/3 \ \forall u \in (t_{0}, t)\}.$ $P(\varphi_T = 0, \sup_{u \in [t_0, T]} \underline{S}_u \le \underline{X}_{t_0} + \varepsilon/3) > 0 \implies P(\tau < \infty) > 0$ Bad prices before $au < \infty$ and at au better buying price than ever $oldsymbol{\mathcal{C}}$ before. Switch from strategy 0 to strategy φ at $\tau \rightsquigarrow$ arbitrage. \oint 11 The **cost value process** introduced by Bayraktar and Yu (2018) is defined as the cost to enter a portfolio position:

 $V^{\mathrm{cost}}(\varphi) := \varphi^0 + \varphi^+ \overline{X} - \varphi^- \underline{X} \quad \text{for } (\varphi^0, \varphi) \text{ self-financing}$

The **cost value process** introduced by Bayraktar and Yu (2018) is defined as the cost to enter a portfolio position:

$$V^{\text{cost}}(\varphi) := \varphi^0 + \varphi^+ \overline{X} - \varphi^- \underline{X} \quad \text{for } (\varphi^0, \varphi) \text{ self-financing}$$

Definition (Merge NUPBR with prospective version of NA^s) The market model satisfies the prospective strict no unbounded profit with bounded risk (NUPBR^{ps}) condition iff

$$\left\{\sup_{t\in[0,T]}V_t^{\text{cost}}(\varphi) : (\varphi^0,\varphi) \text{ 1-admissible}\right\} \text{ is bounded in } L^0,$$

and for every 1-admissible sequence $(\varphi^{0,n},\varphi^n)_{n\in\mathbb{N}}$ such that φ^n are bounded and $(\varphi^{0,n}_T,\varphi^n_T) \to (C^0, C)$ a.s., where (C^0, C) is a maximal element, there exist forward convex combinations $(\lambda_{n,k})_{n\in\mathbb{N}, k=0,...,k_n}, k_n \in \mathbb{N}$, i.e., $\lambda_{n,k} \in \mathbb{R}_+$ & $\sum_{k=0}^{k_n} \lambda_{n,k} = 1$, s.t.

$$\sup_{n \in \mathbb{N}} \sup_{t \in [0,T]} V_t^{\text{cost}} (\sum_{k=0}^{k_n} \lambda_{n,k} \varphi^{n+k}) < \infty \quad \text{a.s.}$$

2

Complicated situation: Spread is continuously moving away from zero

Assumption 2.18 (simplified, see K. (2023++) for exact version) Let τ be a starting time of an excursion of the spread $\overline{X} - \underline{X}$ away from zero (by assumption a stopping time!). Then, there exists a stopping time σ with $\sigma > \tau$ on $\{\overline{X}_{\tau} = \underline{X}_{\tau}\}$ s.t. the fictitious frictionless market:

> asset price for long positions: $(\overline{X}^{\sigma} - \overline{X}^{\tau})$ asset price for short positions: $(\underline{X}^{\sigma} - \underline{X}^{\tau})$

satisfies NFLVR.

Complicated situation: Spread is continuously moving away from zero

Assumption 2.18 (simplified, see K. (2023++) for exact version) Let τ be a starting time of an excursion of the spread $\overline{X} - \underline{X}$ away from zero (by assumption a stopping time!). Then, there exists a stopping time σ with $\sigma > \tau$ on $\{\overline{X}_{\tau} = \underline{X}_{\tau}\}$ s.t. the fictitious frictionless market:

> asset price for long positions: $(\overline{X}^{\sigma} - \overline{X}^{\tau})$ asset price for short positions: $(\underline{X}^{\sigma} - \underline{X}^{\tau})$

satisfies NFLVR.

Interpretation. Local tightening of the NUPBR^{ps} condition: The process V^{cost} values a purchased share at the higher ask price as long as it is in the portfolio. In the fictitious frictionless market, the position can even be liquidated at the ask price.

Definition

A two-dimensional consistent price system (CPS) is a

pair (S, Q) s.t. Q is a probability measure equivalent to P and S is a Q-martingale with $\underline{X} \leq S \leq \overline{X}$ (and thus a fortiori $\underline{S} \leq S \leq \overline{S}$).

Theorem (Version of FTAP)

If the market model satisfies NA^{nf} , $NUPBR^{ps}$, and Assumption 2.18, then there exists a CPS. Conversely, if (S, Q) is a CPS, then the bid-ask model with bid price S and ask price S satisfies NA^{nf} , $NUPBR^{ps}$, and Assumption 2.18.

• In the proof, we show that the set of attainable terminal portfolios (from zero endowment) is Fatou-closed.

Definition

A two-dimensional consistent price system (CPS) is a

pair (S, Q) s.t. Q is a probability measure equivalent to P and S is a Q-martingale with $\underline{X} \leq S \leq \overline{X}$ (and thus a fortiori $\underline{S} \leq S \leq \overline{S}$).

Theorem (Version of FTAP)

If the market model satisfies NA^{nf} , $NUPBR^{ps}$, and Assumption 2.18, then there exists a CPS. Conversely, if (S, Q) is a CPS, then the bid-ask model with bid price S and ask price S satisfies NA^{nf} , $NUPBR^{ps}$, and Assumption 2.18.

- In the proof, we show that the set of attainable terminal portfolios (from zero endowment) is Fatou-closed.
- The name "FTAP" is justified because the sufficient conditions to obtain a CPS are fulfilled in the special case of a frictionless market with NFLVR ("allowable" version).
- The conditions are weaker than those in the literature.

- The proof is very technical and uses many standard methods in continuous time finance. But, the key idea is new.
- Under Robust no free lunch with vanishing risk, one argues that the trading volume of 1-admissible strategies cannot explode ("trading costs" cannot be compensated for with certainty by "trading gains")

• Consider a sequence of 1-admissible strategies, i.e.,

$$arphi^{0,n}+1+(arphi^n+1)^+ \underline{X}-(arphi^n+1)^-\overline{X}\geq 0 \quad orall n\in \mathbb{N},$$

with $(\varphi_T^{0,n}, \varphi_T^n) \to (C^0, C)$ a.s., where $(C^0, C) \in L^0(\mathbb{R}^2)$ is a maximal element.

To show: $\exists (\varphi^0, \varphi)$ admissible s.t. $(\varphi^0_T, \varphi_T) = (C^0, C)$.

• Consider a sequence of 1-admissible strategies, i.e.,

$$arphi^{0,n}+1+(arphi^n+1)^+ \underline{X}-(arphi^n+1)^-\overline{X}\geq 0 \quad orall n\in \mathbb{N},$$

with $(\varphi_T^{0,n}, \varphi_T^n) \to (C^0, C)$ a.s., where $(C^0, C) \in L^0(\mathbb{R}^2)$ is a maximal element.

To show: $\exists (\varphi^0, \varphi) \text{ admissible s.t. } (\varphi^0_T, \varphi_T) = (C^0, C).$

By NUPBR^{ps} and after passing to forward convex combinations, we get estimate for the maximal cost to enter a portfolio position (φ^{0,n}, φⁿ) at a time t ∈ [0, T]:

$$\sup_{n\in\mathbb{N}}\sup_{t\in[0,T]}\left(\varphi_t^{0,n}+(\varphi^n)_t^+\overline{X}_t-(\varphi^n)_t^-\underline{X}_t\right)<\infty\quad\text{a.s.}$$

• Consider a sequence of 1-admissible strategies, i.e.,

$$arphi^{0,n}+1+(arphi^n+1)^+ \underline{X}-(arphi^n+1)^-\overline{X}\geq 0 \quad orall n\in \mathbb{N},$$

with $(\varphi_T^{0,n}, \varphi_T^n) \to (C^0, C)$ a.s., where $(C^0, C) \in L^0(\mathbb{R}^2)$ is a maximal element.

To show: $\exists (\varphi^0, \varphi) \text{ admissible s.t. } (\varphi^0_T, \varphi_T) = (C^0, C).$

By NUPBR^{ps} and after passing to forward convex combinations, we get estimate for the maximal cost to enter a portfolio position (φ^{0,n}, φⁿ) at a time t ∈ [0, T]:

$$\sup_{n\in\mathbb{N}}\sup_{t\in[0,T]}\left(\varphi_t^{0,n}+(\varphi^n)_t^+\overline{X}_t-(\varphi^n)_t^-\underline{X}_t\right)<\infty\quad\text{a.s.}$$

Consider a fixed (ω, t) with X
_t(ω) - X
_t(ω) > 0. We get an estimate for |φⁿ_t(ω)| which does not depend on n ∈ N.

• For simplicity, assume that $\overline{X}_t(\omega) - \underline{X}_t(\omega) \gg 0$ uniformly in t. Then, $|\varphi_t^n(\omega)|$ can be estimated uniformly in n and t. Thus,

$$C^{0} + CS_{T} \approx \varphi_{T}^{0,n} + \varphi_{T}^{n}S_{T}$$

=
$$\underbrace{\int_{0}^{T} \varphi^{n} dS}_{L^{0}-\text{bounded}} - \underbrace{Cost_{T}^{S}(\varphi^{n})}_{\Longrightarrow L^{0}-\text{bounded}},$$

where S is a semimartingale with $\underline{X} \leq S \leq \overline{X}$.

• For simplicity, assume that $\overline{X}_t(\omega) - \underline{X}_t(\omega) \gg 0$ uniformly in t. Then, $|\varphi_t^n(\omega)|$ can be estimated uniformly in n and t. Thus,

$$C^{0} + CS_{T} \approx \varphi_{T}^{0,n} + \varphi_{T}^{n}S_{T}$$

=
$$\underbrace{\int_{0}^{T} \varphi^{n} dS}_{L^{0}-\text{bounded}} - \underbrace{Cost_{T}^{S}(\varphi^{n})}_{\Longrightarrow L^{0}-\text{bounded}},$$

where S is a semimartingale with $\underline{X} \leq S \leq \overline{X}$.

 This implies that (φⁿ)_{n∈ℕ} is of (uniformly) bounded variation. Schachermayer's stochastic version of Helly's theorem yields a limiting strategy.

• For simplicity, assume that $\overline{X}_t(\omega) - \underline{X}_t(\omega) \gg 0$ uniformly in t. Then, $|\varphi_t^n(\omega)|$ can be estimated uniformly in n and t. Thus,

$$C^{0} + CS_{T} \approx \varphi_{T}^{0,n} + \varphi_{T}^{n}S_{T}$$

=
$$\underbrace{\int_{0}^{T} \varphi^{n} dS}_{L^{0}-\text{bounded}} - \underbrace{Cost_{T}^{S}(\varphi^{n})}_{\Longrightarrow L^{0}-\text{bounded}},$$

where S is a semimartingale with $\underline{X} \leq S \leq \overline{X}$.

- This implies that (φⁿ)_{n∈ℕ} is of (uniformly) bounded variation.
 Schachermayer's stochastic version of Helly's theorem yields a limiting strategy.
- Delbaen-Schachermayer argument: for $\overline{X}_t(\omega) \underline{X}_t(\omega) = 0$, one has $V_t^{\text{cost}}(\varphi^n) \approx V_t^{\text{cost}}(\varphi^m)$ for n, m large, otherwise switch strategies with $(\varphi_T^{0,n}, \varphi_T^n) \approx (\varphi_T^{0,m}, \varphi_T^m)$. \notin

• For simplicity, assume that $\overline{X}_t(\omega) - \underline{X}_t(\omega) \gg 0$ uniformly in t. Then, $|\varphi_t^n(\omega)|$ can be estimated uniformly in n and t. Thus,

$$C^{0} + CS_{T} \approx \varphi_{T}^{0,n} + \varphi_{T}^{n}S_{T}$$

=
$$\underbrace{\int_{0}^{T} \varphi^{n} dS}_{L^{0}-\text{bounded}} - \underbrace{Cost_{T}^{S}(\varphi^{n})}_{\Longrightarrow L^{0}-\text{bounded}},$$

where S is a semimartingale with $\underline{X} \leq S \leq \overline{X}$.

- This implies that (φⁿ)_{n∈ℕ} is of (uniformly) bounded variation.
 Schachermayer's stochastic version of Helly's theorem yields a limiting strategy.
- Delbaen-Schachermayer argument: for $\overline{X}_t(\omega) \underline{X}_t(\omega) = 0$, one has $V_t^{\text{cost}}(\varphi^n) \approx V_t^{\text{cost}}(\varphi^m)$ for n, m large, otherwise switch strategies with $(\varphi_T^{0,n}, \varphi_T^n) \approx (\varphi_T^{0,m}, \varphi_T^m)$. 4
- By Assumption 2.18, for positive but small spreads gains vanish 17

Thank you for your attention!

Selected references

- Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. **300**, 463-520 (1994)
- Guasoni, P., Lépinette, E., Rásonyi, M.: The fundamental theorem of asset pricing under transaction costs. Finance & Stoch. 16, 741-777 (2012)
- Kabanov, Y., Rásonyi, M., Stricker, C.: No-arbitrage criteria for financial markets with efficient friction. Finance & Stoch. **6**, 371–382 (2002)
- Kühn, C., Molitor, A.: Prospective strict no-arbitrage and the fundamental theorem of asset pricing under transaction costs. Finance & Stoch. 23, 1049–1077 (2019)
- Kühn, C., Molitor, A.: Semimartingale price systems in models with transaction costs beyond efficient friction. Finance & Stoch. 26, 927–982 (2022)