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Abstract

A convertible bond is a security that the holder can convert into a specified
number of underlying shares. We enrich the standard model by introducing some
default risk of the issuer. Once default has occured payments stop immediately. In
the context of a reduced form model with infinite time horizon driven by a Brownian
motion, analytical formulae for the no-arbitrage price of this American contingent
claim are obtained and characterized in terms of solutions of free boundary problems.
It turns out that the default risk changes the structure of the optimal stopping
strategy essentially. Especially, the continuation region may become a disconnected
subset of the state space.
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1 Introduction

The market for convertible bonds has been growing rapidly during the last years and the

corresponding optimal stopping problems have attracted much attention in the literature

on mathematical finance. One has to distinguish between reduced form models where the

stock price process of the issuing firm is exogenously given by some stochastic process and

structural models where the starting point is the firm value which splits in the total equity

value and the total debt value. Within a firm value model the pricing problem is treated in

Ŝırbu, Pikovsky and Shreve [15] and Ŝırbu and Shreve [16]. In contrast to earlier articles

of Brennan and Schwartz [4] and Ingersoll [11, 12], [15, 16] includes the case where an

earlier conversion of the bond can be optimal that necessitates to address a nontrivial free-

boundary problem. In the context of a reduced form model Bielecki, Crépey, Jeanblanc

and Rutkowski [2] made quite recently a comprehensive analysis of interesting features

of convertible bonds. Especially they model the interplay between equity risk and credit
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risk, cf. also Remark 1.2 (iii). This is done for the nonperpetual case. Thus the pricing

problem has finally to be solved by numerical methods.

In this article we work with reduced form models where such a contract without a

recall option for the issuer can be expressed as a standard American contingent claim

(see also Davis and Lischka [5] for a detailed introduction and a precise description of the

contract). The special feature of the current article is that we enrich the standard Black

and Scholes model by introducing some default risk of the issuer. Once default has occured

payments stop immediately. The main purpose is to obtain analytical formulae for the no-

arbitrage price of a perpetual convertible bond under different default intensities through

characterizations in terms of free boundary problems. It turns out that the default risk

changes the structural behavior of the solution essentially. Roughly speaking, in models

without default bonds are converted only by the time the stock price is high, cf. [4], [9],

[11], [12], [15], and [16]. The ratio behind this is that for low stock prices the holder

prefers collecting the prespecified coupon payments, whereas for higher stock prices the

dividends payed out exclusively to stockholders become more attractive which may cause

the bondholder to convert. We model the default intensity of the issuer as a nonincreasing

function of the current stock price. In this setting also a low stock price may cause the

holder to convert the bond (even if the yield is low) in order to get rid of the high risk

that the issuer defaults which would make the contract worthless.

The paper is organized as follows. In Subsection 1.1 we introduce the stochastic model.

Stopping times depending on the default state of the issuer are reduced to stopping times

without using this information. We do this in a mathematical framework differing from

the standard one in credit risk modeling which is based on the progressive enlargement of

the filtration without the default event, cf. e.g. Chapter 5 in [3]. We think this provides

some interesting additional insights – but the resulting payoff process (1.4) is of course the

same. Subsection 1.3 provides some general properties of the value function of convertible

bonds with varying default intensities. In Section 2 we consider the simplifying case that

there are two different default intensities depending on the current stock price. In Section 3

we consider the case that the default intensity is a power function of the current stock

price (with negative exponent). In Section 4 the results of Sections 2 and 3 are represented

by some plots. Parts of the unavoidable technical proofs are left to the appendix.

1.1 The model

Consider the following Black and Scholes market. We have a filtered probability space

(Ω,F , F = (Ft)t∈R≥0∪{+∞}, P ), where the filtration F satisfies the usual conditions and

F = F∞ = σ(Ft, t ∈ R≥0). The riskless asset B is given by Bt = ert for all t ≥ 0, where

r > 0 is the interest rate. The process S models the risky stock paying dividends at rate

δSt, where δ ∈ (0, r). S is given by the formula

St = exp(σWt + (r − δ − σ2/2)t), t ≥ 0,
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where σ > 0 is the volatility and W a standard Brownian motion under the unique

equivalent martingale measure P ∼ P . This means that the discounted cum dividend

cumulative price process (exp(−rt)St +
∫ t

0
exp(−ru)δSu du)t≥0 is a P-martingale. Let for

each s > 0, the measure Ps be the translation of P such that Ps(S0 = s) = 1. F is the

natural filtration generated by W .

In this market we consider a perpetual convertible bond, that is an American contin-

gent claim with infinite horizon which gives the holder the right to convert the contract

at a (stopping) time of his choosing in a predetermined number γ ∈ R>0 of stocks, while

receiving coupon payments at rate c > 0 up to this (possibly never occuring) time. If de-

fault occurs before the conversion time of the holder, the contract is terminated and the

holder is left with only the coupon payments he has collected up to default. For simplicity

(and as it would not be an interesting feature in combination with default risk) we do not

allow for recalling, i.e. the issuer may not terminate the contract.

For including default in the mathematical model we extend the probability space above

to F ⊗B(R>0) containing a random variable e ∈ R>0 which is both under P and under P
independent of S and exponentially distributed with parameter 1. We allow for the default

intensity of the issuer to depend on the current value of the stock, namely it is given by

the process (χ(St))t≥0 for some suitable non-negative Borel-measurable function χ. That

is to say, defining the process ϕ by

ϕt =

∫ t

0

χ(Su) du, t ≥ 0, (1.1)

the time of default is defined as

ϕ−1(ω, e) := inf{t ≥ 0 |ϕt(ω) ≥ e},

which is the generalized left-continuous inverse of ϕ (with the usual convention that

inf ∅ = ∞). Note that this corresponds to the first jump time of a Cox process with

intensity process (χ(St))t≥0. Throughout this article we will only consider non-negative

intensity functions χ : R>0 → R≥0 for which (1.1) defines a finitely valued non-decreasing

continuous process.

The payoff process X corresponding to such defaultable convertible bond is thus given

by

Xt(ω, e) := 1{ϕt(ω)<e}

(
e−rtγSt(ω) +

∫ t

0

ce−ru du

)
+ 1{ϕt(ω)≥e}

∫ ϕ−1(ω,e)

0

ce−ru du

for all t ≥ 0 and X∞(ω, e) :=
∫ ϕ−1(ω,e)

0
ce−ru du.

Definition 1.1. A stopping time w.r.t. the enlarged information is an (F ⊗ B(R>0) −
B(R≥0∪{+∞}))-measurable mapping τ : Ω×R>0 → R≥0∪{+∞} with {ω ∈ Ω | τ(ω, u) ≤
t} ∈ Ft for all t ∈ R≥0, u ∈ R>0 such that for all ω ∈ Ω, u ∈ R>0 the implication

τ(ω, u) < ϕ−1(ω, u) =⇒ ∀u′ > ϕτ(ω,u)(ω) : τ(ω, u′) = τ(ω, u) (1.2)
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holds. The set of these stopping times is denoted by T̃ .

Remarks 1.2. (i) The lhs of (1.2) means that there is pre-default stopping. As the

default event should be non-predictable we assume that this stopping takes place ir-

respective of when exactly default occurs after τ(ω, u), i.e. for all u′ with ϕ−1(ω, u′) >

τ(ω, u) we should have τ(ω, u′) = τ(ω, u).

(ii) By augmenting the model with the default event, the market becomes incomplete. On

the enlarged probability space the set of martingale measures is no longer a single-

ton. The measure P introduced above is the so-called minimal martingale measure

of Föllmer and Schweizer [8]. This measure has the nice property that it respects

orthogonality in the sense that the ”untradable” random variable e remains inde-

pendent of S and possesses the same distribution as under P .

(iii) In our model default of the issuer is not identified with default of the firm. This

includes so-called exchangeable bonds where the issuer is not the firm itself but

typically one of its major shareholders. Thus the default intensity χ(St) does not

enter into the no-arbitrage drift condition. Note that this differs e.g. from the model

in [2]. An exchangeable bond may be converted into existing shares and not into new

shares. This destroys the advantages a firm value model possesses in comparison to

a reduced form model.

Since X stays constant after default and by the non-predictability of e from Defini-

tion 1.1, it is enough to consider F-stopping times and average over e.

Proposition 1.3. Let Ta,b denote the set of [a, b]-valued F-stopping times. We have for

all s ∈ R>0

sup
τ∈eT Es [Xτ ] = sup

T0,∞

Es [Lτ ] , (1.3)

where the F-adapted continuous process (Lt)t∈R≥0∪{+∞} is given by

Lt := e−rt−ϕtγSt +

∫ t

0

ce−ru−ϕu du, t ∈ R≥0 (1.4)

and L∞ :=
∫∞

0
ce−ru−ϕu du.

Remark 1.4. The proof is based on representation (1.8) which says that any stopping

time w.r.t. the enlarged information can be expressed by F- stopping times. This is an

analogous result to Dellacherie, Maisonneuve, and Meyer [6], page 186, for the standard

mathematical framework based on the progressive enlargement of the filtration without the

default event, cf. Chapter 5 in [3].
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Proof. Step 1. Given a σ ∈ T0,∞ we obviously have that τ(ω, e) := σ(ω), ∀e ∈ R>0, is an

element of T̃ and we can calculate

Es

[
Xτ(ω,e)(ω, e)

]
= Es

[
1{ϕσ(ω)(ω)<e}

(
e−rσ(ω)γSσ(ω)(ω)

+

∫ σ(ω)

0

ce−ru du

)
+ 1{ϕσ(ω)(ω)≥e}

∫ ϕ−1(ω,e)

0

ce−ru du

]

= Es

[
e−ϕσ(ω)(ω)

(
e−rσ(ω)γSσ(ω)(ω) +

∫ σ(ω)

0

ce−ru du

)

+

∫ ϕσ(ω)(ω)

0

e−ξ

∫ ϕ−1(ω,ξ)

0

ce−ru du dξ

]
, (1.5)

where the second equality uses that e is independent of F and exponentially distributed

with parameter 1. By interchanging the order of integration and using that u < ϕ−1(ω, ξ) ⇔
ϕ(ω, u) < ξ we obtain for any ω ∈ Ω∫ ϕσ(ω)(ω)

0

e−ξ

∫ ϕ−1(ω,ξ)

0

ce−ru du dξ =

∫ σ(ω)

0

ce−ru

∫ ϕσ(ω)(ω)

ϕu(ω)

e−ξ dξ du

=

∫ σ(ω)

0

ce−ru−ϕu(ω) du− e−ϕσ(ω)(ω)

∫ σ(ω)

0

ce−ru du.

Thus the rhs of (1.5) coincides with Es

[
Lσ(ω)(ω)

]
which implies that supτ∈eT Es [Xτ ] ≥

supT0,∞ Es [Lτ ].

Step 2. To establish the opposite direction, take a τ ∈ T̃ and let

σ(ω) := inf{t ∈ Q>0 | τ(ω, u) ≤ t, for some u ∈ Q>0 with ϕt(ω) < u}, (1.6)

(recall that inf ∅ = ∞) and

σ̃(ω, e) := τ(ω, e) ∨ ϕ−1(ω, e). (1.7)

Let us show that

σ ∈ T0,∞ and τ(ω, e) =

{
σ(ω) for ϕσ(ω)(ω) < e

σ̃(ω, e) for ϕσ(ω)(ω) ≥ e.
(1.8)

First, note that for every t > 0 we have

{ω ∈ Ω | σ(ω) < t} =
⋃

s∈Q∩(0,t)

⋃
u∈Q>0

{ω ∈ Ω | τ(ω, u) ≤ s and ϕs(ω) < u}︸ ︷︷ ︸
∈Fs⊂Ft

∈ Ft.

Thus, by the usual conditions of F, we have indeed σ ∈ T0,∞. That for any e ∈ R>0,

σ̃(·, e) ∈ T0,∞ with σ̃(·, e) ≥ ϕ−1(·, e) is obvious.
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Let (ω, e) ∈ Ω× R>0 with e > ϕσ(ω)(ω). Let us show that

τ(ω, e) = σ(ω). (1.9)

First suppose that σ(ω) = ∞, so that e > ϕ∞(ω) and ϕ−1(ω, e) = ∞. From (1.6)

we see that this means τ(ω, u) = ∞, ∀u ∈ Q>0 ∩ (ϕ∞(ω),∞). If it were the case that

τ(ω, e) < ∞, then by (1.2) we would have τ(ω, u) = τ(ω, e), ∀u ∈ (ϕτ(ω,e)(ω),∞), but

combining this with the previous sentence we would arrive at τ(ω, e) = ∞. Thus (1.9)

holds for σ(ω) = ∞.

Now suppose that σ(ω) < ∞. By definition of the infimum and the continuity of the

paths of ϕ there is a sequence (tn, un)n∈N ⊂ Q2
>0 with tn ↓ σ(ω), σ(ω) ≤ tn < ϕ−1(ω, e),

ϕtn(ω) < un and τ(ω, un) ≤ tn for all n ∈ N. For any n ∈ N it follows from ϕtn(ω) < un

and τ(ω, un) ≤ tn that τ(ω, un) < ϕ−1(ω, un) and from τ(ω, un) ≤ tn and tn < ϕ−1(ω, e)

that e > ϕτ(ω,un)(ω). Combining these with (1.2) gives

τ(ω, un) = τ(ω, e), ∀n ∈ N, (1.10)

and since τ(ω, un) ≤ tn ↓ σ(ω) it follows that

τ(ω, e) ≤ σ(ω).

To establish the reversed inequality and thus (1.9) it is on account of (1.10) enough to

show σ(ω) ≤ τ(ω, un), ∀n ∈ N. If this were not true we would have an s ∈ (τ(ω, un), σ(ω))∩
Q for some n ∈ N. Using this with σ(ω) ≤ tn and ϕtn(ω) < un it would follow that

τ(ω, un) ≤ s and ϕs(ω) ≤ ϕσ(ω)(ω) ≤ ϕtn(ω) < un, which would by (1.6) result in

σ(ω) ≤ s and thus a contradiction.

Finally, let (ω, e) ∈ Ω × R>0 with e ≤ ϕσ(ω)(ω). We need to show that τ(ω, e) ≥
ϕ−1(ω, e). Assume that τ(ω, e) < ϕ−1(ω, e), so that we could find an s ∈ Q with

ϕτ(ω,e)(ω) < ϕs(ω) < e ≤ ϕσ(ω)(ω).

By the first and second inequality, together with (1.2), we would have that s is in the set

on the rhs of (1.6) and thus σ(ω) ≤ s. But this contradicts with the last two inequalities.

Thus we have established (1.8).

From (1.8) we see that if either ϕτ(ω,e)(ω) < e or ϕσ(ω)(ω) < e, then τ(ω, e) = σ(ω).

By this property it follows directly from the definition of X that

Xτ(ω,e)(ω, e) = Xσ(ω)(ω, e).

The same calculation as in Step 1 shows that Es

[
Xτ(ω,e)(ω, e)

]
= Es

[
Lσ(ω)(ω)

]
and the

statement of the proposition follows.

We conclude with some notation.

Definition 1.5. (i) By v : R>0 → R>0 we denote the value given by the rhs of (1.3) as

a function of the starting price of the stock S.
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(ii) The infinitesimal generator of S we denote by L, that is

L :=
σ2

2
s2 ∂2

∂s2
+ (r − δ)s

∂

∂s
.

(iii) For any interval I ⊂ R>0 we denote by τ(I) the first exit time of I, that is τ(I) :=

inf{t ≥ 0 |St 6∈ I}.

1.2 Constant default intensity

If the intensity function χ in (1.1) is constant, the problem (1.3) can be reduced to the

case without default and a higher discount factor. This shows the following proposition.

Its proof follows directly from Proposition 1.3 and [9], Theorem 4.1(i) and is therefore

omitted.

Proposition 1.6. Let χ(s) = q for some q ∈ R≥0. We denote the associated value function

by v̂q, that is

v̂q(s) := sup
τ∈T0,∞

Es

[
e−(r+q)τγSτ +

∫ τ

0

ce−(r+q)u du

]
. (1.11)

Let βq
1 < 0 < 1 < βq

2 be the solutions of σ2β(β − 1)/2 + (r − δ)β − (r + q) = 0, so that

βq
1β

q
2 =

−2(r + q)

σ2
and (βq

2 − 1)(1− βq
1) =

2(δ + q)

σ2
. (1.12)

We have that the optimal stopping time in (1.11) is given by τ(0, ŝq), where

ŝq =
βq

2c

γ(r + q)(βq
2 − 1)

and furthermore

v̂q(s) =

{
γŝ

1−βq
2

q sβq
2/βq

2 + c/(r + q) on (0, ŝq)

γs on [ŝq,∞).

Note that q 7→ ŝq is continuous and strictly decreasing with limits ŝ0 and 0 for q ↓ 0 and

q →∞ respectively, and that

ŝq >
c

γ(δ + q)
. (1.13)

Finally, we have that the pair (vq|(0,ŝq), ŝq) is the unique solution to the free boundary

problem in unknowns (f, b) ∈ C2(0, b)× R>0
(L − (r + q))f(s) + c = 0 on (0, b)

f(b−) = γb, f ′(b−) = γ

f(0+) ∈ R>0.

(1.14)
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Remark 1.7. A common approach to find analytical expressions for the value function

and the optimal strategy of optimal stopping problems is to guess candidate expressions by

constructing & solving an appropriate free boundary problem, which has a function and

boundary point(s) as solution, and to verify the correctness of the guess by showing that

the corresponding candidate value process

(i) dominates the payoff process

(ii) is a supermartingale

(iii) is a martingale when stopped at the first time it hits the payoff process

(cf. Lemma A.1). Uniqueness of solutions of the free boundary problem follows implicitly

from this.

In the upcoming sections we will work with free boundary problems that allow only for

a semi-explicit characterization of its solution set. The resulting expressions are explicit

enough to be useful, but showing by direct means that a solution indeed exists does not

always seem easy (like for the free boundary problems involving two boundary points used in

Theorem 2.2 (ii) and Theorem 3.3 (ii)). This issue we resolve by proving in the upcoming

Subsection 1.3 that v satisfies a set of properties rich enough to allow to conclude that v

and the associated optimal exercise level(s) indeed form a solution to the free boundary

problem under consideration, thus implicitly yielding existence of solutions.

1.3 Some results for general intensity functions

The following theorem states some properties of v, mainly for use in the examples we

consider in the upcoming sections. Note that the sign of the function λ defined below

corresponds to the sign of the drift rate in the Itô-decomposition of L and will be used

throughout for determining the shape of stopping and continuation regions, using (ii) and

(iv) of Theorem 1.9.

Remark 1.8. As limt→∞ Lt exists a.s. and τ ∈ T0,∞ may take the value +∞, the standard

theory of optimal stopping on a compact time interval can directly be translated to our

setting. Especially, as L has continuous paths and is of class (D), we already know that

the [0,∞]-valued stopping time inf{t ≥ 0 |Ut = Lt} is optimal, where U denotes the Snell

envelope of L, cf. the proof of Theorem 1.9 (i).

Theorem 1.9. Let the function λ : R>0 → R be given by λ(s) = c − γ(δ + χ(s))s. We

have the following.

(i) v is a continuous function with γs ≤ v(s) ≤ v̂0(s) on R>0. The optimal stopping

time is attained and given by τ ∗ := τ(C), where C = {s ∈ R>0 | v(s) > γs} is

the continuation region. Let S = R>0 \ C be the stopping region. We have C ⊂
(0, ŝ0). Furthermore, suppose that (χn)n∈N is a sequence of intensity functions, with

8



associated value functions denoted by vn, converging to χ in the max-norm. Then

vn converges to v in the max-norm.

(ii) Let I ⊂ R>0 be some interval∗. If λ ≤ 0 on I and ∂I ⊂ S, then Ī ⊂ S. If λ > 0 on

I, then I ⊂ C.

Now suppose that χ is càdlàg or càglàd and that its set of discontinuities, denoted by

Dχ, is finite. Suppose furthermore that ∂C is finite, i.e. that C is a finite union of open

intervals (from (ii) we see that a sufficient condition for this is that λ changes its sign at

most finitely often). Under these assumptions the following holds.

(iii) Set Nv := (C ∩Dχ)∪ ∂C. We have that v ∈ C2(R>0 \Nv)∩C1(R>0) and v satisfies

(L − (r + χ(s)))v(s) + c

{
= 0 on C \Dχ

≤ 0 on R>0 \Nv.

(iv) Let s0 ∈ R>0. Suppose that there exists ε > 0 such that λ ∈ C1(s0, s0 + ε) and

that either λ(s0+) > 0 or both λ(s0+) = 0 and λ′(s0+) > 0. Then s0 ∈ C. The

same holds if λ ∈ C1(s0 − ε, s0) and either λ(s0−) > 0 or both λ(s0−) = 0 and

λ′(s0−) < 0.

Proof. Ad (i). The lower and upper bound for v are obvious. Since (exp(−(r−δ)t)St)t≥0 is

a martingale and δ > 0, it follows that L is of class (D), i.e. that the family {Lτ | τ ∈ T0,∞}
is uniformly integrable. It follows that the Snell envelope U of L is well defined and of

class (D), cf. [13], Theorem 3.2 e.g. For any t ≥ 0 we have

Ut = ess sup
τ∈Tt,∞

Es [Lτ | Ft]

=

∫ t

0

ce−ru−ϕu du + e−rt−ϕt

×ess sup
τ∈Tt,∞

Es

[
e−r(τ−t)−(ϕτ−ϕt)γSτ +

∫ τ

t

ce−r(u−t)−(ϕu−ϕt) du

∣∣∣∣ Ft

]
=

∫ t

0

ce−ru−ϕu du + e−rt−ϕtv(St). (1.15)

The above calculation is at least intuitively clear by the Markov property, for a rigorous

justification we refer to Theorem 3.4 in [7]. Although the authors work with a payoff of the

form g(Xt) for a suitable function g and a Markov process X it also covers this case if we

regard L as a function of the Markov process (t, St, ϕt,
∫ t

0
exp(−ru− ϕu) du)t≥0. Namely,

the resulting four-dimensional value function has the form of the rhs of equation (1.15).

∗For sets A ⊂ R>0, ∂A denotes the boundary of A in R>0, i.e. if A = (a, b) with a ∈ R≥0 and
b ∈ R>0 ∪ {+∞} then ∂A = {a, b} ∩ R>0. Furthermore the closure of A in R>0 is denoted by Ā, i.e.
Ā = A ∪ ∂A.
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Continuity of v follows from Proposition 4.7 in [7]. From general theory on optimal

stopping, see Theorem 5.5 in [13] e.g., together with (1.15) it follows that the optimal

stopping time in v is attained and given by inf{t ≥ 0 |Ut = Lt} = τ(C).

Let χn tend to χ in the max-norm as n →∞, denote by εn the max-norm of χ− χn.

Since γs ≤ v(s) ≤ v̂0(s) we have vn(s) = v(s) = γs on [ŝ0,∞) and we may restrict the set

of stopping times over which is maximized in v and vn to those that are bounded above

by τ(0, ŝ0) on account of τ(C) ≤ τ(0, ŝ0). Using this we find by some easy calculations

that |v(s) − vn(s)| ≤ γŝ0C(εn) +
∫∞

0
ce−ru(1 − e−εnu) du for any s ∈ (0, ŝ0), where C(εn)

is the maximum value the function x 7→ e−rx(1 − e−εnx) attains on (0, ŝ0], yielding the

result.

Ad (ii). An application of Itô’s formula yields

Lt = γs +

∫ t

0

e−ru−ϕuγσSu dWu +

∫ t

0

e−ru−ϕuλ(Su) du. (1.16)

Let s0 ∈ I. First let λ ≤ 0 on I and ∂I ⊂ S. By (1.15), using that v(s) = γs on ∂I, we

find that we may write

v(s0) = sup
τ∈T0,∞

Es0

[
Lτ(I)

τ

]
. (1.17)

Since λ ≤ 0 on I, (1.16) shows that Lτ(I) is a local supermartingale. Since L is of class

(D), it follows by Doob’s optional sampling that the supremum in (1.17) is attained by

τ = 0 and thus indeed v(s0) = γs0.

Next let λ > 0 on I. Note that this implies that I is bounded from above since λ ≤ 0 on

[c/(δγ),∞). It follows that the local martingale part of Lτ(I) in (1.16) is a true martingale.

This allows to take any t > 0 and use again Doob’s optional sampling together with λ > 0

on I and Ps0(τ(I) > 0) = 1 to deduce that v(s0) ≥ Es0 [Lt∧τ(I)] > γs0.

Ad (iii). Step 1. Note that C \ Dχ is open in R>0 by continuity of v and since Dχ is

finite. Let us show that on this set, v is a C2-function satisfying (L−(r+χ(s)))v(s)+c = 0.

For this, take some environment I = (a, b) ⊂ C \ Dχ with a > 0, b < ∞. By the

assumptions on χ and since I∩Dχ = ∅ we have χ ∈ C0(I). First consider the homogenous

boundary value problem {
(L − (r + χ(s)))f(s) = 0 on I

f = 0 on ∂I
(1.18)

and let us show that it only has the trivial solution. Let f ∈ C2(I) be any solution and

consider the continuous process Z given by Zt = exp(−r(t ∧ τ(I))− ϕt∧τ(I))f(St∧τ(I)) for

all t ≥ 0. Itô’s formula shows that Z is a local martingale. Clearly, Z is also a bounded

process so that Doob’s optional sampling shows that indeed f(s) = Es[Z0] = Es[Zτ(I)] on

I, the rhs vanishing on account of f = 0 on ∂I.

By the Fredholm Alternative, the fact that (1.18) is only solved by the trivial solution

implies that the boundary value problem
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{
(L − (r + χ(s)))f(s) + c = 0 on I

f = v on ∂I

has a solution f ∈ C2(I). An application of Lemma A.1 (i) yields for all s ∈ I, using that

Ps(τ(I) < ∞) = 1,

f(s) = Es

[
e−rτ(I)−ϕτ(I)v(Sτ(I)) +

∫ τ(I)

0

ce−ru−ϕu du

]
.

Since I ⊂ C, (1.15) shows that for any s ∈ I, v(s) can be written as the rhs of the

above formula. Thus v = f on I, yielding the assertion.

Step 2. Let us show that v ∈ C2(R>0 \Nv)∩C1(R>0). Recall that Nv = (C ∩Dχ)∪ ∂C
is by assumption finite, let a ∈ Nv and ε > 0 so that with I := (a − ε, a + ε) we have

I ∩ Nv = {a}. Since v ∈ C2(C \ Dχ) (by Step 1) and v(s) = γs on S = R>0 \ C, the

assertion follows if we show that v ∈ C1(I). In particular, since we already have

v ∈ C2(a− ε, a] ∪ C2[a, a + ε), (1.19)

we know that v′(a−) and v′(a+) both exist and it remains to show that they must coincide.

To see (1.19), by construction of I both (a − ε, a) and (a, a + ε) are subsets of either S
or C \Dχ. Since v(s) = γs on S there is nothing to show for that case, while on subsets

of C \ Dχ we have from Step 1 that v satisfies (L − (r + χ(s)))v(s) + c = 0, so that

by a standard result from the theory of ODEs (cf. e.g. [10], Ch. II, Theorem 1.1 and

Theorem 3.1) it follows from the fact that χ(a±) exists and is finite (by our assumption

on χ) that also the corresponding v′′(a±) exists and is finite.

So let us show that v′(a−) and v′(a+) are equal. Recall that the Snell envelope U

can be expressed as (1.15). On account of (1.19) we may apply the change-of-variables

formula (A.1) from the proof of Lemma A.1 (cf. the remarks preceding that formula) and

we obtain

U
τ(I)
t = U0 + Mt +

∫ t∧τ(I)

0

1{Su 6=a}e
−ru−ϕu [(L − (r + χ(Su))) v(Su) + c] du

+

∫ t∧τ(I)

0

1{Su=a}e
−ru−ϕu (v′(a+)− v′(a−)) dLa

u, t ≥ 0,

where M is given by

Mt =
σ

2

∫ t∧τ(I)

0

e−ru−ϕu (v′(Su+) + v′(Su−)) Su dWu, t ≥ 0.

Note that M is a true martingale on account of the boundedness of I and of v′ on I.

Let us start S at a. First consider a ∈ C ∩Dχ. By construction we have I ⊂ C, so that

(L−(r+χ(s)))v(s)+c = 0 on I\{a} by Step 1. This means that in the above decomposition
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of U τ(I) the drift part consists solely of the integral with respect to local time. Thus if

we had v′(a−) 6= v′(a+), then U τ(I) would be a strict super- or submartingale. But this

is impossible since U τ(I) is a martingale, which follows directly from the well known fact

that U τ∗ is a martingale (see e.g. [13], Corollary 5.3) and τ(I) ≤ τ ∗ on account of I ⊂ C.

Next consider a ∈ ∂C ⊂ S. Since v(a) = γa while v(s) ≥ γs on I we have v′(a−) ≤
v′(a+). So if v′(a−) = v′(a+) did not hold, then v′(a+) − v′(a−) > 0. But the above

decomposition of U shows that this would mean that the process Z given by Zt =∫ t

0
1{Su=a}dU

τ(I)
t for all t ≥ 0 is a strict submartingale. However, this is impossible since

it is well known that U is a supermartingale, see e.g. [13], Lemma 3.3.

Step 3. Let us show that (L− (r+χ(s)))v(s)+c ≤ 0 on R>0 \Nv (which is an open set

since Nv is finite). Taking the result from Step 1 into account, it is enough to show that

(L− (r + χ(s)))v(s) + c ≤ 0 on the inner of S (denoted by inn(S)). This however is clear.

Namely, since v(s) = γs on S we have for any s ∈ inn(S) that (L− (r + χ(s)))v(s) + c =

λ(s). Suppose that we had λ(s) > 0. By the assumptions on χ we would have λ > 0 on

either (s − ε, s) or (s, s + ε) for some ε > 0, but this means by (ii) that s ∈ C̄, which

contradicts with s ∈ inn(S).

Ad (iv). Set I := (s0, s0 +ε). Let us assume that s0 ∈ S and derive a contradiction. We

have either Case 1: λ(s0+) > 0 or Case 2: λ(s0+) = 0 and λ′(s0+) > 0. Since λ ∈ C1(I)

(and thus also χ ∈ C1(I)) we may assume w.l.o.g. that λ > 0 on I, which means that

I ⊂ C (cf. (ii)) and that (L− (r + χ(s)))v(s) + c = 0 holds on I (cf. (iii)), with, since we

assumed s0 ∈ S, v(s0+) = γs0 and v′(s0+) = γ.

For Case 1, taking the limit for s ↓ s0 in (L − (r + χ(s)))v(s) + c = 0 we find,

using v(s0+) = γs0, v′(s0+) = γ and λ(s0+) > 0, that v′′(s0+) < 0. But again using

v(s0+) = γs0 and v′(s0+) = γ this would imply v(s) < γs on (s0, s0 + ε′) for some ε′ > 0,

yielding the required contradiction.

For Case 2, taking the same limit as in Case 1 this time yields v′′(s0+) = 0 on account

of λ(s0+) = 0. On I, differentiating the equation (L− (r +χ(s)))v(s)+ c = 0 once (which

is possible since χ ∈ C1(I)) we find

σ2

2
s2v′′′(s) = (δ − r − σ2)sv′′(s) + (χ(s) + δ)v′(s) + χ′(s)v(s).

Furthermore λ′(s) = −(δ + χ(s))γ − χ′(s)γs, so we may take the limit for s ↓ s0 in the

above equation and use v(s0+) = γs0, v′(s0+) = γ, v′′(s0+) = 0 and λ′(s0+) > 0 to

derive that v′′′(s0+) < 0. But this would again imply v(s) < γs on (s0, s0 + ε′) for some

ε′ > 0 and yield a contradiction.

Remark 1.10. Theorem 1.9 (iii) shows that v is C1 across the points in ∂C and C ∩Dχ.

For ∂C this is just the usual smooth pasting condition at the boundary between continuation

and stopping region. For s0 ∈ C ∩Dχ we may use the differential equation that governs v

around s0 to compute v′′(s0+) − v′′(s0−) = 2v(s0)(χ(s0+) − χ(s0−))/σ2. That is to say
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that a jump of χ at s0 causes a jump of v′′ in the same direction, but it does not affect

the continuity of v′.

2 Piecewise constant intensity function

In this section we will address in more detail the case that χ is given by χ(s) = 1{s≤s̄}p

for parameters p, s̄ > 0. The process ϕ from (1.1) is now given by

ϕt =

∫ t

0

p1{Su≤s̄} du

for all t ≥ 0 and we denote the associated value function by vp, that is

vp(s) = sup
τ∈T0,∞

Es[Lτ ] = sup
τ∈T0,∞

Es

[
e−rτ−ϕτ γSτ +

∫ τ

0

ce−ru−ϕu du

]
,

with continuation and stopping regions denoted by Cp and Sp, resp.

Throughout we will make repeated use of the functions v̂q and associated optimal

stopping levels ŝq which were discussed in Proposition 1.6. Note that for any p > 0, from

Theorem 1.9 (i) & (iii) and χ(s) ≤ p we know that vp is a non-decreasing C1(R>0)-function

with v̂p ≤ vp ≤ v̂0.

The drift rate λ of L takes the form λ(s) = c − γs(δ + p1{s≤s̄}). If λ(s̄+) ≤ 0, i.e.

s̄ ≥ c/(γδ), Sp has the same structure as the optimal stopping region of v̂p, see Theorem 2.1

below.

On the other hand, if λ(s̄+) > 0, i.e. s̄ ∈ (0, c/(γδ)), λ is strictly positive on

(0, c/(γ(δ + p))) ∪ (s̄, c/(γδ)), which for p large enough causes Sp to be the union of

two disjoint intervals, one contained in (c/(γ(δ + p)), s̄) and one contained in (c/(γδ), ŝ0).

See Theorem 2.2 below, resp. Figures 1 & 2 in Section 4.

Theorem 2.1. Suppose that s̄ ≥ c/(γδ). For q ∈ R≥0, b ∈ R>0 let

cq
1(b) :=

(βq
2 − 1)γb− βq

2c/(r + q)

(βq
2 − βq

1)b
βq
1

and cq
2(b) =

(βq
1 − 1)γb− βq

1c/(r + q)

(βq
1 − βq

2)b
βq
2

,

where βq
1 , β

q
2 are defined like ŝp and v̂p in Proposition 1.6. We have

(i) If ŝp ≤ s̄, then vp = v̂p.

(ii) If ŝp > s̄, then Sp = [bp,∞), where bp ∈ (ŝp, ŝ0) is the unique solution on (s̄,∞) of

the following equation in b

(β0
1 − βp

2)c
0
1(b)s̄

β0
1 + (β0

2 − βp
2)c

0
2(b)s̄

β0
2 − βp

2cp

r(r + p)
= 0 (2.1)
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and

vp(s) =


(
c0
1(bp)s̄

β0
1 + c0

2(bp)s̄
β0
2 + cp/(r(r + p))

)
(s/s̄)βp

2 + c/(r + p) on (0, s̄)

c0
1(bp)s

β0
1 + c0

2(bp)s
β0
2 + c/r on [s̄, bp)

γs on [bp,∞).
(2.2)

Proof. Ad (i). Recall from Proposition 1.6 that the free boundary system (1.14) has a

unique solution (f∗, b∗), with b∗ = ŝp and f∗ = v̂p|(0,b∗), and that by extending f∗ by

setting f∗(s) = γs on [b∗,∞) we get f∗ ∈ C2(R>0 \ {b∗}) ∩ C1(R>0) and f∗ = v̂p. Let us

show that vp = f∗.

By assumption we have b∗ = ŝp ≤ s̄ and thus χ(s) = p on (0, b∗), which yields by

(1.14)

(L − (r + χ(s)))f∗(s) + c = 0 on (0, b∗), (2.3)

while on (b∗,∞) a direct calculation with f∗(s) = γs and ŝp > c/(γ(δ + p)) (cf. (1.13))

gives

(L − (r + χ(s)))f∗(s) + c = λ(s) ≤ 0 on (b∗,∞). (2.4)

Applying Lemma A.1 (i), thereby using (2.3) and f∗(s) = γs on [b∗,∞), and Lemma A.1 (ii),

thereby using (2.3), (2.4) and f∗(s) = v̂p(s) ≥ γs on R>0, we find that f∗(s) = supτ∈T0,∞ Es[Lτ ]

on R>0. Thus indeed vp = f∗.

Ad (ii). From v̂p ≤ vp ≤ v̂0, ŝp > s̄ and λ being negative on (s̄,∞) it follows with

Theorem 1.9 (ii) that Sp = [bp,∞) for some bp ∈ [ŝp, ŝ0].

Step 1. From Theorem 1.9 (iii) it follows that the pair (vp|(0,bp), bp) solves the following

free boundary problem in unknowns (f, b) ∈ C2((0, b) \ {s̄}) ∩ C1(0, b)× (s̄,∞).

f(0+) ∈ R≥0

(L − (r + p))f(s) + c = 0 on (0, s̄)

f(s̄−) = f(s̄+), f ′(s̄−) = f ′(s̄+)

(L − r)f(s) + c = 0 on (s̄, b)

f(b−) = γb, f ′(b−) = γ.

Let us show that this system has in fact a unique solution (f∗, b∗), with b∗ equal to

the unique solution to (2.1) and f∗ given by the first two lines in the rhs of (2.2). Clearly,

for any b > s̄, fb solves both differential equations in the above system iff

fb(s) =

{
C1s

βp
1 + C2s

βp
2 + c/(r + p) on (0, s̄)

C3s
β0
1 + C4s

β0
2 + c/r on (s̄, b)

for constants C1, . . . , C4. Since βp
1 < 0 < βp

2 , we have fb(0+) ∈ R≥0 iff C1 = 0. Furthermore

some straightforward calculations show that the four boundary conditions at s = s̄ and
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s = b translate into explicit expressions for C2 = C2(b), . . . , C4 = C4(b) in terms of b and

the requirement that b solves (2.1). Using the identities (1.12), differentiating the lhs of

(2.1) with respect to b yields the expression

2(δγ − cb−1)

σ2(β0
2 − β0

1)

[
(β0

1 − βp
2)
( s̄

b

)β0
1

− (β0
2 − βp

2)
( s̄

b

)β0
2

]
,

and on account of βp
2 > 0, β0

1 < 0 < 1 < β0
2 and s̄ ≥ c/(δγ) this quantity is strictly

negative for b ∈ (s̄,∞), thus it follows that (2.1) can have at most one solution on (s̄,∞).

So (f∗, b∗) is indeed uniquely determined with b∗ = bp. Plugging b∗ = bp in the above

expressions for C2(b), . . . , C4(b) shows that f∗ = fbp is indeed given by the formulae in the

rhs of (2.2).

Step 2. We noted above already that bp ∈ [ŝp, ŝ0]. It remains to show that bp < ŝ0

and bp > ŝp. To see the former, note that from Proposition 1.6 and Step 1 we have

that the pairs (v̂0|(s̄,ŝ0), ŝ0) and (vp|(s̄,bp), bp) both solve the following system in unknowns

(f, b) ∈ C2(s̄, b)× (s̄,∞) {
(L − r)f(s) + c = 0 on (s̄, b)

f(b−) = γb, f ′(b−) = γ.

If we fix some b ∈ (s̄,∞), the corresponding f in the above system is obviously uniquely

determined. This means that if we had bp = ŝ0 =: b∗, then also vp = v̂0 on (s̄, b∗), but

this is clearly impossible since for any s ∈ (s̄, b∗), there is a positive Ps-probability that S

spends a Lebesgue positive amount of time in (0, s̄) before reaching the optimal stopping

level b∗, implying vp(s) < v̂0(s). Thus bp < ŝ0.

To see bp > ŝp, suppose that we had bp = ŝp =: b∗. From Step 1 we know that

vp satisfies (L − r)vp(s) + c = 0 on (s̄, b∗) with vp(b∗−) = γb∗ and v′p(b∗−) = γ while

from Proposition 1.6 we know that v̂p satisfies (L − (r + p))v̂p(s) + c = 0 on (0, b∗) with

v̂p(b∗−) = γb∗ and v̂′p(b∗−) = γ. Taking the limit for s ↑ b∗ in both differential equations

and making use of the mentioned boundary conditions at s = b∗−, it readily follows on

account of the different potentials that v′′p(b∗−) < v̂′′p(b∗). This however means, taking

into account that by the boundary conditions vp and v̂p and their derivatives coincide at

s = b∗−, that v̂p > vp on (b∗ − ε, b∗) for some ε > 0, thus yielding a contradiction to

v̂p ≤ vp.

Theorem 2.2. Suppose that s̄ ∈ (0, c/(δγ)). There exists a unique p̄ ∈ (0,∞) with

ŝp̄ ∈ (0, s̄) such that the following holds.

(i) For p ∈ (0, p̄) we have Sp = [bp,∞), where bp ∈ (c/(δγ) ∨ ŝp, ŝ0) is the unique

solution of equation (2.1) on (c/(δγ),∞) and vp is given by the rhs of (2.2).

(ii) For p ∈ [p̄,∞) we have Sp = [ŝp, ap] ∪ [bp,∞), with ap̄ = ŝp̄, where the pair (ap, bp)

is the unique solution of the following system of equations in unknowns (a, b) ∈
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[ŝp, s̄)× (c/(δγ), ŝ0)

cp
1(a)s̄βp

1 + cp
2(a)s̄βp

2 + c/(r + p) = c0
1(b)s̄

β0
1 + c0

2(b)s̄
β0
2 + c/r (2.5)

βp
1c

p
1(a)s̄βp

1 + βp
2c

p
2(a)s̄βp

2 = β0
1c

0
1(b)s̄

β0
1 + β0

2c
0
2(b)s̄

β0
2 (2.6)

and

vp(s) =



v̂p(s) on (0, ŝp)

γs on [ŝp, ap].

cp
1(ap)s

βp
1 + cp

2(ap)s
βp
2 + c/(r + p) on (ap, s̄]

c0
1(bp)s

β0
1 + c0

2(bp)s
β0
2 + c/r on (s̄, bp)

γs on [bp,∞).

(2.7)

Proof. Let us prove the assertion for

p̄ := inf{p > 0 | Sp ∩ (0, s̄) 6= ∅}. (2.8)

Obviously, there can be at most one p̄ for which (i) and (ii) hold both. Since vp ≥ v̂p and

ŝ0 > c/(δγ) > s̄ (by assumption and (1.13)) we have p̄ > 0 and ŝp̄ ∈ (0, s̄). Obviously

p̄ < ∞.

Ad (i). Since Sp ∩ (0, s̄) = ∅ and λ > 0 on (s̄, c/(δγ)) we have by Theorem 1.9 (ii)

& (iv) that Sp ∩ (0, c/(δγ)] = ∅. Furthermore, since λ < 0 on (c/(δγ),∞) we get by

again Theorem 1.9 (ii) and v̂p ≤ vp ≤ v̂0 that Sp = [bp,∞) for some bp ∈ [ŝp, ŝ0] with

bp > c/(δγ). For the remaining statements of (i) the same proof as for Theorem 2.1 (ii)

applies.

Ad (ii). Step 1. Take some s0 ∈ Sp ∩ (0, s̄), which is non-empty by the assumption

(note that, due to the continuity of p 7→ vp in the max-norm (cf. Theorem 1.9 (i)), the

infimum in (2.8) is attained). From vp(s0) = γs0 and s0 ≤ s̄, it follows that

vp(s) = v̂p(s), ∀s ≤ s0. (2.9)

Namely, starting S at s ∈ (0, s0] the process never enter the default-free region (s̄,∞)

when optimally stopped at Sp. Thus the optimal payoff of vp(s0) coincides with the cor-

responding payoff of the potentially smaller claim when default occurs everywhere with

rate p. Now, (2.9) means that Sp ∩ (0, s0] = [ŝp, s0]. Since s0 is an arbitrary element of

Sp∩(0, s̄), this implies in particular that Sp∩(0, s̄) is an interval. Since λ(s̄+) > 0 we have

by Theorem 1.9 (iv) that s̄ 6∈ Sp, which also means that we have Sp ∩ (0, s̄) = Sp ∩ (0, s̄],

the latter being closed in R>0. In conclusion we arrive at Sp ∩ (0, s̄) = [ŝp, ap] for some

ap ∈ [ŝp, s̄).

Furthermore, since λ > 0 on (s̄, c/(δγ)), λ < 0 on (c/(δγ),∞) and vp ≤ v̂0 we get from

Theorem 1.9 (ii) & (iv) that Sp ∩ [s̄,∞) = [bp,∞) for some bp ∈ (c/(δγ), ŝ0]. The same

argument as in Step 2 in the proof of Theorem 2.1 (ii) shows that bp < ŝ0. We have thus

established the shape of Sp as in the statement.
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Step 2. Let us show that ap̄ = ŝp̄, i.e. that Sp̄∩(0, s̄) consists of a single point. From (i)

we know that for p ∈ (0, p̄) we have vp(s) = Cps
βp
2 + c/(r + p) on (0, s̄). By the continuity

of p 7→ βp
2 and of p 7→ vp in max-norm (cf. Theorem 1.9 (i)), Cp has a limit value Cp̄ as

p → p̄ and we can write vp̄(s) = Cp̄s
βp̄
2 + c/(r + p̄) on (0, s̄). Clearly, Cp̄ has to be strictly

positive. Since β p̄
2 > 1, this formula shows that vp̄ can touch s 7→ γs in only a single point.

Step 3. Finally, let us establish the stated formulae for (ap, bp) and vp|(ap,bp). Consider

the following free boundary problem in unknowns (f, a, b) ∈ C2((a, s̄)∪ (s̄, b))∩C1(a, b)×
[ŝp, s̄)× (c/(δγ), ŝ0) 

f(a+) = γa, f ′(a+) = γ

(L − (r + p))f(s) + c = 0 on (a, s̄)

f(s̄−) = f(s̄+), f ′(s̄−) = f ′(s̄+)

(L − r)f(s) + c = 0 on (s̄, b)

f(b−) = γb, f ′(b−) = γ.

(2.10)

From Theorem 1.9 (iii) (and Step 1 for the intervals which contain ap and bp) we know

that the triplet (vp|(ap,bp), ap, bp) solves this system. Let (f, a, b) be any solution to this

system. By considering the initial value problems consisting of the first and last two lines

of the system resp., it is straightforward to check that we have

f |(a,s̄)(s) = cp
1(a)sβp

1 + cp
2(a)sβp

2 + c/(r+p) and f |(s̄,b)(s) = c0
1(b)s

β0
1 + c0

2(b)s
β0
2 + c/r (2.11)

(recall that c·1,2 are defined in Theorem 2.1). As is readily checked, the remaining pasting

conditions at s = s̄, i.e. the third line of (2.10), are satisfied iff (a, b) satisfies the system

of equations (2.5)-(2.6). Thus (ap, bp) indeed satisfies (2.5)-(2.6) and, taking into account

that vp = v̂p on (0, ŝp] (by Step 1), vp is indeed given by (2.7).

It remains to show that (2.5)-(2.6) has at most one solution. For this, let (a, b) ∈
[ŝp, s̄)× (c/(δγ), ŝ0) be any solution. Defining the function f on (a, b) by (2.11), with the

understanding that f(s̄) := f |(a,s̄)(s̄−) = f |(s̄,b)(s̄+), we have that (f, a, b) is a solution to

system (2.10). Let us first show that

f(s) > γs on (a, b). (2.12)

From a ≥ ŝp, δ < r and c/(γ(δ + p)) < ŝp (cf. (1.13)) it follows that cp
1(a) ≥ 0 and

cp
2(a) > 0, using this with βp

1 < 0 < 1 < βp
2 a straightforward calculation shows that

f |(a,s̄)
′′ > 0, so that with the boundary conditions in s = a+ from system (2.10) we see

that f |(a,s̄)(s) > γs. For f |(s̄,b), using system (2.10) we can take the limit for s ↑ b in

(L− r)fb(s) + c = 0 and use the boundary conditions at s = b− together with b > c/(δγ)

to see that f |(s̄,b)′′(b−) > 0. Furthermore, on account of βp
1 < 0 < 1 < βp

2 a simple

computation shows that f |(s̄,b)′′ might have at most one zero. From this structure of

f |(s̄,b)′′, the boundary conditions at s = b− and f |(s̄,b)(s̄+) = f |(a,s̄)(s̄−) > γs̄ it readily

follows that f |(s̄,b)(s) > γs and thus (2.12) indeed holds.

Now, extend f to a C2((ŝp,∞) \ {a, s̄, b}) ∩ C1(ŝp,∞)-function by setting f(s) = γs

on [ŝp, a] ∪ [b,∞). Using that f satisfies (L− (r + χ(s)))f(s) + c = 0 on (a, s̄) ∪ (s̄, b)(cf.
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system (2.10)), that (L − (r + χ(s)))f(s) + c = λ(s) ≤ 0 on (ŝp, a) ∪ (b,∞) ⊂ (c/(γ(δ +

p)), s̄) ∪ (c/(δγ),∞) and that f(s) ≥ γs on [ŝp,∞) (cf. (2.12)), we get from Lemma A.1

(i) & (ii) that

f(s) = sup
τ∈T0,∞

Es

[
Lτ(ŝp,∞)

τ

]
on [ŝp,∞).

A second solution (a2, b2) of (2.5)-(2.6) would by the same means as above allow to

construct an associated solution function f2 on [ŝp,∞) that also equals the rhs of the above

formula. Thus f2 = f , and since f(s) > γs iff s ∈ (a, b) and f2(s) > γs iff s ∈ (a2, b2) (cf.

(2.12)) this indeed implies (a2, b2) = (a, b), as required.

3 Power based intensity function

In this section we look at an intensity function of the form χ(s) = s−α for α > 0 and

we denote the associated value function by vα. This means that we get ϕt =
∫ t

0
S−α

u du,

t ≥ 0, and

vα(s) = sup
τ∈T0,∞

Es[Lτ ] = sup
τ∈T0,∞

Es

[
e−rτ−ϕτ γSτ +

∫ τ

0

ce−ru−ϕu du

]
, (3.1)

we denote by Cα and Sα the associated continuation and stopping regions resp. The drift

rate is now given by λ(s) = c−γs(δ+χ(s)) = c−δγs−γs1−α. It turns out that depending

on whether α < 1, α = 1 or α > 1, vα behaves quite differently, see Theorem 3.3 below

and Figures 3 & 4 in Section 4.

Proposition 3.1. For any α > 0, vα is a non-decreasing C1(R>0)-function with γs ≤
vα(s) ≤ v̂0(s) on R>0 and vα(0+) = 0.

Proof. γs ≤ vα(s) ≤ v̂0(s) on R>0 and vα ∈ C1(R>0) are immediate from Theorem 1.9 (i)

& (iii). That vα is non-decreasing is obvious by writing (3.1) as

vα(s) = sup
τ∈T0,∞

E1

[
e−rτ−s−αϕτ γsSτ +

∫ τ

0

ce−ru−s−αϕu du

]
.

Using this expression and that (exp(−rt)St)t≥0 is a class (D) supermartingale we find by

Doob’s optional sampling theorem

vα(s) ≤ γs + E1

[∫ ∞

0

c exp
(
−ru− s−αϕu

)
du

]
and thus by dominated convergence it follows that vα(0+) = 0.

Investigating where λ is positive (if anywhere) requires a few calculations and is done

next.

Proposition 3.2. Assume (for convenience) that δ < 1. We have the following cases.
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(i) Let α ∈ (0, 1). Then λ is strictly decreasing with λ(0+) = c. We denote its zero by

sr.

(ii) Let α = 1. Then λ is strictly decreasing with λ(0+) = c − γ. For c > γ we denote

its zero by sr.

(iii) Let α > 1. Then λ attains a strict maximum in s0 := (δ/(α − 1))−1/α. The set

J := {α > 1 |λ(s0) > 0} satisfies

J =


∅ if c/γ ≤ δ

(αr,∞) if c/γ ∈ (δ, 1]

(1, αl) ∪ (αr,∞) if c/γ ∈ (1, δ + 1)

(1,∞) if c/γ ≥ δ + 1,

where (if applicable) αl ∈ (1, δ + 1) and αr ∈ (δ + 1,∞) are the zeros of

Ψ(α) = α

(
δ

α− 1

)(α−1)/α

− c

γ
.

If α ∈ J , λ has two zeros sl < s0 < sr.

Proof. Cases (i) and (ii) are obvious. Also case (iii) is easily checked. Note that λ(s0) > 0

iff Ψ(α) > 0, so J = {α > 1 |Ψ(α) > 0}. Taking into account the easily verified facts

Ψ(1+) = 1, Ψ is increasing on (1, δ + 1), Ψ is decreasing on (δ + 1,∞) and Ψ(∞) = δ,

together with δ < 1, the characterization of J follows.

Finally we turn to obtaining semi-explicit formulae for vα and the optimal exercise

level(s):

Theorem 3.3. Assume δ < 1. Let Iν and Kν denote the modified Bessel functions of the

first and second kind resp., of order ν. Set

ν =
2

ασ

√
2r +

(
σ

2
− r − δ

σ

)2

,

let the functions φ1, φ2 : R>0 → R be defined by

φ1(s) = s1/2−(r−δ)/σ2

Iν

(
2
√

2

ασ
s−α/2

)
and φ2(s) = s1/2−(r−δ)/σ2

Kν

(
2
√

2

ασ
s−α/2

)
and the functions c1, c2 : R>0 → R by

c1(b) =
2γ

α
b2(r−δ)/σ2

(bφ′2(b)− φ2(b)) and c2(b) =
2γ

α
b2(r−δ)/σ2

(φ1(b)− bφ′1(b)) .

Furthermore, define F : R>0 → R by
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F (b) = − 2

σ2

∫ b

0

ξ(r−δ)/σ2−3/2Kν

(
2
√

2

ασ
ξ−α/2

)
λ(ξ) dξ. (3.2)

We have the following.

(i) Suppose that α ∈ (0, 1) or both α = 1 and c > γ. Then Sα = [bα,∞), where bα is

the unique solution of F (b) = 0 on (sr,∞) and

vα(s) =


4c

ασ2 φ1(s)
∫ s

0
φ2(ξ)ξ

2(r−δ)/σ2−2 dξ

+φ2(s)
(
c2(bα) + 4c

ασ2

∫ bα

s
φ1(ξ)ξ

2(r−δ)/σ2−2 dξ
)

on (0, bα)

γs on [bα,∞).

(3.3)

In particular, vα(0+) = 0 and v′α(0+) = ∞ for α < 1 while v′α(0+) = c for α = 1.

(ii) Suppose that α = 1 and c ≤ γ. Then Sα = R>0 and vα(s) = γs on R>0.

(iii) Suppose that α > 1. If α 6∈ J then Sα = R>0 and vα(s) = γs on R>0. Let α ∈ J .

Then Sα = (0, aα] ∪ [bα,∞), where the pair (aα, bα) is the unique solution of the

following systems of equations in unknowns (a, b) ∈ (0, sl)× (sr,∞)

c1(b)φ1(a) + c2(b)φ2(a) +
4c

ασ2

∫ b

a

φ1(ξ)φ2(a)− φ1(a)φ2(ξ)

ξ2−2(r−δ)/σ2 dξ = γa (3.4)

c1(b)φ
′
1(a) + c2(b)φ

′
2(a) +

4c

ασ2

∫ b

a

φ1(ξ)φ
′
2(a)− φ′1(a)φ2(ξ)

ξ2−2(r−δ)/σ2 dξ = γ (3.5)

and

vα(s) =


γs on (0, aα]

φ1(s)
(
c1(bα)− 4c

ασ2

∫ bα

s
φ2(ξ)ξ

2(r−δ)/σ2−2 dξ
)

+φ2(s)
(
c2(bα) + 4c

ασ2

∫ bα

s
φ1(ξ)ξ

2(r−δ)/σ2−2 dξ
)

on (aα, bα)

γs on [bα,∞).

(3.6)

Proof. First suppose that either both α = 1 and c ≤ γ or α ∈ (1,∞) ∩ J c. These are

exactly the cases for which λ is everywhere non-positive, cf. Proposition 3.2. It follows from

Theorem 1.9 (ii), thereby using [ŝ0,∞) ⊂ Sα that indeed Sα = R>0 and thus vα(s) = γs

on R>0. It remains to consider α for which λ is not everywhere non-positive, in particular

we can assume for the sequel that sr is well defined and so is sl if α > 1, cf. Proposition 3.2.

The remainder consists of three steps, in the first two we study two free boundary

problems by analytical means and in the last one we use these to deduce the statements.

Step 1. Consider the free boundary system in unknowns (f, b) ∈ C2(0, b)× (sr,∞):
(L − (r + χ(s)))f(s) + c = 0 on (0, b)

f(b−) = γb, f ′(b−) = γ

f(0+) = 0.

(3.7)
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Let us show that it has a (unique) solution pair (f∗, b∗) iff F (sr) < 0 and that if F (sr) < 0

holds, b∗ is the unique solution of F (b) = 0 on (sr,∞), f∗ is given by the first two lines of

(3.3) with bα replaced by b∗ and f ′∗(0+) equals ∞, c, 0 for α < 1, α = 1, α > 1, resp.

First, for any b ∈ (sr,∞) we have from Lemma A.2 (i) and the general theory on

ODEs that the initial value problem consisting of the first two lines of system (3.7), so

without the condition f(0+) = 0, admits a unique solution f = fb, with

fb(s) = φ1(s)

(
c1(b)−

4c

ασ2

∫ b

s

φ2(ξ)

ξ2−2(r−δ)/σ2 dξ

)
+ φ2(s)

(
c2(b) +

4c

ασ2

∫ b

s

φ1(ξ)

ξ2−2(r−δ)/σ2 dξ

)
(3.8)

for s ∈ (0, b). So in order to find the solutions to system (3.7) we need to find those

b ∈ (sr,∞) for which fb(0+) = 0. Using φ1(0+) = ∞, φ2(0+) = 0 and (A.4) from

Lemma A.2 (ii) & (iii) we see that this holds iff the first of the two bracketed terms in

(3.8) vanishes as s ↓ 0, which using the formula for c1 boils down to

γb2(r−δ)/σ2

(bφ′2(b)− φ2(b))−
2c

σ2

∫ b

0

ξ2(r−δ)/σ2−2φ2(ξ) dξ = 0. (3.9)

On account of φ2(0+) = φ′2(0+) = 0 by Lemma A.2 (ii) the above lhs vanishes as

b ↓ 0. Furthermore, differentiating this lhs, thereby using that by definition (L − (r +

χ(s)))φ2(s) = 0 (Lemma A.2 (i)), gives the quantity −2b2(r−δ)/σ2−2φ2(b)λ(b)/σ2. So (3.9)

may be written as F (b) = 0 with F given by (3.2) and furthermore this derivation shows,

together with φ2 > 0 (Lemma A.2 (i)) and λ < 0 on (sr,∞) (cf. Proposition 3.2) that F

is strictly increasing on (sr,∞), thus it has a (unique) root on this interval iff F (sr) < 0.

If F (sr) < 0 holds and b∗ denotes this unique root, the pair (f∗, b∗) is thus the unique

solution to system (3.7), where f∗ = fb∗ takes the required form by adjusting (3.8) for

b = b∗. A straightforward computation with φ′2(0+) = 0 and (A.5) from Lemma A.2 (ii)

& (iii) yields that f ′∗(0+) equals ∞, c, 0 for α < 1, α = 1, α > 1, resp.

Step 2. Suppose in this step that α > 1, so that sl is well defined. Consider the free

boundary problem in unknowns (f, a, b) ∈ C2(a, b)× (0, sl)× (sr,∞):
(L − (r + χ(s)))f(s) + c = 0 on (a, b)

f(b−) = γb, f ′(b−) = γ

f(a+) = γa, f ′(a+) = γ.

(3.10)

Let us show that the set of solutions consist of all pairs (a, b) that satisfy (3.4)-(3.5), with

associated solution function f given by the first two lines of the rhs of (3.6) with aα and

bα replaced by a and b resp., and that for any solution we have f(s) > γs on (a, b).

By the same arguments as in Step 1, for any (a, b) ∈ (0, sl) × (sr,∞) there exists a

unique C2(a, b)-function that satisfies the initial value problem consisting of the first two

lines of system (3.10), namely fb(s) as given by (3.8), considered for s ∈ (a, b). Using

this formula for fb shows readily that fb(a+) = γa and f ′b(a+) = γ hold iff (a, b) satisfies

(3.4)-(3.5).
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Let now (f, a, b) be any solution to the system. For proving that f(s) > γs on (a, b)

we only need the system itself and the sign of λ from Proposition 3.2. First consider f

on [sr, b). Taking the limit s ↑ b in (L − (r + χ(s)))f(s) + c = 0 and using the boundary

conditions in s = b− we find that σ2b2f ′′(b−)/2 = −λ(b) > 0. Thus, by again the

boundary conditions at s = b−

f ′(s) ↑ γ and f(s)− γs ↓ 0 as s ↑ b. (3.11)

Now suppose that s0 ∈ [sr, b) exists with f(s0) = γs0 and let it w.l.o.g. be the largest such

point, so that f(s) > γs on (s0, b). It follows that there has to a point in (s0, b) where

f ′ is larger than γ, otherwise namely f(s0) = γs0 is impossible on account of (3.11). Let

s1 ∈ (s0, b) be the largest point where f ′ attains the value γ, so that f ′′(s1) ≤ 0, f ′(s1) = γ

and f(s1) > γs1. But if we plug the latter two into (L−(r+χ(s1)))f(s1)+c = 0 it follows

that σ2s2
1f

′′(s1)/2 ≥ −λ(s1) > 0, and thus a contradiction is obtained.

The same idea, but ”reflected”, can be used to show that f(s) > γs on (a, sl]. So it

remains to show that f(s) > γs also holds on (sl, sr). Suppose that this assertion does

not hold and let, using f(sr) > γsr, s2 be the largest solution of f(s) = γs on (sl, sr), so

that f(s2) = γs2 and f ′(s2) ≥ γ. Plugging this in (L− (r+χ(s2)))f(s2)+ c = 0 and using

that λ(s2) > 0 it follows that f ′′(s2) < 0, so that

f ′(s) ↓ f ′(s2) ≥ γ and f(s)− γs ↑ 0 as s ↑ s2. (3.12)

It follows that there has to be a point in (sl, s2) where f ′ is smaller than γ, otherwise

namely (3.12) would imply that f(sl) < γsl and we know already that f(sl) > γsl. In

particular, taking again (3.12) into account, f ′ has to have a largest point s3 ∈ (sl, s2)

where it equals γ, i.e. f ′′(s3) ≥ 0, f ′(s3) = γ and f(s3) ≤ γs3. But as before we can

plug the latter two into (L − (r + χ(s3)))f(s3) + c = 0 and use λ(s3) > 0 to derive that

f ′′(s3) < 0 and obtain a contradiction.

Step 3. Ad (i). Let α ∈ (0, 1) or both α = 1 and c < γ. Using the behaviour of λ from

Proposition 3.2, it follows from Theorem 1.9 (i), (ii) & (iv) that Sα = [bα,∞) for some

bα ∈ (sr, ŝ0]. Next, applying Theorem 1.9 (iii) and using vα(0+) = 0 (by Proposition 3.1),

it follows that the pair (vα|(0,bα), bα) solves the free boundary system (3.7). As seen in

Step 1 this system has a unique solution pair (f∗, b∗). Thus we may identify bα = b∗ and

vα|(0,bα) = f∗ and using the properties of (f∗, b∗) derived in Step 1, the results follow.

Ad (iii). Let α > 1 and α ∈ J . Using the behaviour of λ from Proposition 3.2, it follows

from Theorem 1.9 (i), (ii) & (iv) that there are two possibilities, either Sα = [bα,∞) or

Sα = (0, aα] ∪ [bα,∞) for some aα ∈ (0, sl) and bα ∈ (sr, ŝ0]. Let us show that the former

can not hold. Namely, if this were the case, it would by the same means as in the previous

paragraph follow that (vα|(0,bα), bα) is the unique solution to system (3.7). But the result

from Step 1 would now imply that v′α(0+) = 0 and since vα(0+) = 0 (cf. Proposition 3.1)

this would contradict with vα(s) ≥ γs on R>0.

So indeed Sα = (0, aα] ∪ [bα,∞). From Theorem 1.9 (iii) we have that the triplet
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(vα|(aα,bα), aα, bα) solves the system (3.10) from Step 2. It follows by Step 2 that (aα, bα)

solves equations (3.4)-(3.5) and that vα is given by (3.6). So it remains to show that (3.4)-

(3.5) has at most one solution. For this, let (a, b) be any solution to those equations and

let, by Step 2, f ∈ C2(a, b) be the function for which the triplet (f, a, b) solves system

(3.10). We extend f to a C2(R>0 \ {a, b}) ∩ C1(R>0)-function by setting f(s) = γs on

(0, a]∪ [b,∞). Applying Lemma A.1 (i), thereby using that f(s) = γs on (0, a]∪ [b,∞) and

(L−(r+χ(s)))f(s)+c = 0 on (a, b), and Lemma A.1 (ii), thereby using that f(s) ≥ γs on

R>0 (cf. Step 2) and (L−(r+χ(s)))f(s)+c = λ(s) ≤ 0 on (0, a)∪(b,∞) ⊂ (0, sl)∪(sr,∞)

(cf. Proposition 3.2), it follows that f(s) = supτ∈T0,∞ Es[Lτ ] = vα(s) on R>0. Since, using

Step 2, f(s) > γs iff s ∈ (a, b) and vα(s) > γs iff s ∈ (aα, bα), this indeed implies

(a, b) = (aα, bα).

4 Some plots
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Figure 1: Situation as in Theorem 2.2 (i), with σ = 0.2, r = 0.1, δ = 0.05, γ = 1, c = 0.5,

s̄ = 2.5 and p = 0.06. The solid line is vp, the three dotted lines are (from the bottom up)

s 7→ γs, v̂p and v̂0 resp. Note that v̂0 is the value in the standard case without default.
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Figure 2: Situation as in Theorem 2.2 (ii), with the same parameters as in Figure 1, except

with p = 0.4. The solid line is vp, the two dotted lines are (from the bottom up) s 7→ γs

and v̂0 resp. Note that v̂0 is the value in the standard case without default.
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Figure 3: Situation as in Theorem 3.3 (i), with σ = 0.2, r = 0.1, δ = 0.05, γ = 1, c = 1.25

and α = 0.2. The solid line is vα, the dotted one is s 7→ γs.
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Figure 4: Situation as in Theorem 3.3 (ii), with the same parameters as in Figure 3, except

with α = 5. The solid line is vα, the dotted one is s 7→ γs.

A Appendix

Lemma A.1. Let I ⊂ R>0 be an interval and Nf ⊂ I be a finite set. Let f be a continuous

function on Ī such that f ∈ C2(I \Nf )∩C1(I) and the limits f ′′(a±) exist and are finite

for all a ∈ Nf . We have the following.

(i) Suppose that f is bounded and satisfies (L− (r +χ(s)))f(s)+ c = 0 on I \Nf . Then

f(s) = Es

[
1{τ(I)<∞}e

−rτ(I)−ϕτ(I)f(Sτ(I)) +

∫ τ(I)

0

ce−ru−ϕu du

]
, ∀s ∈ I.

(ii) Suppose that f satisfies{
(L − (r + χ(s)))f(s) + c ≤ 0 on I \Nf

f(s) ≥ γs on Ī.

Then

f(s) ≥ sup
τ∈T0,∞

Es

[
Lτ(I)

τ

]
, ∀s ∈ I.

Proof. First consider a function that satisfies the weaker requirement h ∈ C2(I \D)∩C(I)

for some finite set D, with existing and finite limits h′′(a±) for all a ∈ D. Applying the
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change-of-variable formula from [14] we may write

h(St) = h(s) +

∫ t

0

1{Su 6∈D}h
′(Su) dSu +

1

2

∫ t

0

1{Su 6∈D}h
′′(Su) d〈S, S〉u

+
1

2

∑
a∈D

∫ t

0

(h′(a+)− h′(a−)) dLa
u, t ≥ 0,

(A.1)

where La denotes the local time of S at a and is defined as the càdlàg version of

La
t = P− lim

ε↓0

1

ε

∫ t

0

1{a≤Su<a+ε} d〈S, S〉u, t ≥ 0.

Now let f ∈ C2(I \Nf )∩C1(I) be as in the statement of the lemma, take some s ∈ I

and let S start in s. Define the process Z by

Zt = e−r(t∧τ(I))−ϕt∧τ(I)f(St∧τ(I)) +

∫ t∧τ(I)

0

ce−ru−ϕu du, t ≥ 0. (A.2)

Using the above formula (A.1) we can write Z = Z0 + M + A, where Z0 = f(s), M is a

local martingale given by

Mt =

∫ t∧τ(I)

0

e−ru−ϕuσSuf
′(Su) dWu, t ≥ 0,

and the drift A is given by

At =

∫ t∧τ(I)

0

1{Su 6∈Nf}e
−ru−ϕu [(L − (r + χ(Su)))f(Su) + c] du, t ≥ 0.

Ad (i). Since f satisfies (L− (r + χ(s)))f(s) + c = 0 on I \Nf , A vanishes and thus Z

is a local martingale. Furthermore, since f is bounded and continuous on Ī, (A.2) shows

that Z is a bounded process and that as t →∞

Zt → Z∞ := 1{τ(I)<∞}e
−rτ(I)−ϕτ(I)f(Sτ(I)) +

∫ τ(I)

0

ce−ru−ϕu du, Ps − a.s.

By dominated convergence it follows that Es[Z0] = Es[Z∞], yielding the result.

Ad (ii). On account of f(s) ≥ γs on Ī we see from (A.2) that

Zt ≥ L
τ(I)
t , ∀t ≥ 0. (A.3)

Since f satisfies (L − (r + χ(s)))f(s) + c ≤ 0 on I \Nf , A is non-increasing and thus Z

is a local supermartingale. Since Z is non-negative by (A.3), it is a true supermartingale.

This implies for any τ ∈ T0,∞ and t > 0, using Doob’s optional sampling and (A.3), that

f(s) = Es[Z0] ≥ Es [Zt∧τ ] ≥ Es

[
L

τ(I)
t∧τ

]
. Since L is of class (D), we can let t → ∞ and

obtain f(s) ≥ Es

[
L

τ(I)
τ

]
, which yields the result.
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Lemma A.2. Let α > 0 and let the functions φ1 and φ2 be defined as in Theorem 3.3.

Furthermore let b ∈ R>0 and set A := 2(r − δ)/σ2. We have the following.

(i) φ1 and φ2 are positive, linear independent C∞(R>0)-functions such that (L − (r +

s−α))φ1,2(s) = 0. The Wronskian of (φ1, φ2) is given by s 7→ αs−A/2.

(ii) We have φ1(0+) = ∞ and φ2(0+) = 0, φ′2(0+) = 0.

(iii) Let s ↓ 0. Then

φ2(s)

∫ b

s

ξA−2φ1(ξ) dξ → 0, φ1(s)

∫ s

0

ξA−2φ2(ξ) dξ → 0 (A.4)

and

φ′1(s)

∫ s

0

ξA−2φ2(ξ) dξ + φ′2(s)

∫ b

s

ξA−2φ1(ξ) dξ →


∞ if α ∈ (0, 1)

σ2/4 if α = 1

0 if α > 1.

(A.5)

Proof. The facts about Bessel functions used in this proof can be found in [1] p. 358 –

378 e.g. Recall from Theorem 3.3 that

φ1(s) = s1/2−(r−δ)/σ2

Iν

(
2
√

2

ασ
s−α/2

)
and φ2(s) = s1/2−(r−δ)/σ2

Kν

(
2
√

2

ασ
s−α/2

)
,

where

ν =
2

ασ

√
2r +

(
σ

2
− r − δ

σ

)2

.

Ad (i). For arbitrary µ the functions Iµ and Kµ are by definition two positive, linear

independent solutions of the modified Bessel equation x2y′′(x)+xy′(x)−(x2+µ2)y(x) = 0

on R. By some standard substitutions and calculations it can be checked that consequently

(L − (r + s−α))φ1,2(s) = 0. The Wronskian of (φ1, φ2) can by standard means be derived

from the Wronskian of (Iµ, Kµ), which is known to equal s 7→ −1/s.

Ad (ii). We use the asymptotic expansions for z → ∞, denoted in the form f(z) ∼
g(z)

∑
k≥0 ckz

−k and normalized such that c0 = 1, from Table 1.

From the exponential increase and decay of Iν(z) and Kν(z) as z → ∞ as seen in

Table 1 it readily follows that φ1(0+) = ∞ and φ2(0+) = 0. Computing φ′2(s) and using

the expansions of Kν and K ′
ν from the Table 1 we find φ′2(0+) = 0.

Ad (iii). We only show (A.5) since the same means can be used to show the easier

(A.4). First consider the term φ′1(s)
∫ s

0
ξA−2φ2(ξ) dξ. For arbitrary x, the expression
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f g Coefficient c1

Iν(z) ez/
√

2πz −(4ν2 − 1)/8

I ′ν(z) ez/
√

2πz −(4ν2 + 3)/8

Kν(z) e−z
√

π/(2z) (4ν2 − 1)/8

K ′
ν(z) −e−z

√
π/(2z) (4ν2 + 3)/8

Table 1: Asymptotic expansions

∫ s

0

ξx exp

(
−2

√
2

ασ
ξ−α/2

)
dξ

allows for an asymptotic expansion for s ↓ 0 by repetitively applying partial integration.

Combining this with the expansions of φ′1(s) and φ2(s) for s ↓ 0 obtained by using Table 1,

we arrive after some algebra at

φ′1(s)

∫ s

0

ξA−2φ2(ξ) dξ = − ασ

4
√

2
sα/2−1 +

α2σ2

8
sα−1 +O(s3α/2−1), s ↓ 0. (A.6)

Next consider the expression φ′2(s)
∫ b

s
ξA−2φ1(ξ) dξ. Since φ′2(0+) = 0 (cf. (ii)), its limit

value for s ↓ 0 is independent of the value of b. Now we can repetitively apply partial

integration on the expression ∫ b

s

ξx exp

(
2
√

2

ασ
ξ−α/2

)
dξ

and use the expansions of φ1(s) and φ′2(s) for s ↓ 0 obtained by using Table 1 to deduce

after some algebra that for all b small enough

φ′2(s)

∫ b

s

ξA−2φ1(ξ) dξ =
ασ

4
√

2
sα/2−1 +

α2σ2

8
sα−1 +O(s3α/2−1)+φ′2(s)C(b), s ↓ 0, (A.7)

where C(b) is a sum of terms that come from the partial integration. Thus, if we add

(A.6) and (A.7) we see that their leading terms cancel against each other and (A.5)

indeed follows.
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[16] M. Ŝırbu and S. Shreve. A two-person game for pricing convertible bonds. SIAM

Journal on Control and Optimization, 4:1508–1539, 2006.

29


