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Abstract. Game contingent claims (GCCs) generalize American contingent claims in allowing
the writer to recall the option as long as it is not exercised, at the price of paying some penalty.

In incomplete markets, an appealing approach is to analyze GCCs like their European and
American counterparts by solving option holder’s and writer’s optimal investment problems in
the underlying securities. By this, partial hedging opportunities are taken into account. We

extend results in the literature by solving the stochastic game corresponding to GCCs with
both continuous time stopping and trading. Namely, we construct Nash equilibria by rewriting

the game as a non-zero-sum stopping game in which players compare payoffs in terms of their

exponential utility indifference values. As a by-product, we also obtain an existence result for the
optimal exercise time of an American claim under utility indifference valuation by relating it to

the corresponding nonlinear Snell envelope.

1. Introduction

A game contingent claim (GCC) as introduced in Kifer [26], is a contract between a buyer/holder
and a seller/writer which can be exercised by the buyer and recalled by the seller at any time up to
a maturity date when the contract is terminated anyway. The contract can be modeled by two
stochastic processes (Xt)t∈[0,T ] and (Yt)t∈[0,T ], where T ∈ R+ is the maturity: If the buyer chooses
a [0, T ]-valued stopping time τ and the seller a [0, T ]-valued stopping time σ, the payoff to the
buyer at time min{τ, σ} is given by

Xτ1{τ≤σ} + Yσ1{σ<τ}.

A standing assumption is X ≤ Y , meaning that stopping is penalized. In the last two decades, such
contracts have been intensively studied in the literature. We refer to Kifer [27] for a recent review.
The starting point was the article by Kifer [26] who showed that in a complete market, the option
has a unique no-arbitrage price and can be perfectly hedged by the writer. Here, a hedge consists of
a dynamic trading strategy in the underlyings and a recalling time. In incomplete markets, however,
perfect hedges may fail to exist and there are essentially three different approaches generalizing
[26]. First there is super-hedging (see, e.g., Section 13.2.1 of [20]), which has the drawback that it
is often too expensive and in many situations only leads to trivial bounds for arbitrage-free prices.
Another approach consists in considering GCCs as liquid securities which can be dynamically
traded simultaneously with the underlyings, with the only difference that their prices are not
exogenously given. The exercise and recall features of a GCC are implicitly modeled by short
selling and long buying constraints, respectively. It turns out that both a no-arbitrage criterion
and a utility maximization criterion for a representative investor lead to the dynamic value of a
zero-sum stopping game as a price process for a GCC. In the first case, expectations are taken
under an arbitrary martingale measure and in the second under the martingale measure induced by
the marginal utility at the optimal terminal wealth when only trading in the underlyings is possible
(see [20] and [19], respectively).

In the present article, we follow the third approach which is in the spirit of utility-based hedging
of European claims as introduced by Hodges and Neuberger [17], see the survey article Becherer [5]
and the references therein. For an analysis of the general indifference valuation problem for American
contingent claims, we refer to Leung and Sircar [29] for a backward utility-based approach as used
in the present paper, and to Leung et al. [30] who apply a forward performance criterion approach
to the utility-based hedging problem. Here, we consider as in [28] a game between the buyer and
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the seller of a GCC who both aim to maximize their expected utility from terminal wealth by
exercising/recalling the GCC and trading, in addition, arbitrary amounts in the underlyings. This
means that as in [26], but in contrast to [19] and [20], the GCC is no liquid asset. Applied to the
special case of a complete market, the game leads to the same stopping times as in [26], i.e., the
buyer tries to maximize, whereas the seller tries to minimize the expected option’s payoff under the
unique equivalent martingale measure. Especially, this means that the equilibrium stopping times
do not depend on agents’ preferences or endowments, and equilibrium values are unique. In [28], it
is furthermore shown that Nash equilibria exist also in a general incomplete market if the utility
functions are exponential, i.e., the absolute risk aversion does not depend on wealth. However,
while trading in the underlying is continuous, stopping the contract is only discrete in [28]. This
allows to construct equilibrium stopping regions by a backward recursion in time. Later on, in the
seminal paper of Hamadène and Zhang [15], equilibria of non-zero-sum continuous time stopping
games have been derived under minimal conditions on the payoff processes. This can be applied to
the above game for arbitrary utility functions of the holder and the writer, but only in the special
case that they do not have access to a financial market, i.e., (partial) hedging opportunities are not
taken into account (see Section 4 of [15]). Since the utility functions are typically nonlinear, it is a
non-zero-sum game and equilibria are in general not unique.

An observation in [28] is that Nash equilibrium points may fail to exist for players’ utility functions
other than exponential. Namely, by the non-constancy of the absolute risk aversion, equilibria
cannot be constructed backwards in time since the past trading gains in the underlyings matter (cf.
Remarks 2.4 and 2.5 therein for a counterexample and a detailed explanation, respectively). This
also shows that the result of [15], which is not restricted to exponential utility, cannot be applied to
the problem if there are (partial) hedging opportunities. In the current article, we close the above
mentioned gap and extend [28] for exponential utility functions to continuous time stopping (see
theorem 2.3). For this, we combine the techniques of derivation of the above mentioned result of
[15], who consider games under linear expectations, with new results on optimal stopping when
payoffs are valued by utility indifference that is in general nonlinear in the payoff. We note that the
results of [15] have recently been partly extended by Grigorova and Quenez [14] to a non-zero-sum
game with players evaluating their payoffs in terms of (nonlinear) g-expectations for Lipschitz
generator functions g. However, although in a continuous time setup, the latter article restricts
the equilibrium analysis of the game to discrete time stopping strategies. Furthermore since the
dynamic exponential indifference valuation typically is a g-expectation with g of quadratic growth
(cf. e.g. Theorem 13 in Mania and Schweizer [31]), the results of [14] are not directly applicable to
our non-zero-sum game.

Given a recalling time of the option writer, for an exponential utility function, the utility
maximization and timely exercise problem of the option holder can be reduced to an optimal
stopping problem in which the random payoff of the American claim is not evaluated by its (linear)
expectation, but by its (buyer’s) indifference price that is not homogeneous. This means that one
has to solve supτ π0(Lτ ), where L is the payoff process, π0 is the initial indifference valuation, and
τ runs through all [0, T ]-valued stopping times the holder can choose. Let πt be the conditional
indifference valuation at time t. By the time-consistency of the indifference valuation operator
π = (πt)t∈[0,T ], it seems to be self-evident that there should be a smallest “π-supermartingale”
that dominates L and, if L has no negative jumps, the optimal stopping time is given by the first
time this supermartingale hits L. However, in continuous time, it seems very difficult to provide
rigorous proofs to this conjecture. Our result on optimal stopping under indifference valuation
is theorem 3.5, which characterizes the optimal exercise time of an American claim as the first
time the payoff process hits the corresponding nonlinear Snell envelope associated to the American
exponential utility indifference value. To the best of our knowledge this is a new result, and
it is also of independent interest. For its proof, we extend properties of the dynamic European
indifference valuation derived by Mania and Schweizer [31] to the American one and establish a
reverse continuity result (proposition 3.2) for the indifference valuation. How the result is related
to the literature on optimal stopping under nonlinear expectations is described in subsection 3.1.

In incomplete markets, random endowments are a key motivation to trade derivatives. For
European claims, Anthropelos and Žitković [1] give a complete characterization of those claims
for which there exists a price at which two agents, with given risk-aversions and endowments,
are willing to trade the claim. It is shown that there exists a unique, up to replicable payoffs,
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Pareto-optimal allocation (see Remark 3.17 in [1]). The special feature of exponential utility
maximizers is that by the constant absolute risk-aversion, the risky-sharing does not depend on
the distribution of the aggregate endowment between the agents before trading. Consequently,
the above mentioned Pareto-optimal allocation can be reached by a “mutually agreeable” trade
for any initial distribution of the aggregate endowment between the agents. In a similar vein,
agents’ endowments also influence the optimal stopping times of a given GCC, and thus the option’s
payoff. In section 4, we illustrate this impact and discuss the relation to [1], see Example 4.1 and
Remark 4.2, respectively. Example 4.3 provides some economic intuition behind the non-uniqueness
of equilibria that is caused by a simultaneous incentive of both agents to stop the contract. By
contrast, in complete markets, both players evaluate future payoffs by their conditional expectation
under the unique martingale measure, which implies by X ≤ Y , that at no time, they both want to
stop the contract.

The paper is organized as follows. In section 2, we specify the mathematical framework and
state the main result, theorem 2.3, about the existence of Nash equilibria. By relating the problem
to utility-indifference valuation, section 3 prepares the proof of theorem 2.3 which is then completed
in section 5. In addition, section 3 states the key theorem 3.5 on optimal stopping under utility
indifference valuation, which is accompanied by a literature review on nonlinear optimal stopping
(subsection 3.1). Examples can be found in section 4. Finally, section 6 gathers proofs of results
that are omitted throughout the main text.

2. Problem formulation and main result

We start with a filtered probability space (Ω,F ,F = (Ft)t∈[0,T ] , P ) with time horizon T ∈ R+

and a filtration F satisfying the usual conditions of right-continuity and completeness. For a
[0, T ]-valued stopping time τ , we denote by Tτ the family of stopping times σ such that τ ≤ σ ≤ T
P -almost-surely. We denote by ZQ the density process of an equivalent measure Q with respect to
P and by EQτ [·] the conditional expectation under Q given the information Fτ up to a stopping
time τ ∈ T0. In particular for Q = P , we simply write Eτ [·]. If not stated otherwise, inequalities
between random variables are understood in the P -almost-surely sense. For a generic σ-algebra A
on Ω and a probability measure Q on (Ω,A), we denote by L∞(A, Q) the space of A-measurable
random variables that are Q-essentially bounded and by S∞(Q) the space of F-adapted processes Y
with càdlàg paths satisfying ‖Y ‖S∞(Q) := ‖supt∈[0,T ]|Yt|‖L∞(FT ,Q) <∞. In particular, we simply

write L∞(A) for L∞(A, P ), L∞,S∞ for L∞(FT , P ),S∞(P ), and ‖·‖∞ for ‖·‖L∞ .
We consider a general, possibly incomplete, financial market consisting of d underlying risky

assets with discounted price process S = (Si)i=1,...,d being a semimartingale, and a riskless asset
with unit discounted price. Throughout, we assume that the risky asset price process

(2.1) S is locally bounded

(for the main result of the article, it has to be even continuous). Denoting Me :=Me(S, P ) the set
of equivalent local martingale measures for S, we assume there exists at least one element Q of Me

that has finite entropy E
[
ZQT logZQT

]
with respect to P in the sense that

(2.2) Me
f :=Me

f (P ) :=
{
Q ∈Me(P )

∣∣∣EP [ZQT logZQT

]
<∞

}
6= ∅.

In particular, there exists a unique measure QE ∈Me
f , the so-called entropy minimizing martingale

measure (EMMM), that satisfies

(2.3) EQ
E
[

logZQ
E

T

]
= inf
Q∈Me

f

EQ
[

logZQT

]
,

cf. Theorem 2.1 in Frittelli [11], which beyond boundedness of S also extends to locally bounded S.
We denote by L(S) the space of F-predictable S-integrable Rd-valued processes. For ϑ ∈ L(S), the
stochastic integral of ϑ with respect to S is denoted

∫ ·
0
ϑtr
s dSs. We work as in [31] with a space of

admissible trading strategies

(2.4) Θ =
{
ϑ ∈ L(S)

∣∣∣ ∫ ·0 ϑtr
s dSs is a Q-martingale for all Q ∈Me

f

}
.

Note that such admissible trading strategies clearly exclude arbitrage opportunities.
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Consider two agents, A and B, who are the seller and buyer of a GCC, respectively. We assume
that A and B in addition to entering the contract, have access to the financial market. The agents’
preferences are modeled by exponential utility functions UA, UB , with constant absolute risk-aversion
parameters αA, αB > 0, i.e., UA(x) = − exp(−αAx) and UB(x) = − exp(−αBx), x ∈ R. Let
X,Y ∈ S∞ and define

(2.5) R(τ, σ) := Xτ1{τ≤σ} + Yσ1{σ<τ}

the GCC payoff of agent B paid by agent A at time τ ∧σ, when A and B choose stopping strategies
σ and τ , respectively, for τ, σ ∈ T0. Agents A and B have exogenous endowments given by the
contingent claims CA, CB ∈ L∞, which are in general not replicable by trading in the financial
market. By the randomness of CA and CB , indifference valuations of the agents may also depend
on their respective endowments. We are interested in Nash equilibrium points (see definition 2.1)
in the stopping time strategies for the buyer and seller whose objectives are as follows. The seller

A wants to maximize her expected utility from terminal wealth CA − R(τ, σ) +
∫ T

0
ϑtr
s dSs after

entering the contract at time t = 0 and trading in the financial market according to a self-financing
strategy ϑ = (ϑi)di=1 in Θ, with ϑit denoting the number of shares of asset i held at time t, t ∈ [0, T ].
The corresponding maximization problem for the seller is

(2.6) uA(τ, σ) := sup
ϑ∈Θ

E

[
− exp

(
−αA

(
CA −R(τ, σ) +

∫ T

0

ϑtr
s dSs

))]
.

Similarly, the buyer of the contract wants to maximize her expected utility from terminal wealth

CB +R(τ, σ) +
∫ T

0
ϑtr
s dSs and her maximization problem is

(2.7) uB(τ, σ) := sup
ϑ∈Θ

E

[
− exp

(
−αB

(
CB +R(τ, σ) +

∫ T

0

ϑtr
s dSs

))]
.

Definition 2.1. We say that a pair (τ∗, σ∗) ∈ T0 × T0 is a Nash equilibrium point (NEP) for the
non-zero-sum game associated to eqs. (2.6) and (2.7) if

(2.8) uA(τ∗, σ∗) ≥ uA(τ∗, σ) and uB(τ∗, σ∗) ≥ uB(τ, σ∗) ∀(τ, σ) ∈ T0 × T0.

Remark 2.2. Alternatively, one may model the problem as a so-called extensive game in which
players’ decisions are sequential, and each player makes a decision depending on the “nature” (given
by the filtration) and the past actions of her counter-party. The sequential decisions consist, at
each step, of stopping the contract or not, and choosing the amount of underlyings held in the
portfolio. We refer to González-Dı́az et al. [12] for an introduction to extensive games and related
concepts. At least in finite discrete time and finite Ω, one can easily prove that a NEP in the
sense of eq. (2.8) induces a stochastic feedback Nash equilibrium in the extensive game described
above. Namely, given a NEP eq. (2.8), one takes τ∗, σ∗ together with the investment strategies
which attain the suprema eqs. (2.6) and (2.7) for τ = τ∗ and σ = σ∗, and consider them as feedback
strategies where the response function is degenerated, i.e., each player simply ignores past actions
of her counter-party. Only past actions of the nature are used because the quantities are in general
stochastic. Note that given (τ∗, σ∗), the suprema eqs. (2.6) and (2.7) can be determined separately
since the investment strategy of one player has no effect on the wealth of the other player (trading
has, e.g., no impact on the underlying’s price). Since, in addition, the option’s payoff cannot be
influenced anymore after the first player stops the contract, and, consequently, τ∗, σ∗ are stopping
strategies that implicitly condition that the other player has not stopped yet, the “feedback” strategies
constructed above with degenerated response functions are also optimal in the set of all feedback
strategies with arbitrary response functions. Furthermore, the same holds a fortiori when looking
at a variant of this extended game in which each player only observes the stopping time but not
the investment strategy of the other player. Finally, since the NEPs are constructed backwards in
time (see the construction (2.3)-(2.7) in [28] for the special case that stopping is discrete), there
exists a subgame perfect equilibrium. We leave it as an easy exercise for the reader to write down
the finite extensive game and prove the above assertions (since the players may stop simultaneously,
one has to work with a nontrivial information partition in Definition 3.1.1 of [12]). Since the finite
extensive game boils down to the game eq. (2.6)/eq. (2.7), for the continuous time modeling, we
prefer to start directly with eq. (2.6)/eq. (2.7).
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The main result of the article is the following theorem, and the proof is deferred to section 5.

Theorem 2.3. Assume that

(2.9) the filtration F is continuous,

i.e., any local F-martingale is P -a.s. continuous, and the payoff processes satisfy

(2.10) X,Y ∈ S∞ with Xt ≤ Yt, t ∈ [0, T ], P -a.s.,

and

(2.11) X has only nonnegative jumps, and Y has only nonpositive jumps.

Then, the non-zero-sum game associated to uA, uB given in eqs. (2.6) and (2.7) with αA, αB ∈ (0,∞),
CA, CB ∈ L∞ admits a NEP (τ∗, σ∗) ∈ T 2

0 .

Remark 2.4. The difference Y −X ≥ 0 can be interpreted as the penalty the writer of the GCC
has to pay if recalling the option before it is exercised. Consequently, there is a negative attitude
towards stopping as for both players it appears more advantageous that her counter-party terminates
the game in her stead. Condition eq. (2.11) guarantees that optimal stopping times are attained,
and we need not deal with almost optimal stopping times.

3. Indifference value

In this section, we first state old and new facts on exponential utility indifference valuation.
Then, we characterize a NEP in terms of indifference values for the payoffs eq. (2.5). Finally, we
characterize the optimal stopping time when payoffs are evaluated at their indifference prices. This
prepares the proof of our main result theorem 2.3 concerning existence of a NEP for the game
eq. (2.6)/eq. (2.7), that we provide in section 5.

The game problem eq. (2.8) can be reformulated in terms of the utility indifference valuation of
suitable claims, in a way that one obtains a non-zero-sum Dynkin game in which players evaluate
payoffs directly by utility indifference. Before making this relation precise, we recall briefly the
definition and some dynamic properties of the exponential indifference valuation for bounded claims.
A relatively general study of this was performed by [31] in a setup analogous to the one of section 2,
with Θ corresponding exactly to the space Θ2 of trading strategies in Delbaen et al. [7], where
other possible spaces of trading strategies are also compared. As we have adopted an analogous
setup, we are able to use some results of [31] when the need arises.

Let H be a contingent claim in L∞(FT ) and consider an agent who is willing to buy the claim
H at some time t ∈ [0, T ], and whose preferences are described by an exponential utility function U
for some risk-aversion parameter α ∈ (0,∞), i.e. U(x) = −e−αx, x ∈ R. In addition, the agent has

the random endowment C ∈ L∞(FT ). The buyer’s indifference value πα,Ct (H) at time t ∈ [0, T ] is
the amount that the agent needs to pay at time t to receive the claim H at terminal time T so that
the agent’s maximal expected utility from additionally trading between t and T with zero initial
capital coincides with his maximal expected utility from solely trading with zero initial capital.

In other words, πα,Ct (H) is the amount that makes an agent indifferent between buying or not
buying the claim H and optimally trading in the financial market. More precisely for H ∈ L∞ and

t ∈ [0, T ], the indifference value πα,Ct (H) of H at time t is implicitly given by

(3.1) esssup
ϑ∈Θ

Et

[
− e−α(C+

∫ T
t
ϑtr
s dSs)

]
= esssup

ϑ∈Θ
Et

[
− e−α(C+H−πα,Ct (H)+

∫ T
t
ϑtr
s dSs)

]
.

Under eqs. (2.1) and (2.2), Theorem 2.2 in [7] (whose condition (2.13) was shown by Kabanov and
Stricker [18] to be unneeded) and a dynamic programming principle imply that the left-hand side
of eq. (3.1) almost surely does not vanish, and hence a direct reformulation of eq. (3.1) yields

(3.2) πα,Ct (H) = − 1

α
log

esssup
ϑ∈Θ

Et

[
− e−α

(
C+H+

∫ T
t
ϑtr
s dSs

)]
esssup
ϑ∈Θ

Et
[
− e−α

(
C+

∫ T
t
ϑtr
s dSs

)]
 .

In general, the indifference value depends on the exogenous random endowment C, but by replacing
the measure P with PC defined via dPC/dP := exp(−αC)/E[exp(−αC)], one can reduce it to the
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case without a random endowment. In particular Θ and Me
f remain the same when changing from

P to PC . Note that

πα,Ct (H) = πα,0t (C +H)− πα,0t (C),

which immediately follows from eq. (3.2). In addition by Proposition 2 of [31], one also has a dual
representation

πα,0t (H) = essinf
Q∈Me

f

(
EQt [H] +

1

α

(
EQt

[
log

ZQT
ZQt

]
− α essinf

Q∈Me
f

EQt

[ 1

α
log

ZQT
ZQt

]))
.

In the following proposition, we state some dynamic properties of the exponential indifference value.

Proposition 3.1. For α ∈ (0,∞) and C ∈ L∞, (πα,Ct )t∈[0,T ] defines mappings πα,Ct : L∞(FT ) 3
H 7→ πα,Ct (H) ∈ L∞(Ft) satisfying

(1) “Càdlàg version”: For H ∈ L∞, ‖πα,Ct (H)‖∞ ≤ ‖H‖∞, t ∈ [0, T ], and there exists a càdlàg

process ΓH with ΓHt = πα,Ct (H) P -a.s. for every t ∈ [0, T ] and

ΓHτ = − 1

α
log essinf

ϑ∈Θ
EQ

E,C

τ

[
e−α(H+

∫ T
τ
ϑtr
s dSs)

]
=: πα,Cτ (H), for τ ∈ T0,

where QE,C is EMMM from eq. (2.3) after replacing P with PC .
(2) “(Strict) monotonicity”: If H1 ≤ H2 then πα,Cτ (H1) ≤ πα,Cτ (H2) for all τ ∈ T0. If in

addition πα,C0 (H1) = πα,C0 (H2), then H1 = H2.

(3) “Replication invariance”: πα,Cτ

(
H + xτ +

∫ T
τ
ϑtr
s dSs

)
= πα,Cτ (H) + xτ , for any H ∈

L∞, τ ∈ T0, xτ ∈ L∞(Fτ ), ϑ ∈ Θ.

(4) “Replication cost preservation”: πα,Cτ

(
xτ +

∫ T
τ
ϑtr
s dSs

)
= xτ , for any τ ∈ T0, xτ ∈

L∞(Fτ ), ϑ ∈ Θ.
(5) “Local property”: πα,Cτ (H11Λ +H21Λc) = 1Λπ

α,C
τ (H1) +1Λcπ

α,C
τ (H2), for any H1, H2 ∈

L∞, τ ∈ T0, Λ ∈ Fτ .
(6) “(Stopping) time consistency”: πα,Cτ (H) = πα,Cτ (πα,Cσ (H)), for any H ∈ L∞, τ ∈ T0 with

σ ∈ Tτ .
(7) “Continuity”: If F is continuous, then for any sequence (Hn)n∈N bounded in L∞ that

converges in probability to some H ∈ L∞ as n→∞, one has

sup
t∈[0,T ]

|πα,Ct (Hn)− πα,Ct (H)| −→ 0 in probability as n→∞.

The proofs of these properties can be either found in Propositions 4, 12, 14, and 15 of Mania
and Schweizer [31] or are straightforward generalizations. Note that only the case C = 0 has to be
considered, since the extension to general C ∈ L∞ is straightforward by replacing P with PC . For
the strict monotonicity in 2., one uses that the supremum in the numerator of eq. (3.2) is attained,
see Theorem 2.2 in [7].

The following result can be seen as a reverse of part 7. above.

Proposition 3.2. Let F be continuous, α ∈ (0,∞) and C ∈ L∞. Let (Hn)n∈N and (ηn)n∈N be

bounded sequences in L∞ such that ηn ≤ 0 P -a.s. for all n ∈ N and πα,C0 (Hn+ηn)−πα,C0 (Hn) −→ 0,
as n→∞. Then ηn → 0 in probability, as n→∞.

The result in proposition 3.2 is new to the best of our knowledge, and constitutes a crucial
ingredient in the proofs of both theorem 3.5 and lemma 5.5, needed for achieving our main result
theorem 2.3. We include the proof in section 6.

Note 3.3. Let α > 0. There exists a market model with a sequence of nonnegative claims (Hn)n∈N ⊂
L∞ such that P [lim infn→∞Hn = ∞] > 0, but the sequence πα,00 (Hn) of indifference values is
uniformly bounded.

Proof of note 3.3. Consider a market model with S = 1, i.e., there are no hedging instruments and
take some A ∈ F with P [A] ∈ (0, 1). For the nondecreasing sequence of European claims Hn := n1A,

n ∈ N, the indifference values πα,00 (Hn) satisfy exp(−απα,00 (Hn)) = exp(−αn)P [A] + 1−P [A], and

thus πα,00 (Hn) increases to the finite constant − ln(1− P [A])/α, as n tends to infinity. �
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In the sequel, we denote by

(3.3) πA := παA,CA and πB := παB ,CB

the exponential utility indifference valuation operators for agents A and B, respectively. In terms
of indifference values, a NEP for the game eq. (2.6)/eq. (2.7) can be characterized as follows.

Proposition 3.4. Let X,Y ∈ S∞. A pair (τ∗, σ∗) ∈ T0 × T0 is a NEP for the non-zero-sum game
eq. (2.6)/eq. (2.7) if and only if for all τ, σ ∈ T0,

πA0
(
−R(τ∗, σ∗)

)
≥ πA0

(
−R(τ∗, σ)

)
and πB0

(
R(τ∗, σ∗)

)
≥ πB0

(
R(τ, σ∗)

)
.

Proof. First note that by eq. (3.2), the indifference value for claim H ∈ L∞ and risk-aversion
parameter α ∈ (0,∞) satisfies

(3.4) sup
ϑ∈Θ

E
[
− e−α

(
C+H+

∫ T
0
ϑtr
s dSs

)]
= e−απ

α,C
0 (H) sup

ϑ∈Θ
E
[
− e−α

(
C+

∫ T
0
ϑtr
s dSs

)]
< 0.

Hence one obtains the required equivalence after substituting eq. (3.4) into eqs. (2.6) and (2.7)
for risk-aversion parameters αA, αB , exogenous endowments CA, CB , and for the claims R(τ∗, σ∗),
R(τ∗, σ), R(τ, σ∗). �

The game is typically of non-zero-sum type since under market incompleteness, the implication

(3.5) πA0 (−H1) ≤ πA0 (−H2) =⇒ πB0 (H1) ≥ πB0 (H2)

does not hold in general, for H1, H2 ∈ L∞. On the other hand, in a complete market, the
indifference valuations of both players are the replication cost which yields eq. (3.5).

Proposition 3.4 establishes a relation to optimal stopping problems under the utility-indifference
valuation, which is not homogenous in the payoff. Before stating our contribution (Theorem 3.5),
let us discuss the existing literature on optimal stopping under nonlinear expectations.

3.1. Literature review on nonlinear optimal stopping and new contribution. Beyond the
classical theory of optimal stopping under linear expectations surveyed in the seminal article El
Karoui [10], the theory of optimal stopping under nonlinear expectation is in general also quite
well-developed. Studies in the latter direction have mostly concentrated on sublinear expectations
that are positively homogeneous, and hence can as well be associated to dynamic coherent risk
measures; cf. among others [23, 33, 9, 32]. But these do not include the European utility indifference
valuation, which in general is neither subadditive nor positively homogeneous. The closest article
to our work on the American indifference value is Bayraktar et al. [2], which solves the problem of
optimal stopping under convex risk measures in a Brownian filtration setting. By making use of a
representation of convex risky measures from Delbaen et al. [8], they consider risk measures that can
be written as a worst case expectation of the payoff plus a proper convex penalty function in which
the Girsanov kernels of equivalent probability measures are plugged. By this representation, which
in turn relies on the predictable representation property of Brownian martingales as stochastic
integrals, the problem can be solved by similar methods as for problems of robust (worst-case)
combined stochastic control and optimal stopping, see, e.g., Karatzas and Zamfirescu [24]. In
one aspect, our assumptions are slightly weaker than those of [2] since we only assume that the
filtration is continuous instead of Brownian. But, more importantly, our methods are completely
different from theirs. In [29], it is already stated that the optimal exercise time of an American
claim is given by the first time the nonlinear Snell envelope hits the payoff process. We think
that Proposition 2.13 therein holds true, but we do not think that in its proof, Theorem 2.10
from Karatzas and Zamfirescu [23], which deals with a best case optimal stopping problem that is
positively homogeneous in the payoff, can be applied. On the other hand, Bayraktar and Yao [3, 4]
solve the optimal stopping problem for convex expectations by arguing with an up-crossing theorem
for nonlinear expectations. Since the buyer’s indifference value is concave in the random payoff, we
cannot apply their results. Recently, Grigorova et al. [13] have obtained results on optimal stopping
under g-expectations for Lipschitz generators g and for payoff processes only required to be optional
(rather than càdlàg) with respect to a usual filtration generated by a Brownian motion and an
independent Poisson random measure. We also cannot apply their results because the indifference
valuation corresponds to a g-expectation with g of quadratic growth.

We establish in theorem 3.5 the existence of a right-continuous “Snell envelope” corresponding
to the American exponential utility indifference valuation. Crucial for the proof is both a continuity
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result from [31] (cf. property 7 in proposition 3.1) and its reverse, which we newly derive in the
present article, cf. proposition 3.2. The arguments in the proof of theorem 3.5 do not use an
up-crossing theorem and hence could also be applied to more general nonlinear expectations. Recall
that the classical up-crossing theorem states that every supermartingale (under a linear expectation)
admits finite left and right limits over rationals (cf. e.g. Proposition 3.14 (i) in Chapter 1 of Karatzas
and Shreve [21]). Our techniques are similar to the ones in the classical theory of optimal stopping
under linear expectations with càdlàg payoff processes and filtrations satisfying the usual conditions
(see e.g. Appendix D of Karatzas and Shreve [22]). But, since we do not rely on the up-crossing
theorem, that guarantees the existence of a right-limit process, we argue with a right-liminf process
of the Snell envelope values at rational time points. It is not a priori clear that this process is
right-continuous, so a critical part of our analysis is dedicated to verify this. First, we show that the
process is progressively measurable and right continuous along stopping times. Then, an optional
projection argument combined with the section theorem yields right-continuity up to evanescence.
Our arguments rely on the continuity of the filtration at two places: first to identify (through
the reverse continuity of the indifference operator, proposition 3.2) the optimal stopping time as
the first time the payoff process meets the Snell envelope, and second to show that the defined
right-liminf process is right-continuous along stopping times relying on the fact that every stopping
time is predictable.

For supermartingales under nonlinear expectations, the up-crossing theorem holds if the (non-
linear) expectation of a sequence of nonnegative random variables explodes when the sequence
tends pointwise to infinity on a set with positive probability (cf. hypothesis (H0) in [3] and its
use in the proof of the nonlinear up-crossing Theorem 2.3 therein). For a European claim, the
buyer’s indifference value is a submartingale under the entropy minimizing martingale measure
(EMMM) and thus the usual up-crossing theorem guarantees a càdlàg version (see Proposition 12
in [31] and also Theorem 3 in Bion-Nadal [6]). For an American claim this is more delicate, as
the price can decrease if the optimal execution time is missed. Indeed, in general, the American
indifference price is neither a sub- nor a supermartingale under the EMMM. In addition, although
the American indifference price satisfies the supermartingale property with respect to the family
of indifference valuation operators (πt)t∈[0,T ], the nonlinear expectation π0(·) violates hypothesis
(H0) of [3] (see note 3.3 for a counterexample), hence hindering a straightforward application of the
(nonlinear) up-crossing theorem. However, though right continuity of the American indifference
value is sufficient for our purpose in the proof of existence of a Nash equilibrium point for the
GCC in theorem 2.3, we complement theorem 3.5 by showing in remark 3.7 that the American
indifference value is indeed càdlàg. This is achieved by writing the latter as a continuous function
of the quotient of two supermartingales to which the up-crossing theorem for linear expectations
can be applied.

The following theorem is key in the construction of a NEP in theorem 2.3. It provides existence
and uniqueness of a right-continuous adapted process that dominates a given payoff process and
firstly hits it at an optimal stopping time. In addition, this unique process only depends on the
future payoff process restricted to all events from which it is already known that they occur. These
are the properties that are needed for dynamic programming, and it is natural to call the process
the nonlinear Snell envelope with respect to the nonlinear expectation given by the European
indifference valuation. The proof of the theorem is relegated to section 6.

Theorem 3.5 (Snell envelope and optimal stopping). Let F be continuous, α ∈ (0,∞), C ∈ L∞,
and let L be a payoff process in S∞. Then, there exists a right-continuous adapted process V with

(3.6) Vt = esssup
τ∈Tt

πα,Ct (Lτ ), P -a.s. for all t ∈ [0, T ].

The process V is unique up to evanescence (i.e., unique up to a global P -null set not depending on
time) and possesses the following properties:

(i) πα,Ct (Vτ ) ≤ Vt, P -a.s. for all t ∈ [0, T ], τ ∈ Tt.
(ii) If L has no negative jumps, then τ̂t := inf{u ≥ t | Vu = Lu} is a [t, T ]-valued stopping time

with Vτ̂t = Lτ̂t P -a.s. and πα,C0 (Lτ̂t) = supτ∈Tt π
α,C
0 (Lτ ) for all t ∈ [0, T ].

(iii) For two payoff processes L1, L2 with L1 = L2 on [σ, T ], where σ ∈ T0, one has V 1 = V 2 on
[σ, T ] up to evanescence, for the associated processes V 1, V 2.

(iv) If L = Lσ on [σ, T ], where σ ∈ T0, then Vσ = Lσ, P -a.s..
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Remark 3.6. Like in the linear case, the American option price is in general not a martingale but
only a supermartingale. It is an easy exercise to show that (i) holds with equality for all t ∈ [0, T ]

and τ ∈ Tt if and only if Lt ≤ πα,Ct (LT ), P -a.s. for all t ∈ [0, T ], i.e., T is an optimal stopping
time.

Remark 3.7. In the proof of theorem 3.5, the up-crossing theorem is not required. Thus, the
arguments hold for quite general nonlinear expectations. However, for the American indifference
value, which is in general neither a super- nor a submartingale (w.r.t. P or QE), we show in the
following that the up-crossing theorem can nevertheless be used to prove that the dynamic value
admits finite left and right limits over rationals. The indifference value can be written as

esssup
τ∈Tt

πα,Ct (Lτ ) = esssup
τ∈Tt

− 1

α
log

esssup
ϑ∈Θ

Et

[
−e−α

(
C+Lτ+

∫ T
t
ϑtr
s dSs

)]
esssup
ϑ∈Θ

Et

[
−e−α

(
C+

∫ T
t
ϑtr
s dSs

)]



= − 1

α
log


esssup

(ϑ,τ)∈Θ×Tt
Et

[
−e−α

(
C+Lτ+

∫ T
t
ϑtr
s dSs

)]
esssup
ϑ∈Θ

Et

[
−e−α

(
C+

∫ T
t
ϑtr
s dSs

)]
 .

(3.7)

Let us show that At := esssup(ϑ,τ)∈Θ×TtEt

[
− e−α

(
C+Lτ+

∫ T
t
ϑtr
s dSs

)]
satisfies the supermartingale

property At ≥ Et[At+h], P -a.s. for all t, t+ h ∈ [0, T ]. Indeed, due to the choice of Θ in eq. (2.4)

the set

{
Et+h

[
− e−α

(
C+Lτ+

∫ T
t+h

ϑtr
s dSs

)] ∣∣∣ (ϑ, τ) ∈ Θ× Tt+h
}

is maximum-stable and thus

Et[At+h] = Et

[
esssup

(ϑ,τ)∈Θ×Tt+h
Et+h

[
−e−α

(
C+Lτ+

∫ T
t+h

ϑtr
s dSs

)]]

= esssup
(ϑ,τ)∈Θ×Tt+h

Et

[
Et+h

[
−e−α

(
C+Lτ+

∫ T
t+h

ϑtr
s dSs

)]]
≤ At, P -a.s..

Since the denominator in the last line of eq. (3.7) coincides with At for L = 0, it also satisfies the
supermartingale property. We conclude that there exists an event with full probability on which for
all t ∈ R+ the limits

(3.8) lim
s→t

s<t, s∈Q
esssup
τ∈Ts

πα,Cs (Lτ ) and lim
s→t

s>t, s∈Q
esssup
τ∈Ts

πα,Cs (Lτ ) exist and are finite.

This is because by applying the up-crossing theorem (see e.g. Proposition 3.14 (i) in Chapter 1 of
[21]) we have this property for both the numerator and the denominator in the last line of eq. (3.7),
and the quotient being bigger than exp(−α||L||∞) is bounded away from zero. By eq. (3.8), it is
immediate that the process eq. (6.4) in the proof of theorem 3.5 possesses finite left limits up to
evanescence. Together with eq. (6.8), eq. (3.8) also implies that eq. (6.4) is right-continuous up to
evanescence. Thus, we even have that the Snell envelope process V of theorem 3.5 is càdlàg.

4. Examples

This section provides some economic intuition behind equilibria in incomplete markets. The
phenomena described in the following two examples cannot occur in complete markets, in which
both players stop the contract with the aim to maximize their expected payoffs under the unique
martingale measures, regardless of their risk aversions and random endowments. For simplicity, we
consider the case that S = 1, i.e., trading gains in the underlyings need not be considered. The
payoff processes are not bounded, but the examples satisfy the assumptions in Hamadène and
Zhang [15], in which endowments can be considered by modifying the payoff processes in a straight
forward way.

The first example, in which equilibria are unique, illustrates how the writer’s optimal stopping
time depends on her random endowment.
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Example 4.1 (Impact of endowments on optimal stopping times). Let W be a standard Brownian
motion w.r.t. the filtration F. Consider the GCC with payoff processes Xt = Wt + µt and
Yt = Wt + µt + δ, t ∈ [0, T ], µ, δ ∈ R+. The process X can be interpreted as the value of a
nontraded asset and δ as the penalty the seller has to pay if she recalls the GCC prematurely.
Assume that αB/2 < µ < αA/2, 0 < δ < (αA/2 + µ)T , and CB = 0. Since for any σ ∈ T0, the
process

t 7→ − exp (−αBR(t, σ))

= − exp

(
−αBWt∧σ −

α2
B

2
(t ∧ σ)

)
exp

(
αB

(αB
2
− µ

)
(t ∧ σ)− αBδ1(t>σ)

)
is an (optional) submartingale, a dominant strategy for the buyer is to stop at maturity T . This
means that the drift is high enough to compensate the buyer for the inventory risk of the GCC. We
now distinguish two cases for the endowment of the seller:

Case 1: CA = 0. In this case, the seller has to solve the optimal stopping problem

sup
σ∈T0

E [− exp(αAR(T, σ))] .(4.1)

Applying the change of measure dP̃ /dP = exp(αAWT − α2
AT/2) yields

E [− exp(αAR(T, σ))]

= E

[
− exp

(
αAWσ −

α2
Aσ

2

)
exp

(
αA

(αA
2

+ µ
)
σ + αAδ1(σ<T )

)]
= −EP̃

[
exp

(
αA

(αA
2

+ µ
)
σ + αAδ1(σ<T )

)]
,

and the pathwise minimizer of the expression under the expectation EP̃ is given by σ = 0. Conse-
quently, σ ≡ 0 also solves (4.1), i.e., the seller recalls the contract immediately.

Case 2: CA = WT + µT , i.e., the seller holds a long position in the nontraded asset. Thus, she
has to solve the problem

sup
σ∈T0

E [− exp(−αA(WT + µT −R(T, σ)))] .

After the change of measure dP̃ /dP = exp(−αAWT − α2
AT/2), the problem reads

c sup
σ∈T0

EP̃ [− exp(αAR(T, σ))] = c sup
σ∈T0

EP̃
[
− exp(αA(W̃σ − αAσ + µσ + δ1(σ<T )))

]
,

where W̃t := Wt + αAt, t ∈ [0, T ], is a P̃ -standard Brownian motion by Girsanov’s theorem and
c := exp(αA(αA/2− µ)T ). By αA(µ− αA/2) < 0, the process

t 7→ − exp
(
αAW̃t − α2

At+ αAµt+ αAδ1(t<T )

)
is a submartingale. This yields that the supremum is attained at σ ≡ T , i.e., the contract is settled
at maturity.

Summing up, without endowment, the seller recalls the claim immediately to reduce her risk.
By contrast, if she holds a long position in the nontraded asset, a short position in the GCC is a
perfect hedging instrument. Thus, she tolerates the positive drift of the underlying and holds her
short position in the GCC up to maturity.

Remark 4.2. It is shown by Anthropelos and Žitković [1] (see Remark 3.17 and Lemma A.7
therein) that there is an, up to replicable payoffs unique, “mutually agreeable” European claim
given by B? := (αACA − αBCB)/(αA + αB), which the buyer B purchases from the seller A and
which leads to a Pareto-optimal allocation. An immediate consequence is that there is a mutual
incentive of the agents to trade European claims if and only if αACA − αBCB is nonreplicable
in the underlyings. After trading B?, the endowments of the buyer and the seller are given by
αA(CA +CB)/(αA + αB) and αB(CA +CB)/(αA + αB), respectively, up to replicable payoffs. The
special feature of exponential utility is that by the constant absolute risk-aversion, the risky-sharing
does not depend on the distribution of the aggregate endowment CA + CB between the agents before
trading. Consequently, the above mentioned Pareto-optimal allocation can be reached by a mutually
agreeable trade for any initial distribution of CA + CB between the agents.



NASH EQUILIBRIA FOR GAME CONTINGENT CLAIMS 11

Applied to Example 4.1, this yields that in Case 2, the agents would trade European claims and
in Case 1 not. This is reflected in the equilibria of the stopping game, in which the contract is
canceled immediately in Case 1 and not before maturity in Case 2. In Case 2 of Example 4.1, the
Pareto-optimal claim purchased by the buyer is given by αAWT /(αA + αB) up to constants. Of
course, it is not surprising that the equilibrium payoff of the GCC does in general not reproduce the
optimal claim in the model of [1] in which the agents can trade arbitrary European claims.

Another consequence of [1] is that if αACA − αBCB is replicable, then it is impossible that both
agents profit from entering into the GCC contract. However, by X ≤ Y , i.e., because premature
stopping is penalized, this does not necessarily imply that an existing contract would be canceled
immediately by one of the players. In addition, it is obvious that the optimal stopping game does,
in general, not simplify as in the special case of a complete financial market, in which both players
maximize their expected payoffs under the unique martingale measure.

The next example shows that the equilibrium values of the game are in general not unique.

Example 4.3 (Equilibrium values are not unique). Let W be again a standard Brownian motion.
Consider the payoff processes Xt = Wt and Yt = Wt + δ with 0 < δ < (αA/2)T , αB > 0, and
CA = CB = 0. Now, both risk-averse players have an incentive to stop as early as possible, but by
the penalty, they would prefer that the other player stops first. If the other player stops at T , the
best response of both players is to stop at zero. This implies that both pairs

(0, T ) and (T, 0) are NEPs,(4.2)

but with different values (uA, uB). The iterated best response in (5.5)/(5.6) leads to the equilib-
rium (0, T ). By symmetry, it is also possible to start with the best response of the seller which leads
to (T, 0).

But, the game possesses also other NEPs with P (τ ∧ σ > 0) = 1 that are not the outcome of
the above mentioned iterations starting with (T, T ). The equilibria are based on a partial payment
of the penalty δ. The idea is that the players “toss a coin” who has to stop first. But, since the
filtration F is continuous, a simple coin toss at time zero cannot be embedded in the model. Thus,
in the following, we approximate such a behavior, which leads to nontrivial NEPs.

Let ε > 0 be small enough s.t.

δ <
αA
2

(T − ε),(4.3)

exp

(
α2
Aε

2

)
≤ 2 exp(αAδ)

1 + exp(αAδ)
, and exp

(
α2
Bε

2

)
≤ 2

1 + exp(−αBδ)
.(4.4)

Consider at first the pair

τ0 := ε1{Wε≥0} + T1{Wε<0} and σ0 := ε1{Wε<0} + T1{Wε≥0}.(4.5)

This means that the random variable Wε is used for the coin toss which decides who has to stop at
ε. The pair (τ0, σ0) is not yet a NEP. Namely, by the tail probabilities of the normal distribution,
it happens that a player improves her expected utility by stopping even before ε if the conditional
probability that the other player stops is sufficiently small compared to the linear expected loss
she suffers by the waiting time. Now, we apply the iterated best response from (5.5)/(5.6) to the
stopping game restricted to the interval [0, ε] with terminal payoff Wε + δ1{Wε<0}. It follows directly
from the proof of Theorem 2.3 that the resulting limiting pair, denoted by (τ̃?, σ̃?), is a NEP of the
modified game. Based on this pair, we define the [0, T ]-valued stopping times

τ? := τ̃?1(τ̃?<ε) + ε1(τ̃?=ε, Wε≥0) + T1(τ̃?=ε, Wε<0)

and

σ? := σ̃?1(σ̃?<ε) + ε1(σ̃?=ε, Wε<0) + T1(σ̃?=ε, Wε≥0).

First observe that (τ̃?, σ̃?) and (τ?, σ?) lead to the same payoffs in their respective games. Since in
addition, by (4.3), (τ0, σ0) is a NEP of the corresponding game started at time ε, it follows that
(τ?, σ?) is a NEP in the original game.
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In addition, it can easily be seen that P (τ? = 0) = P (σ? = 0) = 0. Indeed, for the buyer, one
obtains the estimate

uB(τ0, σ
?) = −E

[
exp(−αBWσ?∧ε − αBδ1{σ?<τ0})

]
≥ −E

[
exp(−αBWε − αBδ1{σ?<τ0})

]
≥ −E

[
exp(−αBWε − αBδ1{Wε<0})

]
= −E

[
exp(−αBWε)

(
1 + (exp(−αBδ)− 1)1{Wε<0}

)]
≥ −E [exp(−αBWε)] (1 + (exp(−αBδ)− 1)P (Wε < 0))

= −1

2
E

[
exp

(
α2
Bε

2

)]
(1 + (exp(−αBδ))

> −1 = uB(0, σ?).(4.6)

Here, the first inequality follows from the submartingale property of exp(−αBW ) and the second
inequality from {Wε < 0} ⊂ {σ? < τ0}. The third inequality can be derived from Girsanov’s theorem

applied to the measure dP̃ /dP = exp(−αBWε−α2
Bε/2). The strict inequality holds by the choice of

ε in (4.4). (4.6) implies that τ ≡ 0 cannot be the best response to σ? and thus P (τ? > 0) > 0. If F0

is P -trivial, we are already done. Otherwise, the conditional version of (4.6) yields P (τ? = 0) = 0.
Then, the same calculations yield P (σ? = 0) = 0. Here, we use that uA(τ?, 0) = − exp(αAδ) by
P (τ? = 0) = 0.

This means that without any information on Wε, it cannot be optimal to stop at zero and pay
the full penalty (or resign to get payed it).

On the other hand, it follows from Lemma A.7 of Anthropelos and Žitković [1] that (4.2) are the
only Pareto-optimal NEPs. Indeed, for stopping times τ, σ, the payoff R(τ, σ) = Wτ∧σ + δ1{σ<τ} is
deterministic if and only if P (τ = 0) = 1 or P (σ = 0, τ > 0) = 1. But for a non-deterministic
R(τ, σ), the lemma tells that πB(R(τ, σ)) + πA(−R(τ, σ)) < 0. This means that the players may
agree that the seller pays to the buyer the amount

[
πB(R(τ, σ))− πA(−R(τ, σ)

]
/2 as a compensation

for exercising her claim. This would improve the expected utility of both players compared to playing
the game with (τ, σ).

5. Proof of Theorem 2.3

For πA and πB from eq. (3.3), define the functionals JA, JB : T0 × T0 −→ R by

JB(τ, σ) := πB0
(
R(τ, σ)

)
and JA(τ, σ) := πA0

(
−R(τ, σ)

)
.

By proposition 3.4, a NEP of the game eq. (2.6)/eq. (2.7) is a pair (τ∗, σ∗) ∈ T 2
0 satisfying

(5.1) JB(τ∗, σ∗) ≥ JB(τ, σ∗) and JA(τ∗, σ∗) ≥ JA(τ∗, σ), for all τ, σ ∈ T0.

To prove the existence of a pair (τ∗, σ∗) satisfying eq. (5.1), we follow the ideas of Hamadène and
Zhang [15]. But, to deal with the nonlinearity of the indifference valuation, we have to adjust the
proof for linear expectations at various places, mainly by applying proposition 3.2 and theorem 3.5.
To receive readability, we repeat the main proof of [15] while omitting only the parts which are
one-to-one translations.

One first constructs best response strategies through two sequences of stopping times (τ2n+1)n∈N0
,

(τ2n+2)n∈N0 for the buyer and the seller, respectively, and shows that both sequences are nonin-
creasing. Finally, one shows that the limits τ∗1 of τ2n+1 and τ∗2 of τ2n+2 as n tends to infinity define
a NEP (τ∗1 , τ

∗
2 ) = (τ∗, σ∗) satisfying eq. (5.1). Of course, the monotonicity of the sequences of

stopping times is key, since otherwise the best response strategies may oscillate.
Let τ1 := τ2 := T . Given τ2n−1, τ2n for some n ∈ N, we want to construct τ2n+1 as follows:

Consider the payoff process L2n+1 ∈ S∞ defined for t ∈ [0, T ] by

(5.2) L2n+1
t := Xt1{t<τ2n} +

(
XT1{τ2n=T} + Yτ2n1{τ2n<T}

)
1{t≥τ2n}.

Under eqs. (2.9) to (2.11), theorem 3.5 can be applied to L2n+1, and an optimal stopping time of
supτ∈T0 π

B
0 (L2n+1

τ ) is given by

(5.3) τ̃2n+1 := inf{t ≥ 0 : V 2n+1
t = L2n+1

t } = inf{t ≥ 0 : V 2n+1
t = Xt} ∧ τ2n,



NASH EQUILIBRIA FOR GAME CONTINGENT CLAIMS 13

where the πB-Snell envelope V 2n+1 is the unique right-continuous adapted process satisfying

(5.4) V 2n+1
t = esssup

τ∈Tt
πBt (L2n+1

τ ), P -a.s. t ∈ [0, T ]

(the second equality in eq. (5.3) follows from theorem 3.5(iv)).
Furthermore, we define

(5.5) τ2n+1 := τ̃2n+11{τ̃2n+1<τ2n} + τ2n−11{τ̃2n+1=τ2n}.

Remark 5.1. The payoff process L2n+1 is chosen to be càdlàg. This comes at the price that L2n+1
τ

differs from R(τ, τ2n) on the set {τ = τ2n < T}. Thus, it is not yet clear that τ̃2n+1 is a best
response strategy to τ2n. In addition, one takes τ2n+1 instead of τ̃2n+1. Yet, it is not even clear
that τ2n+1 is a stopping time, and, a fortiori, that it is also a best response strategy to τ2n.

Given τ2n, τ2n+1, the response τ2n+2 of the seller A is defined in the same way by

(5.6) τ2n+2 := τ̃2n+21{τ̃2n+2<τ2n+1} + τ2n1{τ̃2n+2=τ2n+1},

where τ̃2n+2 := inf{t ≥ 0 : V 2n+2
t = L2n+2

t } = inf{t ≥ 0 : V 2n+2
t = −Yt}∧τ2n+1 with payoff process

L2n+2
t := −Xτ2n+11{t≥τ2n+1} − Yt1{t<τ2n+1}

and πA-Snell envelope V 2n+2 satisfying

V 2n+2
t = esssup

τ∈Tt
πAt (L2n+2

τ ), P -a.s. t ∈ [0, T ].

Lemma 5.2. Assume eqs. (2.9) to (2.11). Then

(1) For any n ∈ N, τn is a stopping time and τn+2 ≤ τn.
(2) On the event {τn+1 = τn}, n ∈ N, one has τm = T for all m ≤ n.
(3) For any n ∈ N, {τn < τn+1} ⊂ {τ̃n+2 ≤ τn} .

Proof. The assertions are the same as in Lemmas 3.1 and 3.2 in [15], and the proof is one-to-one.
Only in (3.8) of [15], the linear Snell envelope has to be replaced by the nonlinear Snell envelope
from theorem 3.5. Here, we need properties (iii) and, again, (ii) of theorem 3.5. �

The following lemma shows that τ2n+1, τ2n+2 are indeed best responses. Though its proof is
analogous to that of Lemma 3.3 in [15], we provide it in section 6 for the reader’s convenience since
adjustments are required at many places.

Lemma 5.3. Assume eqs. (2.9) to (2.11). Then for any τ ∈ T0 and n ∈ N, it holds that

(5.7) JB(τ, τ2n) ≤ JB(τ2n+1, τ2n) and JA(τ2n+1, τ) ≤ JA(τ2n+1, τ2n+2).

By the monotonicity from lemma 5.2(i), the best response strategies possess pointwise limits

τ∗1 := lim
n→∞

τ2n+1 and τ∗2 := lim
n→∞

τ2n

that are of course again stopping times. To prove that (τ∗1 , τ
∗
2 ) is a NEP, it only remains to show

that the operations of taking limits and applying the indifference value operator can be interchanged.
The latter is done in the following two lemmas, which are proven in section 6, and used in the proof
of theorem 2.3 that we provide directly thereafter.

Lemma 5.4. Assume eqs. (2.9) to (2.11). Then for any τ ∈ T0, it holds that

(1) JB(τ, τ2n) −→ JB(τ, τ∗2 ), as n→∞.
(2) P [τ = τ∗1 < T ] = 0 implies JA(τ2n+1, τ) −→ JA(τ∗1 , τ), as n→∞.

Lemma 5.5. Assume eqs. (2.9) to (2.11). Then,

(1) JB(τ2n+1, τ2n) −→ JB(τ∗1 , τ
∗
2 ), as n→∞.

(2) JA(τ2n+1, τ2n+2) −→ JA(τ∗1 , τ
∗
2 ), as n→∞.

We are now ready to give a proof to theorem 2.3.
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Proof of theorem 2.3. By lemmas 5.3 to 5.5 we have JB(τ, τ∗2 ) ≤ JB(τ∗1 , τ
∗
2 ), for all τ ∈ T0 and

(5.8) JA(τ∗1 , τ) ≤ JA(τ∗1 , τ
∗
2 ), for all τ ∈ T0 satisfying P [τ = τ∗1 < T ] = 0.

To obtain that (τ∗1 , τ
∗
2 ) indeed is a NEP, it remains to show that eq. (5.8) holds for arbitrary τ ∈ T0.

To this end, let τ ∈ T0 and define the sequence (τ̂n)n∈N ⊂ T0 by

τ̂n :=
(
(τ + n−1) ∧ T

)
1{τ=τ∗1<T} + τ1Ω\{τ=τ∗1<T}, n ∈ N.

Then {τ̂n = τ∗1 < T} = ∅ for any n ∈ N so that eq. (5.8) gives

JA(τ∗1 , τ̂
n) ≤ JA(τ∗1 , τ

∗
2 ) for all n ∈ N.

Furthermore τ̂n ↓ τ almost surely as n ↑ ∞. With the right-continuity of the bounded process
t 7→ R(τ∗1 , t) and the continuity of πA0 (·), this implies JA(τ∗1 , τ) ≤ JA(τ∗1 , τ

∗
2 ). Overall, we have

shown that (τ∗1 , τ
∗
2 ) ∈ T 2

0 is a NEP and the proof is completed. �

6. Appendix

This section contains the proofs of proposition 3.2, theorem 3.5, and lemmas 5.3 to 5.5.

Proof of proposition 3.2. Without loss of generality let C = 0. By Theorem 13 in Mania and
Schweizer [31] and following the proof of Proposition 14 therein, we know that for any n ∈ N

(6.1) πα,00 (Hn + ηn)− πα,00 (Hn) = EQ
n

[ηn],

for Qn ∼ P given by dQn = E
(
α
2 (Ln(α) + L̃n(α)

)
T
dQE =: ZnT dQ

E , with Ln(α) and L̃n(α) being

BMO
(
QE
)
-martingales satisfying

(6.2) sup
n∈N

∥∥∥α
2

(
Ln(α) + L̃n(α)

)∥∥∥
BMO(QE)

≤ α

2
sup
n∈N

(
e‖Hn+ηn‖∞ + e‖Hn‖∞

)2

<∞,

where QE denotes the EMMM, and we refer to Kazamaki [25] for some essentials on BMO theory.
In the proof of Theorem 2.4 in [25], implication (a) =⇒ (b), the parameter p > 1 only has to

satisfy ||M ||BMO <
√

2(
√
p− 1). Thus, applied to M := α

2

(
Ln(α) + L̃n(α)

)
, and using eq. (6.2),

p can be chosen uniformly in n and one gets

sup
n∈N

EQ
E
[
(ZnT )

− 1
p−1

]
≤ cp,

where cp > 0 is a universal constant. Then, Hölder’s inequality gives for all n ∈ N,

(6.3)
(
EQ

E
[
|ηn|

1
p

])p
≤ EQ

E

[|ηn|ZnT ]
(
EQ

E
[
(ZnT )

− 1
p−1

])p−1

≤ EQ
n

[−ηn]cp−1
p .

Since the LHS of eq. (6.1) tends to 0, eq. (6.3) implies that ηn converges to 0 in QE-probability.
Because QE ∼ P holds, the assertion follows. �

Proof of theorem 3.5. For notational simplicity, we denote π := πα,C . For all s ∈ Q ∩ [0, T ], fix
throughout the proof a version Vs := esssupτ∈Ts πs(Lτ ) satisfying Vs ≥ Ls and for technical
convenience set Vt := LT for t > T . Define

(6.4) Ṽt := lim inf
s≥t,s∈Q,s→t

Vs := sup
m∈N

inf
s∈[t,t+1/m]∩Q

Vs, t ∈ [0, T ].

By right-continuity of L, we have Ṽ ≥ L. Furthermore let t0 ∈ [0, T ]. The real-valued mapping

Ṽ |Ω×[0,t0] can be written as

Ṽt(ω) = 1{t0}(t)Ṽt0(ω) + 1(t<t0) sup
m∈N

inf
s∈[t,(t+ 1

m )∧t0]∩Q
Vs(ω)

= 1{t0}(t)Ṽt0(ω) + 1(t<t0) sup
m∈N

inf
s∈Q,
s≤t0

(
1[s− 1

m ,s]
(t)Vs(ω) +∞1[s− 1

m ,s]
c(t)
)
.

By the usual conditions, Ṽt0 is Ft0 -measurable. Thus, Ṽ |Ω×[0,t0] is Ft0 ⊗ B([0, t0])-measurable, i.e.,

Ṽ is obviously progressively measurable.
Step 1: One has

(6.5) π0(Vs) = sup
τ∈Ts

π0(Lτ ) for all s ∈ Q ∩ [0, T ]
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and

(6.6) πt(Vs) ≤ Vt, P -a.s. for all t, s ∈ Q, 0 ≤ t ≤ s ≤ T.

Indeed, π is time consistent, strictly monotone, continuous and by the local property of πs(·), the
set {πs(Lτ ) | τ ∈ Ts} is maximum-stable. Consequently, the assertions follow one-to-one from the
standard arguments for the linear expectation, see, e.g., Lemma D.1 and Proposition D.2 in [22],
where (D.3) is only evaluated at deterministic and rational-valued stopping times.

Step 2: Let us show that there exists a set Ω1 ∈ F with P [Ω1] = 1 such that

(6.7) Ṽt(ω) = lim inf
s>t,s→t

Ṽs(ω), ∀t ∈ [0, T ], ω ∈ Ω1.

For t ∈ R \ Q, eq. (6.7) is satisfied for all ω ∈ Ω. Indeed, for all ω ∈ Ω and q ∈ Q, one has by

definition that Ṽq(ω) ≤ Vq(ω) and thus

lim inf
s>t,s→t

Ṽs(ω) ≤ lim inf
s>t,s∈Q,s→t

Vs(ω) = Ṽt(ω).

On the other hand, for every ε > 0 and m ∈ N, there exists sm ∈ R with sm ∈ (t, t + 1/m) and

Ṽsm(ω) ≤ lim infs>t,s→t Ṽs(ω) + ε. To every sm, there belongs a qm ∈ Q with qm ∈ (t, t+ 2/m) and

Vqm(ω) ≤ Ṽsm(ω) + ε. This yields Ṽt(ω) ≤ lim infs>t,s→t Ṽs(ω) + 2ε. Putting together, we arrive at
eq. (6.7) for all ω ∈ Ω and t ∈ R \Q.

Now let t ∈ Q. One has P -almost surely,

(6.8) sup
m∈N

inf
s∈(t,t+ 1

m ]∩Q
Vs = πt

(
sup
m∈N

inf
s∈(t,t+ 1

m ]∩Q
Vs

)
≤ sup
m∈N

inf
s∈(t,t+ 1

m ]∩Q
πt(Vs) ≤ Vt,

where for the first inequality, monotone convergence is used, and the second inequality holds by

eq. (6.6). On the paths where eq. (6.8) holds, it follows that Ṽt = lim infs>t,s→t Ṽs by the same
reasons as for irrational points. This implies eq. (6.7).

Step 3: Let us show that Ṽ satisfies (i). We start with deterministic stopping times, i.e., t, s ∈ R,
0 ≤ t ≤ s ≤ T and τ ≡ s. Since the case t = s is trivial, assume that t < s. Using again monotone
convergence and eq. (6.6), yields for any u ∈ [t, s] ∩Q that

πu(Ṽs) = πu

(
sup
m∈N

inf
v∈[s,s+1/m]∩Q

Vv

)
≤ sup
m∈N

inf
v∈[s,s+1/m]∩Q

πu(Vv) ≤ Vu, P -a.s..

By the right-continuity of π·(Ṽt), this leads to

(6.9) πt(Ṽs) ≤ Ṽt, P -a.s..

We now show that eq. (6.9) extends to stopping times, i.e., πt(Ṽτ ) ≤ Ṽt also holds for any stopping
time τ ∈ Tt. We first show that this holds for stopping times with finitely many values in [t, T ]. Let
τ be such a stopping time, valued in {t0, . . . , tN}, with t = t0 < t1 < . . . < tN . Then by translation
invariance, that is a special case of Property 3 in Proposition 3.1, one has

πtN−1
(Ṽτ ) = πtN−1

( N∑
k=1

1{τ=tk}Ṽtk

)
= πtN−1

(
1{τ=tN}ṼtN

)
+

N−1∑
k=1

1{τ=tk}Ṽtk .

Since {τ = tN} = {τ > tN−1} ∈ FtN−1
, the local property and eq. (6.9) give

πtN−1
(Ṽτ ) ≤ 1{τ=tN}ṼtN−1

+

N−1∑
k=1

1{τ=tk}Ṽtk = 1{τ≥tN−1}ṼtN−1
+

N−2∑
k=1

1{τ=tk}Ṽtk .

Using a backward induction in k = N − 1, N − 2, . . ., we obtain by time-consistency that πt0(Ṽτ ) ≤
1{τ≥t0}Ṽt0 , i.e., πt(Ṽτ ) ≤ Ṽt. Now for an arbitrary τ in Tt, there exists a sequence (τn)n of finitely-

valued stopping times τn decreasing to τ . By eq. (6.7), this implies Ṽτ ≤ lim infn→∞ Ṽτn . Then,
from monotonicity and continuity of πt(·) (note that this holds under the continuity assumption on
the filtration, see, proposition 3.1), we have

(6.10) πt(Ṽτ ) ≤ πt
(

lim inf
n→∞

Ṽτn

)
≤ lim inf

n→∞
πt(Ṽτn) ≤ Ṽt, P -a.s..

This means that Ṽ satisfies (i).
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Step 4: Let us show that

(6.11) π0(Ṽt) = sup
τ∈Tt

π0(Lτ ) for all t ∈ [0, T ].

Indeed, by eq. (6.10), it holds that Ṽt ≥ πt(Ṽτ ) ≥ πt(Lτ ) P -a.s. for all τ ∈ Tt which implies “≥”
by time-consistency and monotonicity of π. On the other hand: from eq. (6.5) and Tu ⊂ Tt for all

u ≥ t, it follows that π0(Ṽt) ≤ lim inf
u∈Q,u≥t, u→t

π0(Vu) ≤ sup
τ∈Tt

π0(Lτ ).

Step 5: Define τεt := inf{u ∈ [t, T ] ∩ Q | Lu ≥ Ṽu − ε}. Then τεt ∈ Tt. By eq. (6.11) and the

right-continuity of L, there exist [t, T ] ∩Q-valued stopping times σn with π0(Lσn) ≥ π0(Ṽt)− 1/n.

We have L ≤ Ṽ and L ≤ Ṽ − ε on [t, τε) ∩Q. Thus,

π0(Lσn) ≤ π0

(
Ṽσn − ε1{σn<τεt }

)
.

By Step 3, holds π0(Ṽσn) ≤ π0(Ṽt). Putting together: π0(Ṽσn) − π0

(
Ṽσn − ε1{σn<τεt }

)
→ 0, as

n→∞. From proposition 3.2, follows

(6.12) P [σn < τεt ] −→ 0, n→∞.
In addition one has

π0(Ṽσn∧τεt ) ≥ π0(Lσn1{σn≤τεt } + Ṽτεt 1{τεt<σn})

≥ π0(πσn∧τεt (Lσn))

= π0(Lσn) ≥ π0(Ṽt)−
1

n
,

(6.13)

where the second inequality holds because Ṽτεt = supm∈N infs∈[τεt ,(τ
ε
t + 1

m )∧σn]∩Q Vs on {τεt < σn},
P [Vs ≥ πs(Lσn) on {σn ≥ s}, ∀s ∈ [0, T ] ∩Q] = 1 and π·(Lσn) is right-continuous. By eq. (6.12),

we have Ṽσn∧τεt −→ Ṽτεt in probability as n→∞. Together with eq. (6.13) and continuity of π0(·),
this yields π0(Ṽτεt ) ≥ π0(Ṽt). On the other hand Lτεt ≥ Ṽτεt − ε and we arrive at

π0(Lτεt ) ≥ π0(Ṽt)− ε.
Let τ?t := supε>0 τ

ε
t . Since L has no negative jumps, Lτ?t ≥ limε→0 Lτεt and τ?t is an optimal

stopping strategy for Tt, i.e. π0(Lτ?t ) = π0(Ṽt).

One has Ṽτ?t ≥ Lτ?t and by Step 3, π0(Ṽτ?t ) ≤ π0(Ṽt). Thus, P
[
Ṽτ?t = Lτ?t

]
= 1 by the strict

monotonicity of π0(·). Since Lu = Ṽu for some u ∈ [t, τ?) would lead to a contradiction, we conclude

P
[
τ?t = inf{u ∈ R | u ≥ t, Lu = Ṽu}

]
= 1

and by the usual conditions inf{u ∈ R | u ≥ t, Lu = Ṽu} is a stopping time. Property (i) and the

optimality of τ?t yield that Ṽ coincides with the RHS of eq. (3.6) P -a.s..

Step 6: Putting together, we have shown that Ṽ is progressively measurable and satisfies both

(3.6) and the properties (i), (ii). Now, we proceed to right-continuity. First, we show that Ṽ (itself)
is right-continuous P -a.s. along stopping times. Let τ ∈ T0 with τ < T and (τn)n∈N ⊂ T0 with

τn ↓ τ for n ↑ ∞. Let us show that P [Ṽτn −→ Ṽτ ] = 1. By (6.7), it remains to show that

P

(
lim sup
n→∞

Ṽτn ≤ Ṽτ
)

= 1.(6.14)

For every m ∈ N, we consider the debut Dm := inf{u > τ | |Lu − Lτ | > 1/m} ∧ T . By the right-
continuity of L, one has Dm > τ . By the continuity of the filtration, there exists a continuous version
of the martingale t 7→ E(Dm | Ft), and thus Dm possesses the announcing sequence (Tm,k)k∈N ⊂ T0

given by Tm,k := inf{t > τ | E(Dm | Ft) ≤ t+ 1/k}. We want to use this to show that

P (τ < σm < Dm) = 1 for some σm ∈ T Q
0 .(6.15)

By a standard exhausting argument, it is sufficient to construct such a σm on the set B :=
{E(Dm | Fτ ) > τ + 1/k0} ∈ Fτ , k0 ∈ N. On B, one has τ < Tm,k0 < Tm,k0+1 < Tm,k0+2 < . . . <
Dm. We choose l as the minimal integer s.t. P (B ∩ {bTm,k0 l + 1c/l > Tm,k0+1}) ≤ 2−k0 and
put σm = bTm,k0 l + 1c/l on B ∩ {bTm,k0 l + 1c/l ≤ Tm,k0+1}. On B ∩ {bTm,k0 l + 1c/l > Tm,k0+1},
we proceed analogously and determine some rational between Tm,k0+1 and Tm,k0+2 which is only
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missed on B with unconditional probability smaller than 2−(k0+1). By the lemma of Borel-Cantelli,
this construction leads to a stopping time σm satisfying (6.15). By (6.15), there also exists a
δm ∈ R+ \ {0} small enough s.t. P (Am) ≥ 1− 1/m where Am := {σm ≥ τ + δm}.

For m large, by the construction of σm, the European indifference value of the claim Vσm shortly
after time τ is similar to the American one. Thus, we can show (6.14) by using the right-continuity
of the dynamic European indifference price derived in Mania and Schweizer [31]. In the following,
we work out this idea in detail. Let u ∈ Q. On {τ ≤ u ≤ σm}, one has

Vu ≤ πu
(

sup
τ≤v≤σm

Lv ∨ Vσm
)
≤ πu(Vσm + 2/m) = πu(Vσm) + 2/m, P -a.s.,

where the first inequality uses the fact that for all σ ∈ Tu

πu(Lσ) = πu(1{σ≤σm}Lσ + 1{σ>σm}πσm(Lσ)) ≤ πu

(
sup

u≤v≤σm
Lv ∨ Vσm

)
P -a.s. on {σm ≥ u},

and the second inequality holds by (6.15). It follows that for all δ ∈ (0, δm]

Ṽτn ≤ sup
u∈Q,τ≤u≤τ+δ

Vu ≤ sup
u∈Q,τ≤u≤τ+δ

πu(Vσm) + 2/m(6.16)

P -a.s. on Am ∩ {τn < τ + δ}.
By the right-continuity of the European indifference price, i.e.,

πt(Vσm) −→ πτ (Vσm) P -a.s. for t ↓ τ,(6.17)

the RHS of (6.16) converges P -a.s. to πτ (Vσm) + 2/m for δ ↓ 0. This yields

lim sup
n→∞

Ṽτn ≤ πτ (Vσm) + 2/m P -a.s. on Am.(6.18)

On the other hand, by σm > τ , one has

Ṽτ = sup
k∈N

inf
s∈[τ,τ+1/k]∩Q

Vs ≥ sup
k∈N

inf
s∈[τ,τ+1/k]∩Q

πs(Vσm) = πτ (Vσm), P -a.s.,(6.19)

where the last equality follows again from (6.17). Putting (6.18) and (6.19) together, we conclude

P

(
lim sup
n→∞

Ṽτn ≤ Ṽτ + 2/m

)
≥ P (Am) ≥ 1− 1/m, ∀m ∈ N,

which implies (6.14).

Step 7: Let V̂ be the P -optional projection of the bounded process Ṽ , i.e., V̂ is optional and

V̂τ = Eτ [Ṽτ ] P -a.s. for all τ ∈ T0 (see, e.g., Theorem 5.1 of He et al. [16]). Since Ṽ is progressively

measurable, Ṽτ is Fτ -measurable, and we arrive at V̂τ = Ṽτ P -a.s. for all τ ∈ T0. It follows from a

section theorem (see, e.g., Theorem 4.7 in [16]) that for every t ∈ [0, T ], the first time V̂ hits L

after time t is a stopping time. Then clearly, V̂ , Ṽ , and L coincide P -a.s. at the minimum of this
stopping time and τ?t from Step 5. This implies the equality of the two stopping times. Since the

optional process V̂ is P -a.s. right-continuous along stopping times, it follows again by a section

theorem that it is right-continuous up to evanescence. With the usual conditions, one can choose V̂
to be right-continuous everywhere. Uniqueness is obvious.

Step 8: Let us show that the optional projections of eq. (6.4) satisfy (iii). Let σ ∈ T0 and L1, L2

be two payoff processes satisfying L1 = L2 on [σ, T ], to which we associate V 1, V 2 and Ṽ 1, Ṽ 2 as
above. Let τ ∈ T0, s ∈ Q, m ∈ N. By {τ ≥ σ, τ ∈ [s− 1/m, s]} ∈ Fs, the local property of πs(·)
implies for i ∈ {1, 2},

1{τ≥σ, τ∈[s− 1
m ,s]} esssup

ν∈Ts
πs(L

i
ν) = esssup

ν∈Ts
πs(1{τ≥σ, τ∈[s− 1

m ,s]}L
i
ν) P -a.s,

where, by assumption, the RHS does not depend on i. Hence we obtain

(6.20) 1{τ≥σ, τ∈[s− 1
m ,s]}V

1
s = 1{τ≥σ, τ∈[s− 1

m ,s]}V
2
s P -a.s..

On the other hand, the definition of Ṽ yields for i ∈ {1, 2},

(6.21) 1{τ≥σ}Ṽ
i
τ = sup

m∈N
inf
s∈Q

(
1{τ≥σ}1{τ∈[s− 1

m ,s]}V
i
s +∞1{τ≥σ}1{τ 6∈[s− 1

m ,s]}
)
.
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Putting eqs. (6.20) and (6.21) together, one obtains 1{τ≥σ}Ṽ
1
τ = 1{τ≥σ}Ṽ

2
τ P -a.s.. By Step 7, one

can replace Ṽ 1 and Ṽ 2 by their optional projections. Then, assertion (iii) follows again by applying
a section theorem.

Step 9: Assertion (iv) follows with the same arguments as in Step 8 using the fact that L = Lσ
on [σ, T ] implies

1{τ≥σ, τ∈[s− 1
m ,s]}Lν = 1{τ≥σ, τ∈[s− 1

m ,s]}Lσ, τ ∈ T0, s ∈ Q, m ∈ N, ν ∈ Ts

and, by Fs-measurability, the RHS coincides with its πs-indifference value. �

Proof of lemma 5.3. We show this using the nonlinear Snell envelope of theorem 3.5. Consider
the construction eqs. (5.2) to (5.5). By theorem 3.5(iv), one has V 2n+1

τ2n = L2n+1
τ2n = XT1{τ2n=T} +

Yτ2n1{τ2n<T}. Since X ≤ Y and V 2n+1 dominates L2n+1, we conclude that Xτ1{τ≤τ2n} +

Yτ2n1{τ>τ2n} ≤ V
2n+1
τ∧τ2n for any τ ∈ T0. Monotonicity of πB0 (·) and the πB-supermartingale property

of V 2n+1 (see theorem 3.5(i)) imply

JB(τ, τ2n) = πB0
(
Xτ1{τ≤τ2n} + Yτ2n1{τ>τ2n}

)
≤ πB0

(
V 2n+1
τ∧τ2n

)
≤ V 2n+1

0 .(6.22)

On the other hand, as already observed in eq. (5.3),

πB0 (L2n+1
τ̃2n+1

) = sup
τ∈T0

πB0 (L2n+1
τ ) = V 2n+1

0 .

Using the definition of τ̃2n+1, part 3. of lemma 5.2 implies that {τ̃2n+1 = τ2n} ⊂ {τ2n−1 ≥ τ2n}.
This gives that L2n+1

τ2n+1
= L2n+1

τ̃2n+1
, i.e., τ2n+1 is also the maximizer of supτ∈T0 π

B
0 (L2n+1

τ ). In addition,

by part 2. of lemma 5.2, {τ2n+1 = τ2n} = {τ2n+1 = τ2n = T}, which implies that

L2n+1
τ2n+1

= Xτ2n+1
1{τ2n+1<τ2n} +XT1{τ2n+1=τ2n=T} + Yτ2n1{τ2n+1>τ2n}

= Xτ2n+1
1{τ2n+1≤τ2n} + Yτ2n1{τ2n+1>τ2n}.

Putting together, one obtains

JB(τ2n+1, τ2n) = πB0
(
Xτ2n+1

1{τ2n+1≤τ2n} + Yτ2n1{τ2n+1>τ2n}
)

= πB0
(
L2n+1
τ2n+1

)
= V 2n+1

0 .
(6.23)

Combining eqs. (6.22) and (6.23) yields the first inequality in eq. (5.7). The second inequality of
eq. (5.7) is obtained similarly but simpler, since t 7→ R(τ2n+1, t) is already càdlàg and L2n+2

t =
−R(τ2n+1, t) for all t ∈ [0, T ]. �

Proof of lemma 5.4. Let τ ∈ T0.
Part 1: By τ2n ≥ τ∗2 for all n ∈ N, the right-continuity of t 7→ R(τ, t), and the continuity of πB0 (·),
it follows for JB(τ, τ2n) := πB0

(
R(τ, τ2n)

)
that

lim
n→∞

JB(τ, τ2n) = JB(τ, τ∗2 ).

Part 2: Since t 7→ R(t, τ) may not be right-continuous, we cannot argue as in Part 1. Instead, we
apply the arguments of Part 1 to the right limit t 7→ −R(t+, τ) and obtain

lim
n→∞

JA(τ2n+1, τ) = πA0
(
−Xτ∗1

1{τ>τ∗1 } − Yτ1{τ≤τ∗1 }
)
.

But, under the assumption that P [τ = τ∗1 < T ] = 0, the RHS coincides with JA(τ∗1 , τ), and we are
done. �

Proof of lemma 5.5. We first show part 2. By definition, one has

JA(τ2n−1, τ2n) = πA0 (Gn), where Gn := −Xτ2n−1
1{τ2n≥τ2n−1} − Yτ2n1{τ2n<τ2n−1}.

One can write Gn = Hn + ηn, where

ηn := (Xτ∗1
− Yτ∗1 )1{τ2n<τ2n−1, τ∗1 =τ∗2 }

and

Hn = −Xτ2n−1
1{τ2n≥τ2n−1, τ∗1<τ

∗
2 } − Yτ2n1{τ2n<τ2n−1, τ∗1<τ

∗
2 }

−Xτ2n−1
1{τ2n≥τ2n−1, τ∗1>τ

∗
2 } − Yτ2n1{τ2n<τ2n−1, τ∗1>τ

∗
2 }

−Xτ2n−1
1{τ∗1 =τ∗2 } + (Xτ2n−1

−Xτ∗1
+ Yτ∗2 − Yτ2n)1{τ2n<τ2n−1, τ∗1 =τ∗2 }.

(6.24)
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By the condition eq. (2.10), ηn is nonpositive. It is the negative of the hypothetical limiting penalty
on the event that for the approximating stopping times, the seller stops before the buyer (hence,
has to pay the penalty), whereas the limiting stopping times coincide (i.e., actually no penalty has
to be paid in the limit). After correcting for this term, which potentially produces a discontinuity,
it is easy to see from eq. (6.24) that by the right-continuity of X and Y , Hn = Gn − ηn converges
pointwise to

H := −Xτ∗1
1{τ∗1≤τ∗2 } − Yτ∗2 1{τ∗1>τ∗2 }.

For this, note in addition that 1{τ2n<τ2n−1, τ∗1>τ
∗
2 } → 1{τ∗1>τ∗2 }, 1{τ2n≥τ2n−1, τ∗1<τ

∗
2 } → 1{τ∗1<τ∗2 },

1{τ2n<τ2n−1, τ∗1<τ
∗
2 } → 0 and 1{τ2n≥τ2n−1, τ∗1>τ

∗
2 } → 0, as n→∞. Then, the continuity of πA0 (·) and

the uniform boundedness of X,Y give

πA0
(
Hn
)
−→ πA0

(
H
)

= JA(τ∗1 , τ
∗
2 ) as n→∞.

This already implies that

(6.25) lim sup
n→∞

JA(τ2n−1, τ2n) ≤ JA(τ∗1 , τ
∗
2 ).

On the other hand, lemma 5.3 gives

(6.26) JA(τ2n−1, τ) ≤ JA(τ2n−1, τ2n) for any τ ∈ T0.

Let τ̂ be defined by τ̂ := τ∗21{τ∗2<τ∗1 } + T1{τ∗2≥τ∗1 }. Then, τ̂ is a stopping time satisfying P [τ̂ =
τ∗1 < T ] = 0, and part 2. of lemma 5.4 implies

(6.27) lim
n→∞

JA(τ2n−1, τ̂) = JA(τ∗1 , τ̂) = JA(τ∗1 , τ
∗
2 ).

Putting eq. (6.25), eq. (6.26) for τ = τ̂ , and eq. (6.27) together yields

lim
n→∞

JA(τ2n−1, τ2n) = JA(τ∗1 , τ
∗
2 ).

We now turn to the proof of part. 1 of the lemma. First note that it is already shown that

lim
n→∞

πA0 (Hn + ηn) = πA0 (H) = lim
n→∞

πA0 (Hn).

Hence, proposition 3.2 implies that

(6.28) ηn −→ 0 in probability as n→∞.
This means that if the hypothetical limiting penalty does not vanish, then the probability that the
seller stops shortly before the buyer tends to zero. The intuition behind this is that on the event
that the limiting stopping times coincide, such an action by the seller cannot be a best response
since the buyer stops shortly afterwards without receiving the penalty. Part 1. of lemma 5.2 yields
{τ2n < τ2n+1} ⊂ {τ2n < τ2n−1}, hence by eq. (6.28) this leads to

η̃n := (Yτ∗1 −Xτ∗1
)1{τ2n<τ2n+1, τ∗1 =τ∗2 } −→ 0 in probability as n→∞.

Now, the proof follows as in part 2, with an analogue decomposition of the payoffXτ2n+1
1{τ2n≥τ2n+1}+

Yτ2n1{τ2n<τ2n+1} and indifference valuation πB0 instead of πA0 . �
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[19] J. Kallsen and C. Kühn. Pricing derivatives of American and game type in incomplete markets. Finance Stoch.,

8(2):261–284, 2004.
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(K. Kentia, C. Kühn) Institut für Mathematik, Goethe-Universität Frankfurt, D-60054 Frankfurt

a.M., Germany
E-mail address: kentia @ math.uni-frankfurt.de, ckuehn @ math.uni-frankfurt.de


	1. Introduction
	2. Problem formulation and main result
	3. Indifference value
	3.1. Literature review on nonlinear optimal stopping and new contribution

	4. Examples
	5. Proof of Theorem 2.3
	6. Appendix
	Acknowledgments
	References

