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Literature review: FTAP under proportional transaction costs

� Kabanov, Stricker (2001), Finite discrete time and |Ω| < ∞:

No arbitrage in a general “currency model” (Πij)1≤i ,j≤d

(i.e., Πij
t (ω) is price of asset j when you pay with asset i)

⇔ ∃ consistent price system (CPS), i.e., a P-martingale

(Z 1, . . . ,Zd) > 0 with 1/Πji
t ≤ Z j

t /Z
i
t ≤ Πij

t .

� Grigoriev (2005), “⇔” holds for general Ω if there is only one

risky asset (besides a “bank account”, i.e., d = 2)

� Counterexample by Schachermayer (2004) for “⇒” if

|Ω| = ∞ (with more than two assets).

� Schachermayer (2004),

Robust no-arbitrage in a discrete time model (Πij)1≤i ,j≤d

⇔ ∃ strictly consistent price system (SCPS), i.e., a

P-martingale (Z 1, . . . ,Zd) > 0 satisfying

1/Πji
t ≤ Z j

t /Z
i
t ≤ Πij

t with “<” if 1/Πji
t < Πij

t .

1



Literature review: FTAP under proportional transaction costs

� Kabanov, Stricker (2001), Finite discrete time and |Ω| < ∞:

No arbitrage in a general “currency model” (Πij)1≤i ,j≤d

(i.e., Πij
t (ω) is price of asset j when you pay with asset i)

⇔ ∃ consistent price system (CPS), i.e., a P-martingale

(Z 1, . . . ,Zd) > 0 with 1/Πji
t ≤ Z j

t /Z
i
t ≤ Πij

t .

� Grigoriev (2005), “⇔” holds for general Ω if there is only one

risky asset (besides a “bank account”, i.e., d = 2)

� Counterexample by Schachermayer (2004) for “⇒” if

|Ω| = ∞ (with more than two assets).

� Schachermayer (2004),

Robust no-arbitrage in a discrete time model (Πij)1≤i ,j≤d

⇔ ∃ strictly consistent price system (SCPS), i.e., a

P-martingale (Z 1, . . . ,Zd) > 0 satisfying

1/Πji
t ≤ Z j

t /Z
i
t ≤ Πij

t with “<” if 1/Πji
t < Πij

t .

1



Literature review: FTAP under proportional transaction costs

� Kabanov, Stricker (2001), Finite discrete time and |Ω| < ∞:

No arbitrage in a general “currency model” (Πij)1≤i ,j≤d

(i.e., Πij
t (ω) is price of asset j when you pay with asset i)

⇔ ∃ consistent price system (CPS), i.e., a P-martingale

(Z 1, . . . ,Zd) > 0 with 1/Πji
t ≤ Z j

t /Z
i
t ≤ Πij

t .

� Grigoriev (2005), “⇔” holds for general Ω if there is only one

risky asset (besides a “bank account”, i.e., d = 2)

� Counterexample by Schachermayer (2004) for “⇒” if

|Ω| = ∞ (with more than two assets).

� Schachermayer (2004),

Robust no-arbitrage in a discrete time model (Πij)1≤i ,j≤d

⇔ ∃ strictly consistent price system (SCPS), i.e., a

P-martingale (Z 1, . . . ,Zd) > 0 satisfying

1/Πji
t ≤ Z j

t /Z
i
t ≤ Πij

t with “<” if 1/Πji
t < Πij

t .
1



Basic phenomenon that can (only) occur in models with trans-

action costs

Example
Let T = 1, Ω = {1, 2, 3, . . .}, F0 = {∅,Ω}, F1 = 2Ω, i.e., ω ∈ Ω is
revealed at time 1. Non-random bid-ask prices of asset are given by

t = 0 t = 1

Price = 1/2

Price = 1

Price = 2

� Aim: investor wants to have ω assets and −ω monetary units.

� Problem: at price 1 asset can only be purchased in t = 0, but

ω is not yet known.

� Solution: Buy in advance n ∈ N assets in 0, sell (n − ω)+ at

the same price in 1 ⇝ ω ∧ n assets, −(ω ∧ n) monetary units.
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Basic phenomenon that can (only) occur in models with trans-

action costs

Example
Let T = 1, Ω = {1, 2, 3, . . .}, F0 = {∅,Ω}, F1 = 2Ω, i.e., ω ∈ Ω is
revealed at time 1. Non-random bid-ask prices of asset are given by

t = 0 t = 1

Price = 1/2

Price = 1

Price = 2

� Aim: investor wants to have ω assets and −ω monetary units.

� Solution: Buy in advance n ∈ N assets in 0, sell (n − ω)+ at

the same price in 1 ⇝ ω ∧ n assets, −(ω ∧ n) monetary units.

� Aim can only be achieved approximately for n → ∞. Set of

attainable portfolio positions is not closed in probability. 3



Way out: prospective strict no-arbitrage NAps (discrete time)

� Let At
s be the set of portfolio positions that are attainable

from zero endowment by trading between s and t

� Prospective strict no-arbitrage NAps :

At
0 ∩ (−AT

t ) ⊆ AT
t ∀t = 0, 1, . . . ,T .

� The difference to strict no-arbitrage NAs of Kabanov,

Rásonyi, Stricker (2002), which says At
0 ∩ (−At

t) ⊆ At
t , is:

we do not distinguish between a trade at time t and a trade

from which we know for sure at time t that it can be realized

in the future.

� K. and Molitor (2019): NAps =⇒ AT
0 is closed in probability.

( =⇒ ∃ consistent price system)

� Aim of the present talk: extend this to continuous time
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Literature review: FTAP under proportional transaction costs

in continuous time

� Guasoni/Lépinette/Rásonyi (2012)

Robust no free lunch with vanishing risk (RNFLVR)

⇔ ∃ strictly consistent price system

� Guasoni, Rásonyi, and Schachermayer (2010): FTAP for a

continuous mid-price process and deterministic transaction

costs:

no-arbitrage for all transaction costs > 0

⇔ for all transaction costs > 0, ∃ consistent price system
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Extension of prospective strict no-arbitrage to continuous time

We consider a market that consists of a bank account and one

risky asset with bid price S and ask price S .

Assumption
(S t)t∈[0,T ] and (S t)t∈[0,T ] are adapted càdlàg processes (not

necessarily semimartingales) with 0 ≤ S ≤ S and ST > 0.

We do not assume efficient friction, i.e., S t(ω) = S t(ω) is possible.

But, continuous transitions between zero and positive bid-ask

spreads require an additional condition:

Assumption
[K. and Molitor (2022)] For every (ω, t) ∈ Ω× [0,T ) with

S t(ω) = S t(ω) there exists ε > 0 s.t. S s(ω) = S s(ω) for all

s ∈ (t, t + ε) or S s(ω) > S s(ω) and S s−(ω) > S s−(ω) for all

s ∈ (t, t + ε).
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General strategies, results from K. and Molitor (2022)

� For a FTAP, general strategies are needed.

� “No unbounded profitwith bounded risk” in bid-ask model with

simple strategies =⇒ ∃ semimartingale S with S ≤ S ≤ S

� Let φ0 position in bank account, φ position in risky asset.

φ0
t :=

∫ t
0 φ dS − φtSt − CostSt (φ) (self-financing

condition for bounded predictable φ)

� φ0 does not depend on the choice of the semimartingale S .

� A general strategy (φ0, φ) need not be of finite variation.

But, for special case φ = φ↑ − φ↓:

CostSt (φ) =
∫ t
0 (S − S) dφ↑ +

∫ t
0 (S − S) dφ↓

(integrals are increasing: more trades lead to higher “costs”,

gains
∫ t
0 φ dS of a bounded φ are finite, this allows to exhaust

all costs in a monotone manner)

� Extension to unbounded φ.
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Admissibility (numéraire-free)

In continuous time, strategies like “favorable” doubling strategies

have to be ruled out.

Useful mathematical objects are actual bid/ask prices:

X t = essinfFt sup
u∈[t,T ]

Su

X t = esssupFt
inf

u∈[t,T ]
Su

Of course, X ≥ S and X ≤ S

8



Admissibility (numéraire-free)

� Let M ∈ R+. A self-financing strategy (φ0, φ) is called

M-admissible iff φ0 +M + (φ+M)+X − (φ+M)−X ≥ 0.

� Stating the admissibility condition in terms of the actual

bid/ask prices X and X is equivalent to freezing a portfolio

position as in Guasoni, Lépinette, Rásonyi (2012), but our

condition is “numéraire-free”.

� The market model satisfies the numéraire-free no-arbitrage

condition (NAnf ) :⇔ ∀M ∈ R+,∄ M-admissible

strategy (φ0, φ) with φ0
0 = φ0 = 0, P(φ0

T ≥ 0, φT ≥ 0) = 1,

and P({φ0
T > 0} ∪ {φT > 0}) > 0.

9
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M-admissibility: φ0 +M + (φ+M)+X − (φ+M)−X ≥ 0

Lemma (Guasoni/ Léppinette/ Rásonyi (2012) and

K. (2023++) for the current setting)
Assume that the model satisfies NAnf . Let M,M ′ ∈ R+ and let

(φ0, φ) be a M-admissible strategy with

P(φ0
T ≥ −M ′, φT ≥ −M ′) = 1. Then, (φ0, φ) is M ′-admissible.

� Analogue to the frictionless case, the lemma plays an

important role in the proof of a FTAP: uniformly small losses

at T are only possible if losses are uniformly small for all

t ∈ [0,T ].

� Interpretation: Assume you own 1 stock at some t0 ∈ [0,T ]

and want to maximize the worst-case reward. Just freeze the

stock and sell it at price X t0 , dynamic strategies cannot do

better.

10
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M-admissibility: φ0 +M + (φ+M)+X − (φ+M)−X ≥ 0

Lemma (Guasoni/ Léppinette/ Rásonyi (2012) and

K. (2023++) for the current setting)
Assume that the model satisfies NAnf . Let M,M ′ ∈ R+ and let

(φ0, φ) be a M-admissible strategy with

P(φ0
T ≥ −M ′, φT ≥ −M ′) = 1. Then, (φ0, φ) is M ′-admissible.

Idea of proof: To show: ∀t0 ∈ (0,T ) ∀ admissible (φ0, φ) with

φ0
t0 = 0, φt0 = 1, and φT = 0, we have essinfFt0

φ0
T ≤ X t0 .

W.l.o.g. let Ft0 be P-trivial. Assume by contradiction that

∃ ε > 0 s.t. P(φ0
T ≥ X t0 + ε) = 1.

τ := inf{t ≥ t0 : (S t ≤ X t0 + 2ε/3 or φt ≤ 0)

and Su ≤ X t0 + ε/3 ∀u ∈ (t0, t)}.

P(φT = 0, supu∈[t0,T ] Su ≤ X t0 + ε/3) > 0 =⇒ P(τ < ∞) > 0

Bad prices before τ < ∞ and at τ better buying price than ever

before. Switch from strategy 0 to strategy φ at τ ⇝ arbitrage.  

11
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The cost value process introduced by Bayraktar and Yu (2018) is

defined as the cost to enter a portfolio position:

V cost(φ) := φ0 + φ+X − φ−X for (φ0, φ) self-financing

Definition (Merge NUPBR with prospective version of NAs)

The market model satisfies the prospective strict no unbounded

profit with bounded risk (NUPBRps) condition iff{
sup

t∈[0,T ]
V cost
t (φ) : (φ0, φ) 1-admissible

}
is bounded in L0,

and for every 1-admissible sequence (φ0,n, φn)n∈N such that φn are

bounded and (φ0,n
T , φn

T ) → (C 0,C ) a.s., where (C 0,C ) is a

maximal element, there exist forward convex combinations

(λn,k)n∈N, k=0,...,kn , kn ∈ N, i.e., λn,k ∈ R+ &
∑kn

k=0 λn,k = 1, s.t.

sup
n∈N

sup
t∈[0,T ]

V cost
t (

kn∑
k=0

λn,kφ
n+k) < ∞ a.s.

12
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Complicated situation: Spread is continuously moving away

from zero

Assumption 2.18 (simplified, seeK. (2023++) for exact version)
Let τ be a starting time of an excursion of the spread X − X away

from zero (by assumption a stopping time!). Then, there exists a

stopping time σ with σ > τ on {X τ = X τ} s.t. the fictitious

frictionless market:

asset price for long positions: (X
σ − X

τ
)

asset price for short positions: (X σ − X τ )

satisfies NFLVR.

Interpretation. Local tightening of the NUPBRps condition: The

process V cost values a purchased share at the higher ask price as

long as it is in the portfolio. In the fictitious frictionless market,

the position can even be liquidated at the ask price.

13
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Definition
A two-dimensional consistent price system (CPS) is a

pair (S ,Q) s.t. Q is a probability measure equivalent to P and S is

a Q-martingale with X ≤ S ≤ X (and thus a fortiori S ≤ S ≤ S).

Theorem (Version of FTAP)
If the market model satisfies NAnf , NUPBRps , and

Assumption 2.18, then there exists a CPS. Conversely, if (S ,Q) is

a CPS, then the bid-ask model with bid price S and ask price S

satisfies NAnf , NUPBRps , and Assumption 2.18.

� In the proof, we show that the set of attainable terminal

portfolios (from zero endowment) is Fatou-closed.

� The name “FTAP” is justified because the sufficient

conditions to obtain a CPS are fulfilled in the special case of a

frictionless market with NFLVR (“allowable” version).

� The conditions are weaker than those in the literature.

14
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Idea of proof

� The proof is very technical and uses many standard methods

in continuous time finance. But, the key idea is new.

� Under Robust no free lunch with vanishing risk, one

argues that the trading volume of 1-admissible strategies

cannot explode (“trading costs” cannot be compensated for

with certainty by “trading gains”)
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Idea of proof that {(φ0
T , φT ) : (φ

0, φ) admissible} is Fatou-closed

� Consider a sequence of 1-admissible strategies, i.e.,

φ0,n + 1 + (φn + 1)+X − (φn + 1)−X ≥ 0 ∀n ∈ N,

with (φ0,n
T , φn

T ) → (C 0,C ) a.s., where (C 0,C ) ∈ L0(R2) is a

maximal element.

To show: ∃(φ0, φ) admissible s.t. (φ0
T , φT ) = (C 0,C ).

� By NUPBRps and after passing to forward convex

combinations, we get estimate for the maximal cost to enter

a portfolio position (φ0,n, φn) at a time t ∈ [0,T ]:

sup
n∈N

sup
t∈[0,T ]

(
φ0,n
t + (φn)+t X t − (φn)−t X t

)
< ∞ a.s.

� Consider a fixed (ω, t) with X t(ω)− X t(ω) > 0. We get an

estimate for |φn
t (ω)| which does not depend on n ∈ N.
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Idea of proof that {(φ0
T , φT ) : (φ

0, φ) admissible} is Fatou-closed

� For simplicity, assume that X t(ω)−X t(ω) ≫ 0 uniformly in t.

Then, |φn
t (ω)| can be estimated uniformly in n and t. Thus,

C 0 + CST ≈ φ0,n
T + φn

TST

=

∫ T

0
φn dS︸ ︷︷ ︸

L0−bounded

− CostST (φ
n)︸ ︷︷ ︸

=⇒ L0−bounded

,

where S is a semimartingale with X ≤ S ≤ X .

� This implies that (φn)n∈N is of (uniformly) bounded variation.

Schachermayer’s stochastic version of Helly’s theorem yields a

limiting strategy.

� Delbaen-Schachermayer argument: for X t(ω)− X t(ω) = 0,

one has V cost
t (φn) ≈ V cost

t (φm) for n,m large,

otherwise switch strategies with (φ0,n
T , φn

T ) ≈ (φ0,m
T , φm

T ).  
� ByAssumption 2.18, for positive but small spreads gains vanish
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Thank you for your attention!
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